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Abstract This paper provides an approximate analysis for an on-line network system consisting of a CPU and a 

large number of terminals located in many service stations. Customers arrive at each station for CPU service via a 

Poisson process. The CPU processes jobs from terminals according to the processor sharing discipline. The CPU 

processing rate is dependent on the number of customers receiving the CPU service simultaneously and decreases 

when this number increases beyond the CPU capacity. The approximate analysis in this paper is performed by 

dividing the entire system into a computer subsystem and queueing subsystems. The computer subsystem is formu­

lated as a closed queueing network and each queueing subsystem as an M/G/m queue. Our results are simple and can 

be applied easily to decide on the optimal number of terminals that minimizes mean total system time. 

Key Words: on-line network system; closed queueing network; M/G/m queue; terminal control policy. 

1. Introduction 

Nowadays we can see a vast use of so called information 

network systems such as cash dispenser service systems in banks 

and on-line information retrieval service systems in libraries. 

In such a service system, a huge computer deals with service 

requirements from hundreds or thousands of terminals located in 

various places. We call such a service system as an on-line 

network system. 

In an on-line network system, the CPU processing rate may 

vary with the number of customers receiving the CPU processing 

service. If the number of customers receiving the service simul­

taneously increases beyond the CPU capacity, the processing rate 

will decrease rapidly due to the increase of page faults and 
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An On-Line Network System 287 

swappings, interferences and etc. In order to enhance the system 

efficiency, the number of running terminals should be then con­

trolled appropriately. As we shall see, our analysis in this 

paper can be applied to get the optimal number of running termi­

nals in system. By optimal, we mean the one which minimizes the 

mean total system time of customers. 

In this paper, we present a model for on-line network sys­

tems and then analyse it approximately using queueing theory. Our 

results are so simple that they provide the optimal number of 

terminals in system with small computational efforts. In order to 

analyse the model approximately we divide the whole system into a 

computer subsystem and some queueing subsystems. The computer 

subsystem describes state transit.ions of terminals while the 

queueing subsystems describe queueing aspects of customers at 

terminals. We analyse the computer subsystem by formulating it as 

a closed queueing network and replacing one of its nodes with a 

flow equivalent exponential node. The steady-state probabilities 

for the computer subsystem allow us to estimate approximately the 

turn-around-time distribution of jobs which customers input at 

terminals. Then the mean total system time of customers can be 

approximately obtained by applying an approximation method for 

M/G/m queues. 

In the next section, we describe the model for on-line 

network systems in detail. An approximate analysis for the model 

is then given in Section 3. In Section 4 some numerical results 

are present to show the effect of terminal control. In Section 5 

some discussions about the accuracy of the approximations are 

given. In Section 6 another approximate analysis is provided for 

the cases of heavy traffic and overload traffic. As an applica­

tion, in Section 7, we propose a terminal control policy based on 

our analyses. 

2. Model Description 

The on-line network system to be considered in this paper is 

shown in Figure 2. 1. The system eonsists of a single CPU and a 

large number of terminals located in M different service sta-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



288 H. Pan & H. Morimura 

tions. Although it might be restrictive, t we assume that each 

station has the same number of terminals, say m terminals. At 

each station, customers arrive via a Poisson process with a 

common arrival rate A and each customer receives a CPU service 

through one of the m terminals. The service discipline associated 

with each station is first-come-first-served. 

The service requirements brought by customers to the CPU are 

exponentially distributed with mean 1/~ 2' A customer needs a 

random time to input his service requirement through a terminal 

before receiving the CPU processing. After waiting that the CPU 

processing is completed, he will get an output through the same 

terminal that takes a random duration. Thus the service process 

for a customer is composed of the three stages: (1) input ser­

vice, (2) CPU processing and (3) output service. A customer 

cannot initiate the input stage until the previous customer, who 

uses the same terminal, completes all the service process. We 

assume that the input and the output service times for a customer 

service station 
terminal 

Figure 2.1 

tAn extended model for on-line network systems with different 
numbers of terminals and arrival rates at each station will be 
studied in a forthcoming paper. 
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are exponentially distributed random variables with means 1/~ 1 

and 1/ ~ 3 respectively, and the service times spent in the three 

stages are all mutually independent. 

The CPU processes service requirements from all terminals in 

a time-sharing fashion. The CPU processing time for a customer is 

therefore dependent on the number of customers in the CPU pro­

cessing stage. Moreover, the CPU processing rate may vary with 

the number of terminals receiving the CPU processing simulta­

neously. Let s(n) denote the CPU processing rate when there are n 

customers in the CPU processing service stage. At that time, each 

customer receives service with rat.e s(n)/n. We assume that s(n) 

is a concave function as shown in Figure 2.2. The function s(n) 

increases as n increases until some nO' When n exceeds nO' the 

CPU reaches an overloaded state and s(n) begins to decrease. Some 

examples of such service rate functions can be found in [3]. 

In the real world, the number M of service stations in such 

on-line network systems as described above is in general quite 

large. Therefore we deal with the case that has a large M 

s (n) 

no n 

Figure 2.2 

3. Analysis 

We shall analyse the model described in the previous section 

under equilibrium condition. Since the model is quite large, 

however, it is difficult, or perhaps impossible, to get an exact 

solution. If we attempt to formulate the entire system as a 

single stochastic process, the state of the process has to in­

clude a great quantity of informat.ion such as the queue sizes of 
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all stations and the stages of service for all customers receiv­

ing the service. Hence not only the number of states but also 

the dimension of the state space becomes enormous. 

In this section, an approximate analysis for the on-line 

network system is given. The approximation is mainly due to 

considering the computer subsystem and the queueing subsystems at 

each station separately. The computer subsystem consists of the 

CPU and aJl the terminals. The queueing subsystem at a station 

consists of customers and the terminals which are referred to as 

the servers of that station. First we derive the steady-state 

distribution for the computer subsystem and then use it to ana­

lyse the queueing subsystems. 

3. 1. Analysis of the computer subsystem 

The computer subsystem can be represented as a closed 

queueing network with four nodes as shown in Figure 3.1. Here the 

terminals at stations pJay the role of customers in ordinary 

queueing networks. Each node in the closed network corresponds to 

one of the four possible states of terminals. We say a terminal 

is in node i (i=I,2,3) if the service through the terminal is in 

the ith stage, (recall the definition of stages), and it is in 

node 4 if it is in idle state. 

A terminal moves from node 1 to node 2 and then to node 3 in 

an obvious way. When the service through a terminal is completed, 

the terminal moves from node 3 to node 1 or to node 4 according 

Figure 3.1 
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to whether or not there is any customer waiting for the service 

at the corresponding station. If an arrival at a station finds an 

idle terminal then the terminal moves from node 4 to node 1. 

nodes 1, 3 and 4 can be considered as infinite-server nodes and 

the discipline of the service at node 2 is processor sharing. The 

service times at nodes 1 and 3 are exponentially distributed with 

means 1/ /.l 1 and 1/ /.l 3' The CPU service requirement of each 

terminal at node 2 is also exponentially distributed and the mean 

number of service completions per unit time at node 2 is /.l 2s(n2) 

when there are n 2 terminals there. 

The sojourn time of a terminal at node 4 and the transition 

probabilities that a terminal leaving node 3 moves next to node 1 

or to node 4 depend on the state of the service station where the 

terminal is located. To cope with the difficult situation, we 

transform the model in Figure 3.1 to the one in Figure 3.2 by 

allowing zero service time at node 4. The transformed model in 

Figure 3.2 is however still diffiClult to analyse, because the 

service time distribution at node 4 is not simple. We shall then 

further make an approximation by Clonsidering the service time 

distribution as being exponential. By this approximation, the 

state of the computer subsystem becomes independent of the state 

of the queueing subsystems and the computer subsystem becomes 

possible to be analysed by itself. 

The new exponential node 4 should keep the flow rate un­

changed. Note that the total arrival rate in the network service 

Figure 3.2 
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system, which is also the flow rate at node 4 in Figure 3.2 under 

equilibrium condition, is A M. Hence we let the mean number of 

total service completions per unit time at node 4 be A M. 

Thus far, we have obtained a simple approximate model for 

the computer subsystem. The model is a closed queueing network 

with a product form solution studied in [1]. Let n =(n
1
,n

2
,n

3
,n

4
) 

be the state of the computer subsystem, where n. represents the 
J 

number of terminals in node j (j=1,2,3,4). It should be kept in 

mind that 

(3. 1) n 1 + n 2 + n3 + n 4 = Mm. 

The approximate solution for the steady-state probability " (n) 

is given by 

c 
(3.2) 1T (n) "'" 

where if> ={n I nj~ 0, j=l, 2, 3, 4, n
1
+n

2
+n

3
+n

4
=Mm} and C is a normal­

izing constant chosen so that the sum of probabilities is unity, 

i. e., 

1 
(3.3) c 

o 
Here, for convention, we definer~ s(r)=l. Accuracy of this 

approximation formula will be discussed in Section 5. 

3.2. Analysis of the queueing subsystems at service stations 

We have assumed that at each service station customers 

arrive according to a Poisson process with rate A and receive 

service through m terminals in the first-come-first-served order. 

From the assumption about the CPU processing rate, the service 

time depends on the states of all stations. If, however, the 

number of stations is assumed to be large, one may ignore the 

dependence. We then consider each station in isolation, where the 

service time has a state-independent distribution calculable from 

the steady-state distribution for the computer subsystem. That 

is, the queueing subsystem at each station is approximately 
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considered as an ordinary M/G/m system. 

The exact analysis for M/G/m systems is known to be diffi­

cult and many approximation methods have been developed. We shall 

apply one of those methods to obtain an approximate solution for 

the mean waiting time of the queueing subsystem. The quantities 

necessary associated with the service time can be calculated from 

(3.2) and (3.3). Here, we use a s:imple result in [2]. After a 

little algebra, the approximation formula of [2] for the mean 

wai ting time of M/G/m systems is 1~ransformed to 

(3.4) W(M/G/m) ,., 
1_c 2 

[ __________ ~s~ ____ __ 

1+ (1- ) (m-I) 14+51n-2 
p 16mp 

2 -1 + c] W(M/M/m), 
s 2 

where, Cs and p are the coefficient of variation of service time 

and the utilization factor of sys1~em respectively. Let E8 and E~ 
be the first and the second momen1~s of service time. We then have 

(3.5) 

and 

(3.6) 

2 
c s 

p = 

ES2_(ES)2 

(ES)2 

AES 
m 

The mean waiting time for M/M/m queues is known as 

(3.7) 

In order to calculate the approximate value of the mean 

waiting time from (3.4), we need 1~he first two moments of the 

service time distribution. Recall that the three parts of the 

service time corresponding to the three service stages (1), (2) 

and (3) are independent of each o1~her. Hence if we denote the CPU 

processing time by 82 , one has 

Mm 11 2 (n) \1
2 

s (n) 
E (l-exp(- x», 

n=l 1-11
2

(0) n 

where 7r 2(n) is the steady-state d.istribution of the total 

number of customers in the CPU processing stage. Thus the first 
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two moments of the service time can be derived as 

1 1 Mm 7T
2

(n) n 1 (3.8) ES - + ~ --+ 
)11 )12 n=1 1-7T2 (0) s (n) )13 , 

and 

ES2 ~+ 2 Mm 7T 2 (n) 
n 2 2 (3.9) 

"2 ~ (s(n» + "2 2 
n=1 1-7T2 (0) )11 )12 )13 

2 Mm 7T 2 (n) 2 _2_) L n +(-- + s (n) + )11)12 )12)13 n=1 1-7T2 (0) )11)13 

We need to calculate n 2(n), which is the marginal distri­

bution of state n for the computer subsystem. From (3.2) and 

(3.3) , 

n
1 

n n3 n 4 n -1 
~ [)1 )12 )13 (AM) n

1
!( IT s(r»n

3
!] 

(3. 10) 7T 2 (n) "" nE<J> (n) 1 r=1 
n

1 n
2 n3 n 4 n

2 '] -1 ~ [ )11 )12 )13 (AM) n
1

! ( IT s(r»n 3" nE<J> r=1 

where, <p (n)={n I nj~ 0, j=l, 2, 3, 4, n
2

=n, n
1
+n

3
+n

4
=Mm-n}. The 

right hand side of (3.10) can be simplified in the following way: 

numerator 
1 

n 
n IT s (r) )12 

r=1 

1 

n n 
)12 IT s (r) 

r=1 

1 

Mm-n 1 1 
~ [n fn = n n

1 n3 n 4=0 (AM) 4 1 3 
n

1
! n3! Mm-n-n )11 )13 

4 

Mm-n 1 
~ 

n =0 n 4 
4 (AM) (Mm-n-n 4) ! 

Mm-n-n 
(~ + ~) 4 
)11 )13 

Mm-n 
~ __ 1 __ rAM(~ + ~)]k 

n M k=O k!· )11 )13 
)1; ( IT s (r» (AM) m-n 

r=1 

and similarly, 

denominator 
Mm 1. Mm-n 2 1 1 
L {n n Mm-n ~ -rT[AM(~ + 

n 2=0 )122 ( IT 2 s (r» (AM) 2 k-O 1 
r=1 

Combining these, one finally has 
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(AM)n Mm-n 
L __ l __ [AM(~ + ~)]k 

k=O k! ~1 ~3 

Mm n 2 Mm-n 
L { (AM) L 2 __ 1_PM (~ 

n n k! ~ 
n 2 =O ~2 2 ( n2 s (r») k=O 1 

1'=1 

Using (3.4) through (3.9) andl (3.11), we obtain the mean 

waiting time W of the queueing subsystem at each service station. 

3.3. Some quantities for system r~rformance measures 

Using the approximate results derived in Sections 3.1 and 

3.2, some quantities for system performance measures can be 

obtained. Let T be the mean total time spent in the on-line 

network system by customers. We "then have 

(3. 12) T W + ES. 

Suppose that M, s(n) and f.J. j (j=l. 2,3) are fixed. Let P m( A ) 

and T ( A ) be respectively the utilization factor of the termi­m 
nals and the mean total system time of customers as functions of 

A for given m. Define a as the critical value of A at which m 
the system becomes unsteady when there are m t.erminals at each 

station. Namely, lim p (A) =1 and consequently 1 im T ( A ) = 00 • 
"A-+am m A+am m 

am can be calculated by substituting 1 for the left hand side of 

(3.6) . 

Our approximate analysis for the on-line network system has 

been done under equilibrium condi1~ion. We note, however, that 

even if the queueing subsystems get overloaded, i. e. p ~ 1, the 

computer subsystem may still be steady. In this case, the mean 

total system time is infinite and therefore the discussion about 

it becomes meaningless, but the CPU throughput, denoted by R, is 

of interest to us. We have the following relation regardless of 

whether p (1 or P ~ 1: 

Mm 
(3. 13) R ~ 7r2(n)f.J.2s(n). 

n=O 

The steady-state distribution 7r 2 (n) in the case of p ~ 1 will 

be derived in Section 6. 
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4. Numerical Examples 

Numerical results for some examples are shown in Figures 4.1 

through 4.4, from which the mean total system times of the cases 

m = 3, 4, 5 and 6 can be compared. In the example illustrated in 

Figure 4.1, we set f.J. 1 = 2, f.J. 2= 1, f.J. 3= 6, M = 100 and s(n) is a 

quadratic curve. We see that Tm( A ) is an increasing function 

and becomes infinite as A approaches to am' The larger ~ the 

more rapidly T ( A ) near a increases. For small A the differ-m m 
ence in the values of T (A ) with respect to m, m 3,4,5,6, is m 
not significant while for large A the difference becomes no-

table. Here we take the mean total system time T as the perform­

ance metric. We refer to the number of terminals as the optimal 

at which the smallest mean total system time is achieved. In this 

example, we explicitly observe the difference among the functions 

Tm( A ) for various m so that terminal control should be made 

where m = 4 is optimal for large A. Figures 4.2 and 4.3 illus­

trate two other examples in which the same parameter values as 

those in Figure 4.1 are used except for the function s(n). In 

these two examples, the optimal numbers of terminals are 5 and 6 

respectively. Compared with Figure 4.2, we observe that in Figure 

4.4, a 6 becomes smaller and a 3 becomes larger relatively. If we 

make f.J. 2 smaller, with f.J. 1 and f.J. 3 fixed, ES
2 

will take a 

larger portion in ES, so that the affect of the CPU processing 

rate function s(n) will become significant. 

With M, m and s(n) fixed, one sees from (3.6), (3.8) and 

(3.11) that the utilization factor p of the queueing subsystems 

is invariant as long as the relative values of A and f.J. i (i=l, 

2,3), i. e., A / f.J. i and f.J. / f.J. j (i, j=l, 2, 3), are not changed. 

Note that am represents the arrival rate corresponding to p =1 

when the number of terminals is m. Thus the relative positions of 

{am} are invariant provided that ~ s(n) and the relative values 

of {f.J. j} are not changed. Therefore, one may guess that if two 

on-line network systems have the same ~ s(n) and relative values 

of {f.J. j}' they would have similar curves of Tm( A ) and probably 

the same optimal number of terminals. For any on-line network 

system, it is clear that the optimal m is not smaller than nO 

divided by M where nO is the number which maximizes s(n). The 

difference between the values of the optimal m and no/M greatly 
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2 

{

lOO (n-300) 
s(n)= 900, 

0, otherwise. 

0~<600, 

T 

15 

10 

m=6 

5 

0~ __________________ a~ ____________ ~a~5~a~.~3~q~A __ _ 

0.5 0.6 0.7 0.8 0.9 1.0 A 

Figure 4.1 

2 

{

lOO- (n-400) 0';::n';::40fJ, 
1600 2' 

s (n) = 100 (n~66°) , 400---n~600, 

0, otherwise. T 

15 

10 

5 

o ~~~ __ ~~~ __ ~~~ __ ~a~6~ __ a.3~~ ____ a~4~a~~~ __ 
0_5 0.6 0.7 0_8 '0.9 1.0 

Figure 4.2 
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2 
100 (n-SOO) 

{ 

2S00 2' 
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s n 100' 

0, otherwise. 

Figure 4.3 

O~~OO, 

SOO<n~OO , 

2 

{

lOO (n-400) 0~<400, 
1600 2' 

s (n) = 100 (n~~go) , 400<n~OO, 

0, otherwise. 

a a 

0.3S 0.40 0.4S O. SO A 

Figure 4.4 
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depends on the slope of s(n) after nO. In the examples illus­

trated in Figures 4.1 through 4.4, in which the CPU processing 

rate functions s(n) decrease rapidly after nO' the differences 

are all equal to 1. 

5. Approximation Accuracy 

299 

We have introduced three steps of approximation in Section 

3. First, we replaced node 4 in Figure 3.2 with an exponential 

node. By this approximation, the state of the queueing subsystems 

was ignored. The second approximat.ion is due to formulating each 

queueing subsystem as an MVG/m queue. Moreover, we applied an 

approximation formula with respect to MVG/m queues. We suspect 

that the second approximation is not significant compared with 

the other two approximations when the number of stations, M, is 

large. The accuracy of the third approximation is dependent on 

the formula to be used. In the remainder of this section, we only 

consider the accuracy of the approximation formula (3.2) due to 

the first approximation. We cannot calculate the error of (3.2) 

directly, because the exact value of ~ (n) is difficult to ob­

tain. Also the enormous size of the system makes a simulation 

quite difficult. Here we check the accuracy in two different ways 

which do not show the accuracy directly but give us information 

on the accuracy to a certain extent. 

The first way is to check to what degree the approximate 

solution satisfies the node balance equations which equate the 

flow into each node to the flow out of that node. The node 

balance equations for the computer subsystem (see Figure 3. 1) are 

established as follows: 

(5. 1) 

(5.2) 

(5.3) 

(5.4) 

P(n
l

, n
2

, n
3

, n
4

) IL 1n l = P(n
l
-l, n

2
, n

3
, n

4
+1) A M P{A I n4 +l} 

+ P(n
l
-l, n

2
, n3+ 1, n

4
) IL 3 (n

3
+1) (l-P{D I n

4
}) 

(nE cP and n
l 
~ 1), 

P ( nI' n 2 , n3 , n 4) IL 2 s (n2 ) ,. P ( n 1 + 1, n 2 - 1, n3 , n 4) IL 1 (n 1 + 1) 

(n E cP and n
2 
~ 1), 

P ( nI' n 2 , n 3 , n 4) IL 3 n3 = P ( nI' n2 + 1, n3 - 1, n 4) IL 2 s ( n 2 + 1) 

(nE cP and n3 ~ 1), 

P(n
l

, n
2

, n
3

, n
4

) A M peA I n
4

) 

X IL 3 (n
3
+1)P{D I Tl

4
-l} 

P (n 1 ' n 2 , n3 + 1, n 4 -1) 

(n E cP and n 4 ~ 1), 
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where, 

P{A I n
4

} = P{an arrival in the on-line network system will 

find an idle terminal I currently there are n4 idle 

terminals in total}, 

P{D I n
4

} = P{a departure from the on-line network system 

will leave the corresponding terminal idle I currently 

there are n4 idle terminals in total}. 

From (5.4), we can rewrite (5.1) as 

( 5. 5) P ( ni' n2 , n3 , n 4) IJ. 1 n 1 = P ( n 1 - 1, n 2 , n3 + 1, n 4) IJ. 3 (n3 + 1) 

(nE cP and n
1 
~ 1). 

It can be readily checked that the approximate solution shown in 

(3.2) satisfies (5.2), (5.3) and (5.5). Unfortunately, (5.4) is 

not satisfied because P{A I n
4

} * P{D I n
4
-1} in general. However 

we suspect that P{A I n
4

} is rather close to P{D I n
4
-1} if n

4 
is 

not extremely small. Hence the distribution shown in (3.2) should 

have a good accuracy. 

The accuracy can also be checked by a numerical means. Note 

that, when the on-line network system is in equilibrium state, 

the total arrival rate and the total departure rate must be 

consistent. In other words, if the total departure rate calcu­

lated by the apprOXimation formula (3.2) is very different from 

the total arrival rate then we have to say that the accuracy of 

the approximation is poor. Now let us calculate the total depar­

ture rate and compare it with the total arrival rate. Note that 

the total departure rate from the on-line network system is just 

the same as the CPU throughput R. Table 5.1 shows the utilization 

factors p and the CPU throughputs R calculated approximately by 

(3.6), (3.8), (3.11) and (3.13) for the cases illustrated in 

Figure 4.2. (Note that (3.6), (3.8) and (3.13) are not approxima­

tion formulas, and (3.11) was derived from (3.2).) We only ob­

serve the values in Table 5.1 corresponding to p (I, i.e., the 

values not bracketed. A is the arrival rate at each station and 

in this case the number of stations is M = 100, so the total 

arrival rate in the entire system is 100 A . From Table 5.1, we 

see that when p (1, R is roughly consistent with 100 A , which 

again means that the accuracy of the approximation should be 

sufficiently reliable. We also observe from Table 5.1 that the 

accuracy is not yet so satisfactory when p is near to 1 (i. e., 
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when the value of n4 is likely small) . 

Table 5. 1 

A m=3 m=4 m=5 m=6 

0.7 p =0.76 0.57 0.46 0.38 
R=70.00 70.00 70.00 70.00 

0.8 0.91 0.69 0.55 1. 43 
79.18 80.00 80.00 78.90 

0.9 1. 05 0.84 0.67 78.33 
82.92 89.92 90.00 1. 44 

1.0 1. 17 1. 00 0.91 87.08 
83.81 95.74 98.60 1. 44 

6. Heavy and Overload Cases 

From Section 5, it seems that the accuracy of the approxi­

mate solution in Section 3.1 is not sufficient when P is near to 

1. Here we give another analysis :ror the case of heavy traffic 

( P "" 1 but P (1) which can also be applied to the case of over­

load traffic (p ~ 1). Note that jn these cases it scarcely occurs 

that there is any idle terminal. Thus we omit node 4 from Figure 

3.1 for the computer subsystem as shown in Figure 6.1. The ser­

vice at each node has the same rat,e and discipl ine as in Section 

3. 1. Here we take the state of the computer subsystem as n = (nI' 

n2,n3 ), where nI' n2 and n3 represent the same variables as in 

Section 3.1 with 

(6. 1) 

Again this queueing network has a product form solution and 

the distribution of the number of terminals in node 2 is given by 

Figure 6.1 
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(6.2) 
Mm 
~ 
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1 

n n 
).J 2 ( IT s (1') ) (Mm - n) ! 

1'=1 

1 

n =0 n 2 n 2 
2 ).J 2 ( IT s (1') ) (Mm - n 2) ! 

1'=1 

Note that in the above derivation no approximation is made, 

i.e., (6.2) is just an exact result under the condition (6.1). 

When p ~ 1, the mean total time is of no meaning, but the 

quantity of CPU throughput is meaningful. Table 6. 1 shows the 

throughputs R of the same cases as in Table 5. 1 calculated by 

using (6.2). Here, R is independent of A. We see that in this 

example m = 4 is optimal and it will lead to a serious situation 

to let 6 terminals be running when A is so large that p">< 1 or 

p ~ 1 for each of the four choices of m. 

m 

R 

3 

84.67 

7. Terminal Control Policy 

Table 6. 1 

4 

97.33 

5 

96.66 

6 

1. 41 

We have seen from the analyses for the on-line network 

system that terminal control is necessary and effective. In this 

section, we propose a terminal control policy as follows: Let 

# i (i=I,2,3), M and s(n) be fixed. When the arrival rate A is 

given, calculate the utilization factor p first for each of the 

candidates for the number of terminals using (3.6), (3.8) and 

(3.11). If P is not very large, say, smaller than 0.95 for some 

candidates, then calculate the mean total system time T for these 

candidates using the results in Section 3 and choose the one with 

the smallest mean total system time as the optimal number of 

terminals. If p "><1 or p ~ 1 for all the candidates, then calcu­

late the CPU throughput R for each of the candidates using (3. 13) 

and (6.2) and choose the one with the largest CPU throughput. 

In some situations, the arrival rate may change from time to 
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time. To keep the system to be optimal all the time, terminal 

control should be made by running more terminals or stopping some 

running terminals according to the change of }.. The sooner the 

decision is made, the better. All the quantities needed to the 

decision are easy to calculate by computer. Hence the approximate 

method of this paper hopefully provides a means of terminal 

control. 
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