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This paper deals with a discrete time replacement model for a system with minimal repair. The system 

consists of n components under Markovian deterioration. The transition probability of its component is not inde­

pendent each other and the cost of replacing several components jointly is less than the sum of the costs of separate 

replacements. Then we investigate the structural properties of the optimal replacement policy which minimizes 

the expected total discounted cost, and propose the simple replacement policy which lets easily implementable 

policy. Also a numerical example is presented. 

1. Introduction 

In this paper, we consider a diserete time replacement model for a 

system with minimal repair. The syst,~m consists of n components under 

Markovian deterioration. The transition probability of each component is 

not independent each other, and the cost of replacing several components 

is less than the sum of the costs of the separate replacement. Further­

more, when the system failure is observed, we allow a controller to carry 

out minimal repair for such a system. The system is observed at the be­

ginning of discrete time periods and is classified into one of the possible 

number of states. If a system failur,: is observed then it is classified 

into one of the possible number of states showing the degree of the system 

failure. Then the possible actions are "no action", "replacement of each 

component" and "minimal repair of the system". A replacement of each com­

ponent means changing the component fJr a new one, and minimal repair means 

mending the system failure, namely, this repair brings the failure state of 

the system back to the operating stat:. 
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The replacement policies for stochasically independent two-component 

system were studied by Sethi[8], Berg[2], and Radner and Jorgenson[6]. 

Ohashi and Nishida[4] have considered the replacement policy for components 

in two-component system possessing stochastic and economic dependence, and 

shown that the optimal replacement policy has the form of a control limit 

policy. Furthermore, Ohashi[S] have discussed the replacement policy for 

the coherent system consisting of n repairable components with two states. 

The objective of this paper is to clarify the structure of the optimal 

replacement policy which minimizes the expected total discounted cost for 

the n-component system with minimal repair. We show that the optimal re­

placement policy has the control limit type, and discuss the properties 

of the optimal region of the action. A numerical example is also presented. 

Furthermore, from these results we propose the simple replacement policy, 

called (ABC)-policy, which lets to easily implementable policy and which 

is a generalization of (n,N) policy and (t,T) policy. 

2. Model Formulation 

We consider a system consisting of n components under Markovian 

deterioration. Let N={l,2, ... ,n} be the set of components and E. be the 
'& 

set of deterioration levels of component i, iEN. We assume that E. is 
'& 

partially ordered set with relation ~, and lattice with minimal and maximal 

elements. The minimal element 0 of Ei represents the best state of compo­

nent i, and the maximal element e. represents the worst state. Let (~,~,P) 
'& 

be the probability space and (E.,S.) be the measurable space of component i 
'& '& 

where S. contains all singleton events {x}, xEE .. For each tET={O,l, ... }, 
'& '& 

let X.(t) be a measurable function which maps from (~,7) to (E.,S.). Then 
'& '& '& 

the stochastic process {X.(t); tET} represents the behavior of deterioration 
'& 

levels of component i, and X (t)=(X1(t), ... ,X (t» denotes the deterioration c n 
levels of components. Similarly, let EO be the set of damage levels 

system failure. It is assumed that EO is partially ordered set with 

tion > and lattice with minimal and maximal elements. Specially the 

of the 

rela-

minimal 

element 0 of EO represents the operating state of the system and other 

states denote the system failure. Let XO(t) be a measurable function which 

maps from (~,7) to (EO,B
O
)' where (EO'SO) is a measurable space and So 

contains all singleton events {x}, XEEO' Then the stochastic process 

{XO(t); tET} represents the behavior of the state showing the degree of the 

system failure, and X(t)=(XO(t),Xc(t» denotes the deterioration levels of 
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the whole system. Therefore the evolution of the state of the system is 

discribed by the stochastic process z={,r(t); tET} with state space (E.S)= 
n n 

( IT E •• IT S.). 
. 0 1- • 0 1-

r~~l nuJiber R+. 

For simplisity we assume that E. is subset of nonnegative 
1-

Next we consider a discrete time replacement model for the system 

with minimal repair. The minimal repai:r brings the failure state. xOIO. 

back to the operating state. xO=O. However. the deterioration level Xc 
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of its components is not disturbed after performing minimal repair. There­

fore when this system fails at state x=(xO.x
c

)' xOIO. the minimal repair 

brings the system to state x=(O.x). For example. we consider an auto-
c 

mobile whose components are a tire. a battery. a body. an engine and so 

on. When the tire punctures we conside:r that the system failure occurs. 

and the minimal repair means mending the puncture. Then we consider that 

XO(t) represents the minimal repair cost and Xc(t) represents the deterio­

ration levels of its components. 

The system is observed at the beginning of discrete time periods tET. 

and classified into one of the possible number of E. Then the possible 

actions are "no action". "replacement of each component" and "minimal 

repair of the system". Let a=(a1 •...• a ) represent the action taken for 
n 

components. where 
n 

a.ED.={O.l} is an action taken for component i and D = 
1- 1- C 

IT D.. Here a.=l means replacing component i and a.=O means keeping it. 
i=l 1- 1- 1-
Let D=D U{m} be an action space of this replacement model. where a=m 

c 
means carrying out minimal repair of the system. When an action aEDO= 

{aEDI alO} is taken on the system with Btate x=(xO.x1 •••.• xn ). the time 

consumption required for replacement or minimal repair. T(x.a). has a 

probability distribution G(t;x.a) with a finite mean. 

Let Z={X(t); tET} represent the behavior of the deterioration levels 
a a a 

of the system under no action. Let X =(x1 •...• x ) and x =(x1l •...• x n). c n c n 
where x~i=x. if a.=O. and x~i=O if a.=l" If an action aEDl={aED I alO} is 

1- 1- 1- 'l- -z- c 
taken on the system with state X(t)=x. then we have X(t+T(x.a»=(O.xa ). and c 
if a=m then X(t+T(x.a»=(O.x). We are interested in the state of the 

c 7T 7T 
system. Thus we introduce the following stochastic process Z ={Z (t); tET} 

under a stationary replacement policy 7T{.): 

(2.1) 

where 
7T 

O=TO<T
1

< ...• Tt=Tt_l+S(Z (t-l).7T) 

7T 
S(Z (t-l).7T)=( 1 

T(Z7T (t-I). 7T) 

and 

if 7T(Z7T(t-l»=O. 

otherwise. 
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1T 1T 
Then the transition probability P (x,U) of the stochastic process Z is 

given by for each UsS 

Q(x,U) 

(2.2) 1 

1 

o 

if a=O, 

if a=m and (o,x )sU, a 

if aSD
l and (O,x~)SU, 

otheruise, 

where Q(x,U) is a probability measure on (E,S) for each xsE. 

For the costs associated with the discrete time replacement model of 

the system with minimal repair, we consider a replacement cost C.(x.) of 
"Z- "Z-

component i per period, a set up cost K(x) of replacement per period, an 

operating cost B(x) per period and minimal repair cost M(x) per period when 

the system is in state x at the beginning of the period. We assume that 

all costs and transition probabilities are known, and all costs are bounded 

and nonnegative. Now let Va(x) be the minimum expected total discounted 

cost with discounted factor as[O,l) when the state of the system is x at 

the beginning. Then Va(x) obeys the following functional equation: 

(2.3) 

v (x)=min[B(x)+a!V (u)Q(x,du), 
a a 

t 
!{M(X)ll-a +atV (o,x )}dG(t;x,m), 

-a a a 
i_at 

mini !{(K(x)+ L C.(x.»-l-
asD iSA(a)"Z- "Z- -a 

+atV (O,xa)}dG(t;x,a)] 
a a 

where A(a)={isNI a.=l, aSD
1

}. 
"Z-

3. Structure of Optimal Replacement Policy 

Our aim is to examine the structural properties of the optimal re­

placement policy for components in the system with minimal repair, under 

the criterion of the expected total discounted cost. First we seek the 

structural property of the optimal expected total discounted cost function. 

Let B(E) be the set of all bounded real valued S-measurable function on E, 

and F(E) be the subset of B(E) such that for fSB(E) , x'~x in E implies 

f(x')2f(x). Furthermore, let S(E) be the family of all increasing set U 
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on E. The following theorem shows the structure of Va(x) under the 

following condition. 

(2) 

(3) 

Condition 3.1. (1) Q(x,U)EF(E) for all UES(E), 

B(X)EF(E), K(X)EF(E) , M(X)EF(E) and ~ C.(x.)EF(E), 
'Nt- t-O t-E 

l-G(t;x,a)EF(E) for each aED and tET. 

This condition (1) means that the system under no action has a 

tendency for monotonically deterioration. Condition (2) means that the 

operating cost, the set up cost of replacement, the minimal repair cost 

and the replacement cost of components increase as a function of deterio­

ration levels of the system. Condition (3) means that the replacement 

time and minimal repair time have a tendency for mono tonically increase 

as a function of deterioration levels of the system. 
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Theorem 3.1. If Condition 3.1 holds, then the optimal expected total 

discounted cost function V (x) is a member of F(E). 
a 

Proof: The proof is carried out by the method of successive approxi-

mations. 

(3.1) 

Let VO(X)=O and define recurrsively: 

Vk(x)=min[B(x)+a!Vk_l (u)Q(x,du) , 

I_at t 
!{M(X)l_a +a Vk_l (O,xc)}dG(t;x,m) , 

I_at 
minI !((K(x)+ ~ C'(X'»-l-
aED iEA(a) t- t- -a 

t a } +a V
k

_l (O,xc ) dG(t;x,a)]. 

I_at 
We first show Vk(X)EF(E) for each k. We have ~G(t;x,a)EF(E) from 

Condition 3.1 (3). Therefore for k=l it follows trivially from Condition 

3.1 (2). Suppose that for some k Vk(X)EF(E) , Vk(X)~(K(x)+Ci(Xi»/(l-a) 

for each iEN and Vk(O,xc)~(x)/(l-a). Then under Condition 3.1, we obtain 

that 

B(x)+a!Vk(U)Q(x,du) 

is a member of F(E) by the induction hypothesis. On the other hand, we 
1 

obtain for each aED 

I_at t. a 
(K(x)+ ~ C'(X'»-l- +a Vk(O,x ) 

iEA(a) t- t- -a c 

is increasing in t from the induction hypothesis. Thus 

I_at t a 
!((K(x)+ ~ C'(X'»-l- +U Vk(O,X )}dG(t;x,a) 

iEA(a) t- t- -a c 
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is a member of F(E). Similarly, for a=m we obtain that 

I_at t 
J{M(x)-l- +ex Vk(O,x )}dG(t;x,m) -a c 

is a member of F(E). Therefore we have Vk+l(x)EF(E) from equation (3.1). 

Next we show that Vk+l (x)~(K(x)+Ci(xi»/(l-a) and Vk+l(O,xc)~M(x)/(l-a). 

From the equation (3.1) we have for each iEN 

I_at t 
Vk+l(x):j{(K(x)+C.(x.»-l- +ex Vk(O,(O.,x »}dG(t;x,(l.,O» 

1-1- -a 1-C 1-

«K(x)+C.(x.»/(l-a). 
= 1- 1-

The last inequality is true since Vk(O,(Oi,xc))~Vk(x)~(K(x)+Ci(xi))/(l-a). 

Similarly, we have 

I-cl t 
vk+l(x):j{M(x)l_a +ex Vk(O,xc)}dG(t;x,m) 

~M(x) / (I-a) . 

Then we have Vk+l (O,xc)~M(x)/(l-a) from Vk+1 (x)EF(E). Thus we obtain that 

Vk+l (x) is a member of F(E). Then we obtain Vk(X)EF(E) for each k. Since 

a<l and all costs are bounded, it is easy to see that Vk(x)+Va(x) as k+oo 

for each xEE. Therefore we have V (x)EF(E). 11 
a 

Next, the structural properties of the optimal replacement policy 

are studied. Let F(Dl ) be a set of all bounded real valued increasing 

function on Dl. 

(2) 

(3) 

Condition 3.2. (1) M(x)<K(x)+C.(x.) 
= 1 1- 1-

G(t;x,a)~G(t;x,m) for each aED , 
- 1 

l-G(t;x,a)EF(D ) for each t and x. 

for each iEN, 

This condition (1) states that the minimal repair cost is not larger 

than the replacement cost. Similarly, condition (2) states that the minimal 

repair time is not stochastically larger than the replacement time. Condi­

tion (3) means that the replacement time has a trend for monotonously 

increase as a function of the number of the replacement components. 

The following theorem shows a simple property of the optimal replace­

ment policy. 

Theorem 3.2. Assume that Conditions 3.1 and 3.2 hold. If the deterio­

ration level of component i is in the best state 0, then the action to keep 

component i is optimal. 

Proof: Concerning with the action to keep component i we define 
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[V (x)]ki=min[B(x)+ajv (u)Q(x,du), 
a a 

1 at t 
j {M(x)-l- +a jl CO,x )}dG(t;x m), 

-a a c ' 
I_at 

mini j {(K(x)+ z: C . (x.» I-a 
aED

O 
jEA(a) J J 

t a } +a V (o,x ) dG(t;x,a)], 
a c 

and concerning with the action to replace component i we define 

. I_at t a 
[V (x)]1.-=min. j{(K(x)+ z: c.(x'»-l-+a V (O,x )ldG(t;x,a), 

a r aED~ jEA(a) J J -a a c 

h i {I 1 .}. f i 4"-were D.= aED a.=J for each JED .. Then we have or DOT~ 
J 1.- 1.-

i i 
[V (x)]k-[V (x)] a a r 

. I_at t a 
~m~n. j{(K(x)+ z: C,(;c'»-l- +a V (O,x )}dG(t;x,a) 
-aED~ jEA(a) J J -a a c 

. j{ I_at t a } 
-m~n. (K(x)+ z: C.(x'»-l- +a V (O,x ) dG(t;x,a) 
aED~ jEA(a) J J -a a c 

i 
and for each aEDO and xi=o 

I_at t a 
j {(K(x)+ z: C . (x .) )-1- fi), V (O,x ) }dG(t ;x,a) 

jEA(a) J J -a a c 
t 

-j{(K(x)+ z: c.(x.»i-a +atV (O,x(li,a»}dG(t;x,(l.,a» 
jEA(l. ,a) J J -a a c 1.-

1.- t 
:j{(K(x)+ z: c.(x.»ll-(~~ +atV (O,xa)}dG(t;x,a) 

jEA(a) J J -0: a c 

;;,,0. 

I_at 
-j{(K(x)+ z: c.(x.)+c.(x'»-l-

jEA(a) J J 1.- 1.- -a 

~-atv (O,x(li,a» }dG(t;x,a) 
a c 

The first inequality is true from Condition 3.2 (3) and the proof of 

Theorem 3.1, and the second inequality follows from V (O,(O.,x )a)= a 1.- c 
V (O,(O.,x )(li,a». Furthermore from Condition 3.2 (1) (2), we have 
a . 1.- C 1.-

for DO=<P and xi=O 

min[B(x)+ajv (u)Q(x,du), 
a 

I_at t 
j {M(x)-l- +a V (O,x ) }dG(t;x,m)] -a a c 
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I_at t 
-J{(K(X)+C.(x'»-l-+a V (O,(O.,x »}dG(t;x,(l.,O)) '1.- '1.- -a a '1.- c '1.-

;:;0. 

Thus we can easily obtain that the difference [V (xo'(o.,x »)ki-. a '1.- c 
[V (xo'(o.,x »)'1.-<0. Therefore the result directly follows. 11 a '1.- c :r= 

i i 
Let E =E1x ... xE. lxE.+lx .•• xE and J.(xO'x ) be a subset of E. for . . '1.-- '1.- n '1.- c '1.-

each (XO,X~)EEOXE'1.-. Let S(Ei ) be the family of all increasing set in Ei . 

Definition 3.1. Let TIi be a stationary replacement policy for compo­

nent i in the system. Then IT. is said to be a control limit policy with 
'1.-

respect to component i if and only if there exists a replacement set 

J.(XO,Xi)ES(E.) for each (XO,Xi)EEOXEi such that if state x. is in the '1.- c . '1.- C '1.-
set J . (xO,x'1.-) , replace component i, otherwise, do not replace. '1.- c 

The structure of the optimal replacement policy will be clarified 

under the following additional conditions. 

Condition A. (1) C.(x.)=C. and G(t;x,a)=G(t), 
'1.- '1.- '1.-

(2) M(x)-K(x)EF(E) and M(x)-K(x)~O, 
t -

f l-a 
(3) B(x)-M(x) ~G(t)EF(E). 

Theorem 3.3. Assume that Conditions 3.1 and 3.2 hold. If Condition A 

is satisfied, then there exists a control limit policy TIi with respect to 

component i. 

Proof: Under Condition A (1), we have 

i i I_at 
[V (x»)k-[V (x») =min[B(x)-K(x)f~l G(t)+afv (u)Q(x,du), a a r -a a 

I_at t 
f{(M(x)-K(x»-l- +a V (O,x )}dG(t), -a a c 

t 
min. J{ L C.

l
l - a +atV (O,xa)}dG(t)] 

aED~ jEA(a) J -a a c 

-min. 
'1.­aED1 

t 
J{ L C.l

l
- a +atv (O,xa)}dG(t). 

jEA(a) J -a a c 

Then from Condition A (2) and (3) we can easily obtain that the difference 

[V (x)]'1.-k·-[V (x)]i is a member of F(E;). Because 
a a r v 

t 
B(x)-K(x)f~=~ dG(t)EF(E) 

is obtained from Condition A (2) and (3). Thus the result follows from 

the definition of the control limit policy. 11 
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Remark 3.1. Let J1s(X
O

,Xi ) be the optimal replacement set minimizing 'Z- e 
the expected total discounted cost. ThE!n since the state space of compo-

nent i is a subset of nonnegative real number R , there exists a control . . +. 
limit x1s(x ,X'Z-)EE.U{oo} such that J1s(XO,;~'Z-)=[x1s(XO,x'Z-),oo)(lE., where 

roe'Z- i 'Z- e'Z- e 'Z-
x~(xO,x )=00 for J~(xO'x )=~. 'Z- e 'Z- e 

Remark 3.2. This theorem remains true even if we suppose that 

1_at 
M(x)-K(x)EF(E ) and B(x)-M(x)j~l G(t)E:F(E) in place of Condition A (2) e -a e 
and (3). 
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Corollary 3.1. Under conditions of Theorem 3.3 if the action to replace 

component i with the worst state e. is optimal, then we have x~(xo,ei)= 
i i 'Z- 'Z-

x1(0,e) for each xOEEO' where e =(el,.".,ei_1,ei+1, ... ,en)' 

Proof: Since the action to replace component i with the worst state 

e
i 

is optimal, we have for each XOEEO 

[V a (x 0' (xi' e) ) ] ~ - [V a (x 0' (xi' e) ) ] ~ 
I_at t 

= j {(K(x
O

' (x. ,e»+ l: C .-C ')'l- -td V (0, (x. ,0» }dG(t) 
'Z- . N J 'Z-. -a a 'Z-

JE t 
-j{(K(xo,(x.,e»+ l: c.),ll-a -tdtV (O)}dG(t) 

'Z- . N J -a a JE 

t 1_at 
=j{a (V (O,(x.,O»-V (0»-C"-1- }dG(t). a 'Z- a 'Z- -a 

Thus the result follows from the definition of x~(xo,xi) and Theorem 3.3. 11 'Z- e 

Corollary 3.2. Under conditions of Theorem 3.3 if the action to replace 
i 

component i with the worst state e
i 

is Dptima1, then we have x1(xo,e )~ 

x1(Xo ,Oi) for each xOEEO' 

Proof: From Theorem 3.2 we have 

i i 
[V (xO,(x.,O»]k-[V (xo,(x.,O»] a 'Z- a 'Z- r 

=min [B (x
O

' (x., 0) )-tdjv (u){2 «x
O

' (x., 0» ,du) , 'Z- a 'Z-

1_at t 
j{M(x

O
,(x.,O»-l- +et V (O,(x.,O»}dG(t)] 

'Z- -a a 'Z-

1_nt t 
-j{(K(x

O
,(x.,O»+C')-l -- +Cl. V (O)JdG(t) 'Z- 'Z- -n a 

1-C/ .s. j {M(x
O

' (x. ,0) )-K(X
O

' (x. ,0» }~1 G(t) - 'Z- 'Z--a, 

t 1_at 
+j{a (V (C,(x.,O»-V (0»-C.-

1
-}dG(t). a 'Z- Cl. 'Z- -Cl. 

And from the proof of Corollary 3.1 we have 
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i i 
[V (x

O
' (X • ,e) ) ] k- [V (x

O
' (X • ,e) ) ] a ~ a ~ r 

I_at t 
=J{-c.-l-+a (V (O,(x.,O»-V (O»}dG(t). 

~ -a a ~ a 

Then from K(x)-M(x)~O, we have 

i i 
[Va(xO' (xi,O»]k-[Va(xO,(xi,O»]r 

i i 
< [V (xO' (x . ,e) ) ] k- [V (xO' (x . ,e) ) ] 
= a ~ a ~ r 

Thus we can easily obtain that x1(xo,ei)~x1(Xo,Oi) by the definition of 

x-J; (Xo,Xi
) . 11 

~ c 

Remark 3.3. This corollary is concerned with (n,N) policy introduced 

by Radner and Jorgenson[6]. If the system consists of two components and 

the state space of component 2 is E2={O,I}, then this corollary asserts 

that the optimal replacement policy for the system with minimal repair is 

an (n,N) policy with n=x1(xO,1) and N=x1(xo'O) for each xOEEO' 

Let F(Ea) be a set of all bounded real increasing function on EO' and 

F(EO) be a set of all bounded real decreasing function on EO' 

Theorem 3.4. Assume that Conditions 3.1 and 3.2 hold. If Condition A 

is satisfied, then a control limit x-J;(Xo,Xi ) is a member of F(EO)' 
~ c 

Proof: Under Condition A (1) , we have 

i i I_at 
[V (x)]k-[V (x)] =min[B(x)-K(x)J~l G(t)+aJV (u)Q(x,du), a a r -a a 

I_at t 
J {(M(x)-K(x) )-1- +a V (a ,x ) }dG(t) , -a a c 

t 
min. J{ L C. l

l
- a +atV (O,xa)}dG(t)] 

aED~ jsA(a) J -a a c 

. I_at t a 
-mln. J{ L C.-

I
- +a V (a,x )}dG(t). 

D ~ • A ( ) J -a a c as 1 JS a 

Then from Condition A (2) and (3) we can easily obtain that the difference 

[V (x)]~k'-[V (x)]i is a member of F(EO)' Thus the result follows from the 
a a r . 

definition of x-J;(Xo'x~). I1 
~ c 

Remark 3.4. This theorem remains true even if we suppose that 
I_at 

M(x)-K(x)SF(EO) and B(x)-M(x)!l_a dG(t)EF(EO) in place of Condition A (2) 

and (3). Also, this theorem is concerned with (t,T) policy introduced by 

Tahara and Nishida[9) in the case of single-component system. 

Theorem 3.5. Assume that Conditions 3.1 and 3.2 hold. If Condition A 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Replacement Polic)' for Components 

is satisfied, then there exists a control limit x~(xc) for each xcSEc such 

that the action to carry out minimal repair for the system is optimal if 

and only if the failure damage Xo exceeds x~(xc)' 

Proof: From the functional equati.on (2.3), we have for each x sE 
c c 

[Va(x)]a=O-[Va(x)]a=m 

I_at t 
=B(x)+aJV (u)Q(x,du)- J {M(x)-l- +a V (O,x ) }dG(t) a -a Cl. c 

t 
=aJV (u)Q(x,du)+J {B(X)-M(X)ll-CI. _atV (O,x ) }dG(t). 

a -a.CI. c 

[v (x)] O-[V (x)] Dl a a= a as 

=B(x)+aJV (u)Q(x,du) 
a t 

-minI J{(K(x)+ L c.)i-CI. +atV (O,xa)}dG(t) 
asD jsA(a) J -a Cl. c 

t 
=J{B(X)-K(X)ll-a }dG(t)+((JV (u)Q(x,du) 

-Cl. Cl. 

I_at t 
-minI J{ L C '-1 -- +a v (O,xa)}dG(t). 
asD jsA(a) J -Cl. a c 

Then we have [V (x)] O-[V (x)] .1.0 SF(EO)' Thus we can easily find the 
Cl. a= a ay-

result. 11 

Remark 3.5. In this replacement model, it is assumed that the action 

to replace several components in the state x=(xO,xc ) (xO"O) contains the 

action to carry out minimal repair. 

The following properties clarify the structure of the optimal region 

G(a)={xsEI n(x)=a}. 

259 

Property 3.1. Assume that Conditions 3.1 and 3.2 hold. If Condition A 

is satisfied, then the optimal region G(O) is closed in the sence that 

X
1
AX

2SG(O) for all xl and x2 in G(O). 

For ~1 and ~2 1'n () 1 2 1 ~1.1I~2.<~2. Proof: ~ ~ GO, we have x.AX.<X. or ~ ~ ~ for each 
1- 1-=1- 1- 1-= 1-

isN. Thus the result follows from Theorem 3.3 and 3.5. 11 

Property 3.2. Assume that Conditi.ons 3.1 and 3.2 hold. If Condition A 

is satisfied, then the optimal region G(ll) is closed in the sence that 

x1VX2SG(ll) for all xl and x2 in G(n). 

Proof: The proof is similar to that of property 3.1. 11 

Property 3.3. Assume that Conditions 3.1 and 3.2 hold. If Condition A 

is satisfied, then the optimal region G(O.,ll) is closed in the sence that 
1-
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1 2 1 2 x Vx EG(O.,n) for all x and x in G(o.,n). 

P -z..f F· • f 1 2 1 1 2-z.. 2 h • roo; 1rst 1 x vx =x or x vx =x , t en the result 1S obvious. 
1212 12 12 121 

Let x vx =(xovxo, ... ,x vx ), then we have x vx EG(o.,n)UG(ll) from x •. vx-::i,x-: 
122 nn -z.. v"" 

x.vx.<x. for each iEN and Theorem 3.3. Then we have 
-z.. -z..=-z.. 

1 2 1 2 
[VO'.(x VX )]a=n -[VO'.(x vx )]a=(o.,n) 

t -z.. 

=f{(K(x1vx2)+ L C.)ll-O'. +atV (O)}dG(t) 
• N J -0'. 0'. 

JE t 

f{ 1 2 1-0'. t 1 2 - (K(x Vx )+ L C.)-l- +a V (0, (x.vx.,O))}dG(t) 
j,i J -0'. 0'. -z..-z.. 

f 
I_at t 1 2 

= {C.-l-+a (V (O)-V (0, (x.vx.,O)))}dG(t) 
-z.. -0'. 0'. 0'. -z..-z.. 

~O. 

121 122 1 2 
The last inequality is true since xivxi=xi or xivxi=xi, and x and x in 

G(o.,n). Then the result is obvious. 11 
-z.. 

Property 3.4. Assume that Conditions 3.1 and 3.2 hold. If Condition A 

is satisfied, then the optimal region G(n) is a member of S(E). 

Proof: The result is easily obtained by Theorems 3.3 and 3.5. 11 

4. Example 

In this section we consider a two-component system with minimal repair. 

Let EO={O,l} and E1=E2={0,1, ... ,7} be the state space. The transition prob­

ability is given by 

where 

pi 
x.u. -z..v -z.. 

Q(x y)=pO opl op2 
, xYO x1Y1 x2Y2 

pO is the transition probability of the system failure damage, and 
xYO 

(i=l,2) is the transition probability of component i. To illustrate 

the optimal replacement policy, we consider a numerical example. The tran­

sition probability matrix pO of the system failure damage is given in Table 

4.1, and the transition probability matrix pi of component i is given in 

Table 4.2. The operating cost B(x)=BO(XO)+B1(x1)+B2(x2)' the replacement 

cost C.(x.), the set up cost K(X)=K(xO) , and the minimal repair cost M(x)= 
-z.. -z.. 

M(xO) are given in Table 4.3. Furthermore the replacement time and minimal 

repair time are one period. Then Conditions 3.1, 3.2 and A are satisfied. 
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4 
5 
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o 
1 
2 
3 
4 
5 
6 
7 
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01234 

1.0 0.9 0.8 0.7 0.6 
0.9 0.8 0.7 0.6 0.5 
0.8 0.7 0.6 0.5 0.4 
0.7 0.6 0.5 0.4 0.3 
0.6 0.5 0.4 0.3 0.3 
0.5 0.4 0.3 0.2 0.2 
0.3 0.3 0.2 0.2 0.1 
0.1 0.1 0.1 0.1 0.1 

o 1 

0.0 0.1 
0.1 0.2 
0.2 0.3 
0.3 0.4 
0.4 0.5 
0.5 0.6 
0.7 0.7 
0.9 0.9 

2 4 

0.2 0.3 0.4 
0.3 0.4 0.5 
0.4 0.5 0.6 
0.5 0.6 0.7 
0.6 0.7 0.7 
0.7 0.8 0.8 
0.8 0.8 0.9 
0.9 0.9 0.9 

567 

0.5 0.3 0.1 
0.4 0.3 0.1 
0.3 0.2 0.1 
0.2 0.2 0.1 
0.2 0.1 0.1 
0.2 0.1 0.0 
0.1 0.1 0.0 
0.0 0.0 0.0 

5 6 7 

0.5 0.7 0.9 
0.6 0.7 0.9 
0.7 0.8 0.9 
0.8 0.8 0.9 
0.8 0.9 0.9 
0.8 0.9 1.0 
0.9 0.9 1.0 
1.0 1.0 1.0 

(c) x =1 and Y =0 o 0 

p =0 
(x

O
,x

l
,x

2
)Y

O 
for all xl and x 2' 

(d) xO=l and YO=l 

p =1 
(x

O
,x

1
,x

2
)Y

O 

Table 4.2. Transition probability matrix pi={p } 
xiYi 

x.' y. 
1.-' 1.-

o 
1 
2 
3 
4 
5 
6 
7 

o 1 2 3 4 567 

0.00 0.20 0.20 0.15 0.15 0.10 0.05 0.05 
0.00 0.25 0.20 0.15 0.15 0.10 0.10 0.05 
0.00 0.10 0.20 0.20 0.15 0.15 0.10 0.10 
0.00 0.05 0.10 0.15 0.25 0.20 0.15 0.10 
0.00 0.05 0.05 0.10 0.25 0.20 0.20 0.15 
0.00 0.00 0.05 0.10 0.15 0.25 0.25 0.20 
0.00 0.00 0.00 0.05 0.05 0.10 0.40 0.40 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
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Table 4.3. Costs B. (x.), C. (x.), BO(xO) , K(xO) and M(xO) 
'Z- 'Z- 'Z- 'Z-

X. 0 1 2 
'Z-

3 4 5 6 7 

Bi(xi ) 0 5 10 15 20 25 30 35 

C. (x.) 70 70 70 
'Z- 'Z-

70 70 70 70 70 

Xo 0 1 

BO(xO) 0 300 

K(xO) 100 160 

M(xO) 100 160 

The optimal replacement policy for components in a two-component system 

with minimal repair is shows in Figure 4.1 in the case of a=0.95. This ex­

ample shows that the optimal replacement policy is similar to the (n,N) pol­

icy with n=5 and N=6 in the case of xO=O, and is fairly close to the (n,N) 

policy with n=5 and N=5 in the case of xO=l. 

(a) xO=O o 1 2 3 4 5 6 

0 I I I I I I 
-

1 -
2 

-
3 G(O,O) G(O,l) 

-
4 -
5 

6 - G(l,O) G(l,l) 
7 

xl 

(b) xO=l o 1 2 3 4 5 6 

0 I I I I I I 
r-

1 

2 
r-

G(m) G(O,l) 
r-

3 r-
4 I 
5 r- I 
6 r- G(l,O) G(l,l) 

xl 
7 

Figure 4.1. Optimal replacement policy 
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5. Concluding Remarks 

we are interesting in an elegant and simple replacement policy which lets 

to easily implementable policy. The optimal replacement policy, however, 

is not so simple, and requires large scale computations for implementation. 

Thus from previous theorems and corollaries we consider a simple replace­

ment policy for component i, called (ABC)-policy, such that; 

(1) if O~xi<A, keep component i, 

(2) if A<x.<C, replace component ~ concurrently if other components 
=1.-

are replaced, 

(3) if B~xi<C, replace component ~C if the system fails, 

(4) if C<x., replace component i at once, 
=1.-

i 
where ~i is the state ~f component i, and A=x1(xo ,e ) for all xo' C= 

xt(O,01.-) and B=xt(XO'01.-) for some Xo (xO#O). ~C and A<B are followed 

from Corollaries 3.1 and 3.2, and B~C is followed from Theorem 3.4. This 

(ABC)-policy is simple structure and easily implementable policy. However, 

to determinie the values of A, Band C for each component, in general, is 

not easy. These values can be determined by using the method of successible 

approximations or policy improvement. It is a furture problem to find 

effective algorithm to determine the valures of A, Band C by using the 

simple structure of (ABC)-policy. 

If the failure of the system is not considered, then this (ABC)-policy 

is similar to (n,N) policy, introduced by Radner and Jorgenson[6], with 

A=n and C~N. Furthermore if the opportunistic replacement is not considered, 

then this (ABC)-policy is similar to (t,T) policy, introduced by Tahara and 

Nishida[9], with B=t and C=T. Thus (M,C)-policy is a generalization of 

(n,N) policy and (t,T) policy. In the previous example, it can be seen that 

the optimal replacement policy is fairly close to the (ABC)-policy with A=5, 

B=5 and C~6. Thus in some cases it might be better to use a simple (ABC)­

policy than a more complex one. 
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