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A single-facility multi-product production planning model with time-variant capacity constraints is 

analyzed, in which known demands must be satisfied. In the model, in every production period the single facility 

produces a fixed number of distinct products each taking a prespecifIed part of the involved production activity (or 

input resource quantity). Concave production and inventory costs are assumed. Both the cases of nonbacklogging 

and backlogging are considered, and piecewise concave inventory costs are assumed for the case of backlogging. 

The structure of an optimal solution is characterized and this is used in developing a tree-search algorithm. 

1. Introduction 

Wagner and Whitin [6] have analyzed a single-product single-facility 

production and inventory problem under the assumptions that demands for the 

products were known, and that the production and inventory cost functions were 

concave over a finite planning horizon of N periods. Zangwill [7] has con­

sidered a similar problem where backlogging is allowed. Florian and Klein [2] 

have also studied the problem under the assumption that there are period­

dependent capacity-limits. They devised a dynamic programming, shortest-path 

algorithm only for the case of constant capacity. Love [4] has considered a 

somewhat more general model than that of Florian and Klein [2]. Recently, 

Sung [5] studied a single·-facility multi-product problem, for which no 

capacity constraint was involved. 

In this paper, we consider a production planning model for a single­

facility multi-product problem with dynamic capacity constraints, where a 

single input resource is employed. In every production period, the facility 

manufactures a number of products each taking a fixed part of the involved 
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Capacity-Constrained Production Planning 233 

production activity to satisfy its own known demands. The finite planning 

horizon is N periods. 

Such a problem frequently occurs in two functionally-distinctive classes 

of manufacturing industries; one in the chemical industry and the other one 

in the machinery industry. Each of these cases is described in more detail. 

In the first case, the involved input resource contains various components 

in a fixed quantity proportion which are distinctively converted into their 

corresponding commercial products in the fixed proportion. Therefore, all 

the products are distinctively variant in both quality and quantity. As an 

example, an oil refinery problem can be considered, where each unit of crude 

oil is refined to produce two distinctive products, say gasoline and a fine 

chemical resource, in the fixed quantity ratios, of a 1>O and a 2>O, respec­

tively. As another example, consider a production system, for which each 

operation generates by-product in a fixed ratio, say a. In the other case, 

the employed facility (plant) with a certain number of distinctive sub­

operation lines attached operates to supply a resource (fixed) simultaneously 

to all the attached lines, each of which generates its own commercial pro­

ducts. Therefore, all the products are in the same quality but their quanti­

ties are distinctively dependent on the capacities (fixed) of the involved 

sub-operation lines. As an example, a steel processing system can be 

considered, where each unit of steel is processed to produce nail and wire 

simultaneously in a prespecified weight proportion. 

We will analyze two cases, nonbacklogging and backlogging cases. In 

nonbacklogging case, both the production and inventory costs are assumed 

concave, while in the back logging case piecewise concave inventory costs are 

considered. 

According to Florian, Lenstra and Rinnooy Kan [3] the problem that we 

consider here is NP-complete, making it doubtful that any good algorithm 

(in the worst case sense) exists. Baker, Dixon, Magazine and Silver [1] have 

exploited the special structure of the capacitated single-product single­

facility problem without backlogging to develop an optimal tree-search 

procedure more efficient than the usual dynamic programming approach. 

The objective of this paper is to find a useful characterization of 

optimal plans. In both the nonbacklogging and backlogging cases, solutions 

consist of independent subplans, called "at-most-one partial sequence", in 

which each positive production level is at capacity, except for at most one 

period. Also, the inventory level is nonzero in every period except the 

last. This characterization is to be further specified in terms of the 

computational load reduction, so that the usual combinatorial approaches 
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234 c. S. Sung & S. H. Chang 

can be more efficiently applied for a solution search. Then, it is shown how 

the tree search procedure of Baker et al. [1] can be directly applied to our 

nonbacklogging case. 

2. Model Formulation without Backlogging 

Consider a M-product problem with each product i, (i=1,2, ... , M), taking 

a. > 0 of the production amount in every period. That is, the amount produced 
~ 

in every period (x
1
,x

2
' .•. , x

N
) = X satisfies the relations 

(1) 

M 

2. x . and 
i=l t~ 

Xti= xt·(ai/Ma) 

M 

where M = 2. a., and x
ti 

is the production amount of product i in period 
a i=l ~ 

t (t=1,2, ... ,N). Let r
1
,r2 , ... ,r

N 
represent the known demands over the plan-

ning horizon N, where r t ,(t=1,2, ... ,N), is the demand vector in period 

t, rt=(rt1, ... ,rtM)' Each component r ti ~ 0 represents the demand for product 

i in period t. Note that each demand r
ti 

is not necessarily required to take 
M 

a
i 

part of the total demand I r
t

. in each period t. 
j=l ] 

In this section, we assume that demands must always be satisfied from 

either production or inventory storage, hence 

(2) I .~O for all t and i, 
t~ 

where Iti represents the inventory quantity of product i at the end of period 

t and is the ith component of the inventory vector It' There is no loss in 

generality in assuming that both the initial and final inventories are zero. 
M 

that if the equation of "R
1 

(i) / 2. R1 (j) = a. /M (where Rhm(i) 
N . 1 N ~ a 

J= 

The reason 1S 

M 
2. r .)" does not hold for any i, some additional (artificial) demands can 

t=h t~ 
be added to each of the last demands to obtain equality. Furthermore, as 

discussed earlier, we assume capacity restrictions on each period's produc­

tion, i.e., 

(3) 0 ~ x t ~ et' t=1,2, .•. ,N 

Evidently, a feasible solution and consequently an optimal solution will 

exist iff 
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t 
2 rh" for all t and i, 

h=l ~ 

where ch' = ch·(a./M). Henceforth, we shall assume that eq. (4) is 
~ ~ a 

satisfied. 

The problem is then to minimize th'= total costs of production and 

inventory, say 

N N M 
z(x) = 2 Pt(x

t
) + 2 L Ht' (rt .) 

t=l t=l i=l ~ ~ 

subject to, 

o I
Ni

, for all i and t, 

t t m 

where 2 Ch' ~ I rh" X (i) = I x ., (h=l, ••• ,N-l;m=h+l, .•• N), and P is 
h=l ~ h=l ~ -hID t=h t~ t 
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the concave production cost function for period t, and Hti gives the concave 

cost of storing the inventory quantity I . from period t to period t+l. 
t~ 

To constraints of problem (A) define a closed bounded convex set. Since 

Z is concave, it attains its minimum at an extreme point of this set. Let D 

be the set of all extreme points of the solution set. A characterization of 

D will be made in the next section, which will facilitate finding an optimal 

production plan. 

3. Characterization of Extreme Points 

Let us introduce the concept of an "at-Ieast-one exact requirement" 

sequence that will form the basis for our characterization of D. 

Definition. Period n is called an "at-least-one exact requirement point" 

if Ini = 0 for some i £ {1,Z, ... ,M}, and a production sequence (x
1
,x

Z
""'x

N
) 

is called an "at-Ieast-one exact requirement" sequence if for every n(l~ll~N) 
n 

such that I .=0 for some id 1, Z, ... ,M}, I x = L(n), where L(n) =max{ (M / 
n~ t=l t i a 

a JR
1 

(i)}. Further, let L be called a "production sequence", which 
~ n mn 
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represents a subset of a feasible production plan X that includes the compo­

nents of X for all periods between the two successive at-least-one exact 

requirement points m and 11, i.e., 

L mn (

X t , [Imi 

t=m+1, ... ,n Itk> 

o = I ., for some 
nJ 

o for all product 

i, jd 1,2, ••• ,M}; } 

k and m<t<n 

where 0 ~ m < n ~ N. Each L then produces the total quantity of L(n)-L(m). 
mn 

Clearly, any feasible production plan can be decomposed into one or more 

production sequences, and since 10 = 0 = IN' at least one production sequence 

LON exists. Furthermore, all at-least-one exact requirement points of a 

feasible production plan X are shared by two other distinctive feasible plans 

which are specified in Lemma 1. 

Lemma 1. If X' and ,'I(" are distinct feasible plans and x=~ (x' +X"), then 

x' and x" share all the at-least-one exact requirement points of X. 

Proof: Suppose that period s is any at-least-one exact requirement 

point of X and that the demand for product i is exactly satisfied in period 

s. Then, by hypothesis 

then 

and 

s s s 

I x 
t=l t 

~ [ \' x' + ,'x"] so that 
L t L. t' 

t=l t=l 

s 

s s 

H I X't' + I X"t']' 
t=l ~ t=l ~ 

I (x t · - r t ·) 
t=l ~ ~ 

I . = 1 (I' . + I" . ). 
s~ 2 s~ s~ 

s 
If I rt' is subtracted from each side, 

t=l ~ 

Since I . = 0, I' . and I" . must both be zero and so the three plans 
s~ s~ s~ 

share the at-least-one exact requirement point s. Otherwise, one of them is 

negative, and the associated plan is not feasible. This completes the proof. 

Now let us introduce a production sequence that will form the basis for 

our characterization of D. Denote by rr(m,n) the number of partial (positive 

but less than capacity) production periods between the two successive at­

least-one exact requirement points m and n. 

Definition. A production sequence L* is "at-most-one partial sequence" 
mn 

if the production level in at most one period d, (m+1~d~), is partial and 

all other production levels are either zero or at their capacities, i.e., 
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J x , 

= 1 t:m+1, ... ,n 

I .=O=I ., for some i,j E: {1,2, ... ,M}; ) 
m~ nJ 

Itk>O for all k and m<t<n; 

n(m,n) ~ 1 
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Then each feasible production plan consisting only of at-most-one partial 

sequences is characterized as the correspondence to an element of D. 

Theorem 1. A feasible production plan X consists only of at-most-one 

partial sequences iff it is in D. 

Proof: Suppose X E: D, L ~s part of X and L is not at-most-one 
mn mn 

partial sequence. Then, there are at least two periods, say band d, m+l ~ b 

< d ~ n, in which 0 < xb < cb and 0 < xd < cd' Without loss of generality, 

we suppose that there are just two such :?eriods. 

Let 0 = ~ min[xb , cb -x
b

' x
d

' cd-xd ' mird (M la. .)It ., for all i}] 
b;;;t;i,d a. ~ ~ 

( ) . h . 1 . h th and let Ut be a n-m component vector Wlt a un~ty e ement ~n t e t 

position, and zeroes elsewhere. 

Now define the distinct production sequences 

L' 
mn Lmn - oUb + oU d and L"mn Lmn + oU b - oU d' 

Since 0>0, these sequences are easily seen to be feasible. However, Lmn= 

HL' +L" ], contradicting our assumption that X is an extreme point. This 
mn mn 

proves "if part". 

Suppose on the contrary that X rI D. Then, there are feasible distinct 

plans X' and X" such that X = ! (X' + X"). 

From Lemma 1, X' and X" share all of the at-least-one exact requirement 

points of X. Let m and n be two such su.:cessive points, and let L*mn' x:nn, 
and X" be the associated distinct subplans in X, X' and X". Evidently, 

mn 
L* = 1. (X' + X" ) and neither X' nor X" is an at-least-one exact 

1llll 2 mn mn' mn mn 
requirement sequence. This implies that there are at least two periods b 

and d, m+1 ~ b < d ::: n, such that for 0>0 and sufficiently small, we can 

write 

X' 
mn 

X" 
mn L* 1llll + oU b - oU d' 

We now show that X' and X" cannot simultaneously be feasible, hence 
mn mn 

neither can X' and x", thus contradicting our initial assumption that X't D. 

(a) If xb=O and xd=O, or if xb=c
d 

and xd=c
d

' the result is immediate. 
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(b) If x =0 and X" is feasible, then x'b 
b mn xb - 0<0 and so x'mn is 

not feasible. 

(c) If 0 < xb < cb and xd=c
d 

and if x"mn is not feasible, then x'd 

xd + 0 > cd and so x'mn is not feasible. 

This completes the proof. 

Theorem implies that the set, D, of the extreme points is identified 

with all the feasible solutions each consisting only of at-most-one partial 

sequences. Therefore, one of these feasible solutions has the minimum cost. 

This is an optimal solution. 

4. An Algorithm 

Based on the results of Theorem 1, we devise a dynamic programming, 

shortest path algorithm similar to that of Florian and Klein [2]. It will be 

used in section 5 for the backlogging case. However, for large problems 

(i.e., N or M is large) the algorithm may be slow. In fact, according to 

Florian et al. [3], the problem considered here is in the class of NP-complete 

problems. Therefore, we will adapt the empirical, tree-search algorithm 

studied by Baker et al. [1], which is for problems with constant production 

and inventory costs. 

Baker et al. [1] have shown that in seeking an optimal solution to the 

single-product single-facility problem with capacity constraints it suffices 

to consider only plans in which the last production quantity is equal to 

capacity or to demand for the periods remaining in the problem. Similarly, 

we have the next Theorem (which can easily be proved by contradiction). 

Theorem 2 (a) . If (xl' . .. ,xN) represents an optimal plan, then for every 
M 

t IT I .·(c -x )x =0. 
i=l t-1,~ t t t 

(b). Let t=max { h I xh > O}. Then if (X
1

' ••• ,XN) is an 

optimal plan, x
t 

= min [c
t

, min {(M la.) R (i)}]. 
l~i~ a ~ t,n 

Theorem 2(a) indicates that if there is positive inventory (I
t

- 1,i > 0, 

V.) carried over from a previous period, then production is either at capacity 
~ 

or zero. On the other hand, if there is positive production at a level less 

than capacity, then incoming inventory for at least one product is zero. 

Theorem 2(b) states that if xt = min {(M la.) R
t 

N(i)}, then for at least one 
l~i~ a ~ , 

product k "I (k)=O" is required, so that it remains to determine the optimal t-1 
plan for reaching period (t-l) with the final inventory level of "r(j) 
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Rt NU)-Xt NU), V:!,' which is the so-called backshifted demand. On the other , , 
hand, if x t = Ct' it remains to determine the optimal plan for reaching 

period (t-l) with a final inventory equal to r(j) = R (j)-x (j), Vj. 
t,N t,N 

Thus, either of the subproblems is a smaller version of the original with 

the backshifted demand r(j) ~ 0, (j=l,Z, ... ,M), in period (t-l). This 

implies that the problem decomposes at the end of the period immediately 

preceding the last production period. 

The above description of the solution decomposition implies that the 

tree-search procedure suggested by Baker et al. [1] can be directly applied 

to our problem, with additional work required to test feasibility and to 

compute inventory costs for M different products. The three elimination 

conditions (infeasibility, partial cost, dominance) proposed by them also 

allow our solution procedure to examine considerably fewer than ZN nodes 

(the total number of possible partial and complete production plans) in 

determining an optimum. The effectiveness of such conditions depends on the 

data in a given problem. 

The solution procedure is illustrated with a 5-period two-product 

single-facility problem with the production ratios of "1l
1

:IlZ = 3:5". The 

production and inventory cost functions are given as follows: for all t 

(t=l,Z, ... ,N), 

Pt(Xt ) = 150o(xt ) + 7 Xt' 

H tl (It1 ) Z Itl ' and 

H tZ (ItZ ) 3 I tZ ' 

where O(x
t

) = 

( 
1, if Kt > 0 

0, otherwise. 

The demands for {rt1 } are (6,4,8,5,7), and for {rtZ } are (8,10,11,11,10). 

The capacity bound c t is ZO for al1 periods. 

Following Baker et al. [1], we consider a set of indices, ° = {ol'oZ' 

... ,os}' that specify periods when production runs occur from period 0 1 to 

the end of the problem, so that in subpnlblems Aa we have xt>O for t=ol'oZ' 

...• os. From this specification we can determine the costs incurred over 

the interval from 0 1 to N. Moreover, we can determine rei), (i=l,Z, ... ,M), 

the amount of the backshifted demand (if any) occurring in period 0
1 

to N 

which must be met by production prior to 01' Therefore, subproblems Aa can 

be decomposed into smaller problems A , (t=l,Z, ... ,ol-l), where t denotes to 
the last period prior to 01 where production occurs, and r(i)'s are added to 
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each associated demand in period 0
1
-1. 

Thus, a complete solution to the original problem is represented by any 

feasible subproblem Aa for which 0
1

=1. Hence, the optimal cost will be 

given by 

z* min { Z(A ) I 0
1

=1 and A is feasible}, 
a a 

a 

where Z(A ) represents the total production (setup) and holding cost acco­
a 

ciated with each A • 
a 

Based upon the above decomposition procedure and the results of Theorem 

2, it is easily found that the example problem has only two feasible plans 

A1234 and A1234S' A1234 is the best with the total cost of 1286 and the 

optimal plan is (20, 20, 20, 20, 0). 

5. Production Planning with Backlogging 

The model described in section 2 may be extended so that backlogging 

is permitted. We shall assume as in Zangwill [7] that all demands must be 

satisfied within S., (j=1,2, ... ,M), periods after the specified delivery 
] 

date for each product j. Thus, the constraints Itj ~ ° in the problem (A) 

is replaced by 

t 
It]. > - I rh·' for all j and t, (t=S.,S. 1,···,N). 

h=t-S .+1 ] ] ]+ 
] 

With backlogging, we assume that for each product j a penalty cost is charged 

on the amount backlogged in any period and the cost is concave, so that the 

total inventory cost is piecewise concave. 

Although the objective function of (A) is piecewise concave rather than 

concave, all of the results obtained for the nonbacklogging case hold. Since 

the arguments are, with slight modifications, the same as for the nonback­

logging problems, we shall. not repeat them in detail. 

Following Zangwill [7], the set of all feasible solutions can be parti­

tioned into disjoint subsets, called "basic sets", which are characterized 

by whether the quantity It . is nonpositive or positive for each product j in 
.] 

each period t, t=1,2, ..• ,N-l. Letting ~ be the set of all feasible solutions 

X that satisfy the constraints of the extended problem, then ~ is the union 

of all 2M(N-1) basic sets. Each such subset is closed, bounded and convex 

with a finite number of extreme points and further the objective function, 

z(X), is concave on each given basic set. Thus for a fixed basic set, Z(X) 
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attains its minimum at one of its extreme points. Thereupon, letting D be 

the union of all extreme points of all basic sets, then the minimum of Z(x) 

occurs at a point in D. 

Consider two feasible solution vect.ors X' and X", and the respective 

inventories I' and I". Then it is easy to see that Lemma 1 holds, because 

otherwise X' and X" belong to different basic sets. Furtheremore, each 

minimum-allowed backlog point (i. e., in period t and product i, Iti 
t 

- L r
hi

) is also shared by the two vectors X' and X". 
h=t-8.+1 

~ 

The above properties lead.to our conclusion that the characterization of D 

for the extended problem is still given by Theorem 

duction sequences, Q*nm' defined as follows; 

with the modified pro-

Q* 
nm 

t=m+1 , ... ,n 

I =0 or 
mi 

m 
- L r hi , 
h=m-S.+1 

~ 

and I =0 or 
nj 

m 

- I rh' 
h=n-S .+1 ] 

] 

for some i, j ( {1,2, ... ,M}; in each period t, 

m<t<n, and for all i, ItifO but 
t 

Iti > - L r si ; TI(m,n)~l. 
s=t-S.+1 

~ 
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Each sequence Q*nm is a subset of a feasible production vector X which satis­

fies the constraints of the extended problem, and it has at most one positive 

production at a level less than capacity and all other productions either at 

capacity or zero. This implies that the production sequence Q*nm results in 

the total quantity Q(n)-Q(m) , where Q(t) ({L(t), LS(t)} for each t(t=m,n) , 

and L8 (t)=max{ (M /0. .)R
1 

S (i)}. Furthermore, it corresponds to a subset 
i 0. ~ ,t- i 

of a feasible vector X contained in D. 

Theorem 3. A feasible production plan X consists only of production 

sequences Q*IlUl' (0 ~ m < n ~ N), iff it is in D. 

Proof: The proof can be completed easily by following the proof steps 

of Theorem 1 with the newly defined 0 ' ; 

8 ' = ~min[xb,cb-xb,xd,cd-xd' min{(M /o..)(I.+ ! r .), Vi}]. 
b~g~d 0. ~ g~ t=g-S.+l t~ 

~ 

The solution to the original problem by use of these optimal subplan 

Q* IS will now be discussed. 
nm 

Suppose m and n are selected as two successive "at-least-one exact 

requirement" points. The results of Theorem 3 can then be used to facilitate 
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finding each optimal subplan Q* , (m=O,l, ... ,n-l; n=1,2, •.. ,N). Let d mn mn 
denote the cost associated with following an optimal plan over periods 

m+l, ... ,n. Then it follows that 

d 
mn 

where Itj'S are associated with the subplan Q*mn' given an optimal subplan 

over periods 0, 1, ... , m. 

In fact, each d
mn 

value can be computed by a tree-search procedure. 

The result of Theorem 3 imply that given an optimal production plan over 

periods 0, 1, ... , m, each d value is obtained from an optimal combination 
mn 

(feasible and minimum cost combination) of some capacities c
t 

€ {Cm+1' ••• ' 
5 

c
n

}, (m+l:t
1
<t2< ... <tw5.n; l:5.W:5.n-m), and at most one partial production lOt' 

W 
O<€t<Ct , at period t€ {m+1, ... ,n} (but t ~ {t

1
, ... ,tw}) such that I c

t 
5=1 5 

+ €t = Q(n)-Q(m). Each such d
mn 

value may then be evaluated recursively in 

determining a minimum-cost route (shortest-route) corresponding to an optimal 

plan X*. In other words, such a shortest route may be found by a dynamic 

programming recursion using the periods 0, 1, ... , N as states, among which 

each pair of two periods corresponds to a dmn value. 

Let Ft be the cost associated with an otpimal production plan over 

periods 0. 1, ...• t. (t-O. 1 •...• N). given that for at least one product i. 

Iti=O. Then. we have 

(5) F 
n 

min 
O:;;;m;;;n-l 

and F
O 

= 0. 

{F + d }. (n=l ,2, ... • N). 
m mn 

The recursion (5) indicates that the minimum cost for the first n periods 

comprises all the production and inventory costs over periods m+l •... ,n and 

the cost of adapting an otpimal policy over periods ° through m taken by 

themselves. Theorem 3 guarantees that at period n we shall find an otpimal 

plan of this type. 

As discussed above, d values needed for the dynamic programming recur­
mn 

sion (5) are associated with optimal at-most-one partial sequences Q* . mn 
However. finding optimal Q* 's is, in general, a tedious combinational 

mn 
problem. 

We now illustrate the. algorithm with a 2-product 4-period problem having 

the production ratios of "02:02 = 2:3", and the associated backlog periods 

of "13
1

=1 and 13
2

=1". The production and inventory cost functions are given 
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as follows: 

Ct(xt ) 25 (6-t)O(xt ) + (6-0.5t)x
t

, 

{ 
10 Itl ' if It 1::0 

Htl (I t1 ) 
-20 Itl ' if I

t1
<0, 

( 
5 I

t2
, if I

t2
:::O 

H t2 (It2 ) 
-10 I

t2
, if I

t2
<0, for all t, t=1,2,3,4, 

1, if 
where for each t, o (x

t
) = { 

xt>O 

0, if xt=O. 

The demands for {r
t1

} are (5,4,3,8) and for {rt2 } are (5,8,7,10). 

The capacity bound et is 20 for all periods. 

For the example problem, notations x t ' dmn and Fn will be expressed 

with superscripts (i,j) such as x i j , d ij and F ~J, respectively, where 
t mn n 

both i and j have 0 or 1 to indicate nonbacklogging or backlogging, respec-

tively. Then, for all the possible production sequences {o* }, d ij and 
mn mn 

F ij are computed as follows: 
n 

* . 00 _ . 00 _ _ 00 
For 0 01 ' (xl -12.5, dOl -206.25-F 1 ), (X

1
11 =0; d 11=150=F 11) and 

01 1 
10 10 10 

(xl =25/3; dOl =204.17=F1 ), 

2) * . ( 00_ 00 _ . 00 _ _ 00) (11_ 11 
For 0 02' xl -20, x 2 -2.5, d02 -415-F2 ' xl -12.5, x 2 =0; 

11 11 10 10 10 10 
d

02 
=341.25=F

2 
) and (xl =20, x

2 
=5/3; d

02 
=415=F

2 
), 

3) F * (. *). ( 00 -10 . 00 00 00 00 or 0 12 given 0 01 ' x 2 - ,d12 =152.5, and F2 =d01 +d 12 

243 

11 11 11 00 11 10 
358.75), (x

2 
=0; d

12 
=135, and F2 =d01 +d

12 
=341.25) and (x 2 =55/6; 

10 10 00 10 
d

12 
=152.5, and F2 =d

01 
+d

12 
=358.75.), 

4) 00 00 00 00 00 11 
For 0*03 ; (xl =20, x2 =0, x3 =40/3; d03 =478.33=F3 ), (xl =20, 

11 5 11 -0 . 11 4 11 ) d ( 0 1 0 1 0 1 1 0 dOl x 2 =2. ,x3 -, d03 =5 0=F3 an xl =20, x2 =0, x3 = ; 03 = 

470=F 01) 
3 ' 

5) 00 00 00 00 
For 0*13(given 0*01) ; (x 2 =20, x3 =40/3; d 13 =378.33, and F3 = 

11 00 11 11 11 11 00 
dOl +d

13 
=528.33), (x2 =10, x3 =0; d 13 =277.5, and F3 =d01 + 

11 0 1 0 1 0 1 0 1 00 
d 13 =483.75) and (x 2 =35/2, x3 =0; d 13 =262.5, and F3 =d01 + 

01 d
13 

=468.75), 
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6) 

7) 

8) 

9) 

10) 

c. S. Sung & S. H. Chang 

00 00 00 
For Q*23(given Q*Ol and Q*12) ; (x 3 =65/6; d23 =137.08, and F3 = 

00 00 00 11 11 11 00 00 
dOl +d 12 +d23 =495.83), (x 3 =0; d23 =125, and F3 =d01 +d 12 + 

11 01 01 01 00 00 
d

23 
=483.75) and (x

3 
=15/2; d23 =128.75, and F3 =d01 +d 12 + 

01 
d

23 
=487.5), 

00 00 00 00 
For Q* . (-20 0 10 20 04' xl - ,x 2 =, x 3 = ,x 4 = ; 

00 00 
d04 =600=F 4 ), 

* (. *). ( 00 -1 7 5 00 For Q 14 g1ven Q 01 ' x 2 - • ,x3 =0, 
00 00 

x
4 

=20; d
14 

=392.5, and 

00 00 00 _ 
F4 =d01 +d 14 =598./5), 

F * (. * d * ) . ( 00_7 5 00 00 or Q 24 g1ven Q 01 an Q 12 ' x3 -. ,x4 =20; d24 =258.75, and 

00 00 00 00 F4 =d
01 

+d
12 

+d24 =617.5), and 

00 00 00 00 
For Q*34(given Q*03) ; (x4 =50/3; d34 =116.67, and F4 =d03 + 

00 
d

34 
=595) . 

Thus, the sub-plan sequence (Q*03' Q*34) is identified as the optimal 

plan, for which X=(20, 0, 40/3, 50/3) and the associated total cost is 595. 

6. Concluding Remarks 

In this paper, we have found a useful description of the structure of 

optimal plans which consist of independent subplans. In each subplan, the 

positive production level is at capacity, except for at most one period in 

which it is less than capacity. This characterization has been shown to 

hold both for the model with nonbacklogging and for the case with back­

logging. For problems where back logging is allowed, the characterization 

may be used to find an optimal solution efficiently for small problems. 

We conclude that the results of this paper can be useful for a variety 

of managerial problems (e.g., system design, production planning, cash-flow 

control, etc.) with capacity constraints in manufacturing (or service) 

industries, for which whenever a managerial decision on a single resource 

is implemented, a number of outcomes (products) are generated. 

References 

[1] Baker, K., Dixon, P., Magazine, M. and Silver, E.: An Algorithm for 

the Dynamic Lot-size Problem with Time-Varying Production Capacity 

Constraints. Management Science, 24 (December 1978), 1710-1720. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Capacity-Constrained .Production Planning 245 

[2] Florian, M. and Klein, M.: Determinitic Production Planning with Concave 

Costs and Capacity Constraints. Management Science, 18 (September 1971), 

12-20. 

[3] Florian, M., Lenstra, J. and Rinnooy Kan, A.: Deterministic Production 

Planning: Algorithms and Complexity. Management Science, 26 (Auly 1980), 

669-679. 

[4] Love, S. F.: Bounded Production and Inventory Models with Piecewise 

Concave Costs. Management Science, 20 (November 1973), 313-318. 

[5] Sung, C. S.: A Production Planning Model for Multi-Product Facilities. 

Journal of the Operations Research Society of Japan, 28 (December 1985), 

345-358. 

[6] Wagner, H. and Whitin, T.: Dynamic Version of the Economic Lot Size 

Model. Management Science,S (October 1958), 89-96. 

[7] Zangwill, W. I.: A Deterministic Multiperiod Production Scheduling Model 

with Backlogging. Management Science, 13 (1966),105-119. 

C. S. SUNG and S. H. CHANG: Industrial 

Engineering Department, Korea 

Advanced Institute of Science & 

Technology, p.a. Box 150, 

Cheongryang, Seoul, Korea. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




