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We consider a single server queueing system G/G/l having general interarrival times (not necessarily 

i.i.d), i.i.d. service times, and LIFO-P (preemptive last in first out, but not restricted to resumption) service dis­

ciplines. Furthermore a customer finding n other customers in system upon his arrival joins the system with 

probability pen) and immediately leaves the system with probability 1 - pen), where 0 ::;'p(n)::;' 1. The relations 

among various ergodic probabilities of the number of customers in system are established via sample path arguments. 

Sufficient conditions are given for the customer average ergodic probability distribution to be geometric, thereby 

extending recent results of Fakinos (1981) and Yamazaki(1982, 1984). 
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1. Introduction 

A GI/G/1 queueing system can be characterized by two independent sequences 

of i.i.d. random variables (~.) and (S.) denoting interarrival times and ser-
~ ~ 

vice times respectively together with an underlying service discipline. In 

recent papers by Fakinos (1981) and Yamazaki (1982, 1984), interesting results 

have been obtained for GI/G/1 queueing systems with LIFO-P/R (last in first 

out with preempt/resume) service discipline (also see Cooper and Niu (1986». 

More specifically, let (en) and (rn ) be the ergodic probabilities of the 

number of customers in system averaged over time and averaged over the number 

of arrivals respectively. It has been shown by Yamazaki (1984) that 

(1.1) n = 0, 1, 2, ... , 

where p = E[S]/E[~] and 0 < p < 1. Fakinos (1981) and Yamazaki (1982) have 
1 00 

shown that r (and hence (~n) is a geometric distribution given by 
n p n=l 

220 
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(1.2) r 
n 
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n=O,1,2, ... , . , 

where a = 1 - (E(S)/E(T
BP

» and T
BP 

is tl1e server busy period of the underly­

ing GI/G/1 queueing system. For GI/G/1, it should be noted that TBP is not 

affected by any work conserving service disciplines. Furthermore, it has been 

shown in Yamazaki (1984) that: 

(1.3) The joint distribution of the remaining service requirement of the 

customer in service and the nwnber of customers in system at ergo­

dicity takes a product form, i.e. the two distributions are inde­

pendent. 

The main purpose of this paper is to establish these results in a more 

general context based on an entirely different approach - a sample path argu­

ment. As we will see this approach parovides short and simple proofs for 

(1.1) through (1.3). Some results regarding the stochastic ordering of single 

server queueing system with LIFO-P/R and FIFO service disciplines are also 

obtained. 

2. Extension of Results of Fakinos and Yamazaki via Sample Path Approach 

We consider a single server queueing system described by the following 

characteristics: 

(2.1) 

(2.2) 

(2.3) LIFO - P/R 

(2.4) 

(2.5) 

a sequence of random arrival epochs; 

a sequence of i. i.d. random variables with Si denoting 

the service time of the i-th customer; (S.)~ 1 and 
.1 .1= 

(A
i

):=l are independent of one another; 

the last in first out preempt/resume service discipline; 

A customer finding n customers in system (excluding 

himself) upon his arrival is either accepted to the 

system with probability p(n) or immediately leaves the 

system with probability 1-p(n), O~p(n)~l; 

The system is ergodic. 

As we will see, LIFO-P service disciplines (not restricted to resumption) 

can be treated when p(n)=p, n~O. 

We note that ~i+1 = Ai+1 - Ai' i = 1, 2, "', are not required to be 

i. i. d. Furthermore such a system with finite system capacity K can be in'­

corporated by setting p(n) = 0, n ~ K. It should also be noted that, because 
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222 J. G. Slumthikumar & u. Sum ita 

of (2.4), the busy period of this queueing system need not be probabilistically 

the same as that under FIFO service discipline, see Shanthikumar and Sumita 

(1985a). 

Let N(t) be the number of customers in the system at time t and let 

I(p(X)) be the indicator function taking the value one when the statement p(x) 

holds true and zero otherwise. We denote a sequence of customer departure 

epochs by (Dj );=l. The counting process associated with (Ai)~=l and (Dj );=l 

are denoted by v(t) and W(t) respectively. Let 0. be the indicator function 
~ 

where 0. is equal to one if 
~ 

the i-th arriving customer is accepted to the 

system and zero otherwise. Accordingly, the number of customers accepted to 
v~t) 

the system during (O,t] is z(t) = L 0 .. Of interest are the stochastic 
i=l ~ 

processes defined, with the notation N- = N(A
i
-) and N+

j 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

and 

(2.10 ) 

e (t) 
n 

1 v(t) 
~ I I( -_ )0. z\t) i=l Ni-n ~ 

1 Vlt) 
v(t)-Z(t) L I(N-= )(1-0.) , 

i=l i n ~ 

N(D.+), by 
] 

From the assumption (2.5) all of these processes converge to nonnegative 

constants with probability one as t~ for n?O. These constants are denoted 

by en' In' fn' gn and qn' where they represent ergodic probabilities of the 

number of customers in the system, averaged over: time, the number of accepted 

arrivals, the number of arrivals, the number of rejected arrivals, and the 

number of departures, respectively. 

One observes that the actual arrival rate A at ergodicity is given by 

(2.11 ) A = lim v(t)/t . 
t-><x> 

Similarly the effective arrival rate A* at ergodicity is found as 

(2.12) A* = lim z(t)/t . 
t-><x> 
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Then the ratio 

(2.13) 
A* . Z(t) 

p* = T = hm v(t) 
t-+oo 

223 

is the effective acceptance probability of an arriving customer at ergodicity. 

We note from (2.7) through (2.9) that 

By letting t-+oo, one has 

(2.14) 1 
r = -* (f - g (1-p*) ) n ~ 0 • 

n p n n ' 

It can be seen from (2.7) and (2.10) that rn(t)z(t) and qn(t)w(t) differ by 

at most one since these two entities represent the number of upcrossings and 

the number of downcrossings of N(t) at the level n. Hence one has 

(2.15) n ~ 0 

The results in (2.14) and (2.15) have been shown in a more general con­

text in Shanthikumar and Chandra (1982). We now prove the following theorem 

extending (1.1). 

Theorem 2.1. 

e = A*E[S]r 
n+1 n' 

n ~ 0 • 

Proof: Since the LIFO-p/R service discipline is assumed, there are 

exactly n+1 customers in the system whenl~ver a customer who found n customers 

in system upon his arrival is in service. Hence one has 

t 

f I (N (-r ) =n+ 1) dT o 

v(t) 

I I(N-_ )o.s. - R (t), 
i=l i-n ~ ~ n 

n ~ 0 , 

where R (t) is the remaining service time of the last customer who arrived 
n 

before t and found n customers in system upon his arrival if N(t) ~ n + 1, and 

is zero otherwise. From (2.6) it follows that 

(2.16) n ~ 0 . 

Clearly random variables I(Ni=n)'oi and 8 i are mutually independent. Further­

more, Rn(t) is an honest random variable for all t and V(t)-+oo as t-+oo almost 

surely. Hence from the ergodic theory and (2.11), one has 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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(2.17) 

lim e l(t) = A • E[I( - )0 S ) n+ N =n 00 00 
t~ 00 

= A • E[I(N-=n)Coo)E[S). 
00 

It can be seen from the ergodic theory, (2.7) and (2.13), that 

Urn 
t--

Urn 
t~ 

1 
VTtT 

z(t) r (t) 
v(t) • n 

v(t) 
\' I - C 
l.. (N .=n) i 

i=l 

A* =y 

.1 

r 
n 

Substituting this into (2.17), one finds that en +1 
proof. 

A*E[S)r , completing the 
n 

We next extend (1.2) assuming (~.) are i.i.d. and p(n) = p, n ? O . 
.1 

However we allow more general preemptive service disciplines. We call a 

preemptive service discipline LIFO-P/H if the service discipline is preemptive 

LIFO with any restarting policy that depends on the history of preemptions, 

e.g. preemptive repeat, or variable service rate as a function of the number 

of reentries into service, etc. Under such a policy we denote the actual 

provided he is accepted. We also service time of the i-th customer by s~ct 
eff.l 

define the effective service time S. as 
.1 

the elapsed time from the first 

entry into service until the departure of the i-th customer. We note that 
sact . 1 2 ( eff 

i ,~= , ,... Si ' = 1, 2, ... ) may not be independent but are 

identically distributed. Furthermore 

(2.18) act d eff . d d { ( ) } Si an Si are ~n epen ent of N t , 0 ~ t ~ Ai . 

Therefore it is clear that seff is equal in distribution to T:p where T;p ~s 
the server busy period of the underlying queueing system. The asterisk is 

used because a LIFO-P/H policy may not be work conserving. 

Theorem 2.2. Let (~.) be i.i.d., p(n) = p, n ~ 0, and let the service 
.1 

discipline be LIFO-P/H as described above. Then: 

(a) 
act 

e n+1 = A*E[S )rn , 

(b) L eR, 
R,=n+l 

n ~ 0 , 

n ? 0 , 

(c) r 
n 

n ~ 0 , 
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where ° = 1 - (E[Sact]/E[T* ]) . 
BP 

Proof: For (a), we note that Equation (2.16) is valid under the condi­

tions of the theorem provided that (S.) are replaced 
~ 

act by (S. ) • From (2.18) 
~ 

act 
I(N-'=n)·oi and Si 

~ 

are mutually independent. As in (2.17), the decomposition 

of (2.16) in taking a limit is therefore justified and statement (a) follows. 

As for the LIFO-p/R service discipline, any LIFO-P/H service discipline 

assures that there are at least (n+1) cu.stomers in the system as long as a 

customer who found n customers in system uppn his arrival remains in system. 

Hence one has 

(2.19) v(t) 
t V(lt) { 

V£t) eff 
L I(-_)O.s. 

i=l Ni-n ~ ~ 

where Reff(t) = inf {T: N(t+T) ~ n, T ~ a}. 
n 

Since s~ff d T* statement (b) 
~ = BP' 

follows from (2.19) by letting t+oo. 

For (c), we observe from (a) and (b) that 

This then leads to 

Since I r = 1, one has rO 
n=O n 

(1-0), completing the proof. 

Remark 2.3. In the case of the work conserving (LIFO-P IR) 

cipline, one has E[Sact] = E[S] and in addition E[T;p] = E[TBP ] 

n 2: O. Then Theorem 2.2 (c) coincides ~lith (1. 2) . For certain 

service dis-

when p(n) = n, 

single server 

queues such as GI/PR/1 or PRIG /1, an algori thmic procedure is availab le for 

computing E[TBP ]' see Neuts (1981) and Ramaswami (1982). Consequently both 

(r )00 0 and (e )00 0 can be readily obtained. Even for more general cases, n n= n n= 
once the value of 0 0 = 1 - ° is estimatE~d via simulation, the other probabili-

ties can be calculated. Alternatively one may use the geometric distribution 

to control the error while estimating the probabilities (r
n

) using simulation. 

We next turn our attention to (1.3). Consider a single server queueing 

system as in the context of Theorem 2.1 .. Let R*(t) be the remaining service 

time of the customer currently in servic:e at time t. Then R*(t) = RN(t)_l(t), 

since: 
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(2.20) 

J. G. Shanthikumar & U. Sumita 

customer currently in service at time t when there are N(t) = n 

customers in the system must have seen n-1 customers in system upon 

his arrival. 

For the bivariate process (R*, N) = {(R*(t), N(t», t ~ O}, define 

(2.21) 
_ 1 t 

HR,N(x,n,t) = t fOI(R*(T»X, N(T)=n)dT, x ~ 0, n ~ 1 , 

and its limit as t+oo by HR N(x,n). Note that by assumption (2.5), the above , 
limit exists. Clearly HR N is the joint ergodic survival function of the , 
remaining service time of the customer in service and the probability distri-

bution of the number of customers in the system averaged over time. One then 

has the following theorem: 

Theorem 2.4. 
+ E[ {S-x} ] 

E[S] en' x 2: 0, n ~ 1 , 

where {x}+ = max{x, O}. 

Proof: Suppose the i-th customer on its arrival sees n-1 customers in 

the system and it is accepted to the system. It is clear that the total 

amount of time during which the remaining service time of the i-th customer 

while in service is greater than x is {s.-x}+. Then noting that tH N(x,n,t) 
~ R, 

is the total time in [O,t), during which the remaining service time of the 

customer in service is greater than x and the number of customers in the 

system is n, one has from (2.20), 

(2.22) 

As in the proof of Theorem 2.1, letting t+oo in (2.22) one obtains 

(2.23) { 
V(t) } { 1 v~t) } + 

HR N(x,n) = lim -t- lim vrtT .L I(N-:=n-Ooi . E[{S-X} ] 
, t-+o:> t-+o:> ~ = 1 ~ 

e 
Substituting A*rn_ 1 

n (from Theorem 2.1) into (2.23) proves the theorem. 
E[S] 
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3. Stochastic Ordering of Queue Length and Busy Period Distributions with 
Erlang Service Times and FIFO and LIFO-P/R Service Disciplines 

227 

In this section we restrict ourselves to the queueing systems described 

in Section 1 with Erlang service times. Let N~(t) be the number of customers 

in system at time t under the service discipline ~ E {FIFO, LIFO-p/R}. One 

then has the following theorem: 

Theorem 3.1. If p(n) = p, n ~ 0, then 

That is, for any non-decreasing functional f, 

whenever the expectations exist. 

Proof: The case p = 1 has been proven, see (3.3) of Shanthikumar and 

Sumita (1985b). The argument there can be easily extended to the case 0< p < 1. 

Let TBP:~ be the first busy period of the queueing system under the 

service discipline ~ E {FIFO, LIFO-P/R}. We will next provide sufficient con­

ditions on (p(n» under which TBP : FIFO and TBP : LIFO-p/R are stochastically 

ordered. This extends a recent result of Shanthikumar and Sumita (1985a): 

Theorem 3.3: 
(a) If p(n) is non-decreasing in n ? 0, then TBP : FIFO ~ st TBP : LIFO-p/R 

(b) If p(n) is non-increasing in n ~ 0, then TBP : FIFO ? st TBP : LIFO-p/R. 

Proof: To facilitate the analysis we interpret the original queueing 

system by a bulk arrival queue where each customer brings m independent tasks 

to be processed. Each task requires an exponentially distributed processing 

time with mean E[S] Im. On a common probability space, we will construct two 

such queueing systems with FIFO and LIFO-p/R service disciplines. These 

queueing systems will be constructed in such a way that they have the same 

probabilistic properties as that of the original systems and the orderings of 

the busy periods hold with probability one. 

Let (A
i

(W»:=1 be a particular realization of (A
i

):=1 and let (u i (w*»:=1 

and (Dj (w*» ;=1 be samp le paths of two n.utually independent sequences of 1.. i. d. 

uniform random variables on (0,1) and arrival epochs of a Poisson process with 

rate mIE[S]. As we will soon see, the uniform random variables are used to 

decide on the admittance of the customers to the system and the Poisson arrival 
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epochs will correspond to the service completion epochs of tasks. For this 

sample realization (w,w*), let N~(W,W*,t) be the number of customers in the 

system at time t when service policy ~ is implemented. For notational con­

venience we will suppress wand w* and write N~(t) instead of N$(W,W*.t). 

Same convention is adapted for other variables as well. Let K~(t), Na:~(t) 

and Ns:~(t) be the number of tasks in the system, total number of customers 

accepted and total number of customers departed with completed service during 

(O,t], respectively, for service discipline~. Without loss of generality we 

will assume that the server busy period in both queueing systems is initiated 

at time zero, i.e., we let: Al = ° and III = 1. Then for ~ E {FIFO, LIFO-P/R} , 

we set: 

m 

0.1) 

° 
The queueing process is now constructed such that 

I 
N~ (A i +) = N~(Ai-) + °i:~ 

(3.2) Na:~(Ai +) = N (A.-) + °i :~ a:~ ~ 

K~(Ai+) = K~(Ai-) + m.oi:~' 

where 0 - I and 
i:~ - (U.<p(N~(A.-»)' 

~ 'I' ~ 

(3.3) 

For ~ = FIFO, the task leaving at time epoch D. belongs to the customer 
] 

who arrived the earliest among those in the system at that time while for 

~ = LIFO-p/R, this task belongs to the most recently arrived customer. A 

customer departs as soon as all of its m tasks depart. If TBP:~ is the first 

busy period, 

(3.4) TBP:~ = inf {t: K~(t) = 0, t > O} . 

The following lemma will be used to complete the proof. Define 

and 

T* = min{TBP : FIFO' TBP : LIFO-P/R} , 

w(t) max{j: D. ~ t} . 
] 
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For t 5 T*, w(t) is the number of tasks serviced during (O,t] in both queues, 

since they have been busy till then. 

(3.5) 

(3.6) 

Lerrrna 3.3. If A. 5 T*, then for (a) 
~ 

and for (b) the inequality in (3.5} and (3.6) is reversed. 

Proof: We prove Case (a) only. The proof for Case (b) is similar. Note 

that (3.5) and (3.6) are true for i = 1. As an induction hypothesis, we assume 

that the lemma is true for i and consider Ai +1 
~ T*. If the inequality in 

(3.6) is strict, then from (3.2) one seE~S that (3.6) is valid for i + 1 also. 

Since 

(3.7) t :5 T* 

it is also clear that (3.5) is valid for i + I. So we need to consider only 

the case where equality holds in (3.6). Since N ~(A.+) = N .~(A'+I-)' in 
a:'j' ~ a.'j' ~ 

this case KFIFO(Ai+I-) = KLIFO-P/R(Ai+(-)' Hence 

IKFIFO (A i + I-) l 
r = NFIFO(Ai+I-) = I . m :5 s 

where rxl is the smallest integer which is greater than or equal to x. From 

the monotonicity assumption for (a), p(z-) :5 p(s). Then from (3.2), if a 

customer arriving at Ai +
1 

is accepted into the FIFO queueing system, one 

customer will also be accepted into LIFO-P/R queueing system. However, an 

acceptance into the LIFO-P/R queueing system does not necessarily imply the 

acceptance of a customer into the FIFO queueing system. It is then immediate­

ly clear that (3.5) and (3.6) are valid for i + I. 

Now we complete the proof of Theorem 3.2 through the following argument. 

Let 0 < t :5 T* and define i* = max{i:A. 5 t}. Then from (3.7) and Lemma 3.3 
~ 

one sees that for case (a): 

(3.8) 

(3.4) combined with (3.8) shows that TBP : FIFO(w,w*) :5 TBP : LIFO-P/R(w,w*). 

Case (b) follows similarly. 
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Remark 3.4. When pen) = p, n ? 1, cases (a) and (b) of Theorem 3.2 apply. 

In this case one then has TBP : FIFO §t TBP : LIFO-p/R. 
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