
Journal of the Operations Research 
Society of Japan 

Vo!. 29, No. 3, September 1986 

FLOWSHOP SCHEDULES WITH 
SEQUENCE DEPENDENT SETUP TIMES 

Jatinder N. D. Gupta 
Ball State University 

(Received June 24,1985: Final April 30, 1986) 

Abstract The flowshop scheduling problem with sequence dependent setup times is considered and shown to 

be NP-complete. A traveling salesman problem formulation is proposed for the case where jobs are processed 

continuously through the shop. These results are used to describe an approximate algorithm for the case where 

limited or infinite intermediate storage space is available to hold partially completed jobs. The effectiveness of 

the proposed approximate approach is discussed and some empirical results are reported. 

1. Introduction 

Consider a static flowshop scheduling problem where n jobs are to be 

processed on M machines in the same technological order. In formulating this 

problem, it is usually assumed that setup times are sequence independent and 

are included in the processing times. However, there are several practical 

situations, where setup times of a job are separable and depend on the im­

mediately preceding job. As an illustration, consider the scheduling problem 

in the group technology environment. For each family of parts, a large setup 

time is required to initiate the processing of family parts after which small 

setup time is required and is dependent on the sequence of jobs preceding a 

particular family part (job) being processed [10]. 

When setup times are separable and sequence independent, and infinite 

intermediate space is available to hold jobs, Johnson's algorithm [13] can be 

modified to generate a minimal make-span schedule in O(nlognJ computational 

steps [20] for the two machine case. Further, if the setup times are separable 

and sequence dependent on only one of the two machines, a dynamic programming 

approach can be used to minimize the makespan for problems involving about 15 

jobs [2, 4]. Heuristic algorithms for minimizing the makespan for the two 
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Sequence-Dependent F1owshop Scheduling 207 

machine case are also available [10, 11]. 

If the setup times are separable and sequence dependent on all machines, 

mathematical programming and implicit enlJIDeration approaches that are based 

on its graph-theoretic representation can be modified to solve the problem 

[6,9, 17, 18]. However, the computational requirements for the dynamic 

programming and the branch and bound algorithms are quite excessive even for 

problems of moderate size. 

This paper discusses the flowshop seheduling problem with sequence de­

pendent setup times and shows that the problem is NP-complete. A traveling 

salesman problem formulation is suggested for the case where the processing 

of jobs through the shop is continuous. Based on the traveling salesman 

formulation of the continuous processing flowshop, an approximation solution 

algorithm is proposed for the flowshop problem with limited or infinite inter­

mediate storage space in the presence of sequence dependent setup times. 

The effectiveness of the proposed approximate algorithm is empirically evalu­

ated by solving several flowshop problems and the results of this comparison 

are discussed. 

2. Problem Complexity and Formulation 

The following theorem shows that the flowshop problem with sequence 

dependent set up times and any measure of performance which is a function of 

the processing and setup times is NP-co~)lete. 

Theorem 1. The flowshop scheduling problem with sequence dependent setup 

times is NP-complete. 

Proof: The proof follows by restriction [5]. Let the setup and proc·­

essing times of all jobs on any combination of (M-l) machines be zero. Then, 

this is a classical single facility problem with sequence dependent setup 

times and has been shown to be NP-complete [5], implying that the problem 

under consideration is also NP-complete. Hence the proof of theorem 1. 

The results of theorem 1 above are independent of the number of machines 

and the intermediate storage space available to hold partially comp leted jobs. 

Therefore, unlike the cases where setup times are either sequence independent 

or can be ignored, the problem remains NP-complete even for the two-machine 

case. Further, the three cases, Viz: continuous processing, infinite inter­

mediate storage available, and the finitE! storage space available cases are 

all NP-complete. In fact, for the two machine case, permutation schedules are 

not necessarily optimal [10]. To simplify the problem, only permutation 
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208 J. N. D. Gupta 

schedules are considered in this paper. This assumption does not affect the 

global optimality of the continuous processing case, as will be shown shortly. 

In addition, results of theorem 1 above are independent of the measure 

of performance used to evaluate schedules. This implies that flowshop problem 

with sequence dependent setup times remains NP-complete for any measure of 

performance involving setup times even for the two machine case, with or 

without the assumption of permutation schedules. 

Let a (i,j) be the setup time of job j at machine m if job i innnediately 
m 

precedes it, where i=O if no job precedes job j. Further, let t(i,m) be the 

processing time of job i on machine m. Number the machines such that jobs are 

processed on machine 1 first, machine 2 second and the machine M last. With 

this re indexing of machines, consider a partial schedule Pab formed by con­

catenating job b to an already known partial schedule Pa. Then the completion 

time of Pab at machine m, T(Pab,m), is given by the following expression: 

(1) 

where 

T(Pab,m) = max[T(Pab,m-l); T(Pa,m) + a (a,b)] + t(b,m) 
m 

T(4),m) = T(Pab,O)=O for all P and m. 

Let the measure of pE!rformance of partial schedule P be f(p) and h(p,a) 

represents the addition to the measure of performance of concatenating job a 

to p. That is: 

(2) f(Pa) f(P) + h(P,a) 

where f(4))=O. 

The measure of performance in (2) above includes several well known 

optimization criteria for the flowshop scheduling problem. The one used in 

this paper is the minimization of weighted sum of completion times on all 

machines. Let the weight assigned to machine m be wm. Then, equation (2) 

becomes: 

f(Pa) 
M 

f(P) + L W [T(pa,m) - T(P,m)] 
m=1 m 

If wM=1 and wm=O for m=1, 2, .'., (~1), then the above criterion reduces 

to the minimization of makespan and h(p,a) in equation (2) above is given by: 

h(P,a) = (T(Pa,M) - T(P,M» 

The flowshop scheduling problem with sequence dependent setup times can 

now be defined as one of minimizing f(pa) where P ranges over all possible 

permutations of n-l jobs not including job a and job a ranges over all possi­

ble values from 1 through n and that the processing and intermediate storage 

restrictions are satisfied at all machines. 
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Sequence-Dependent Flowshop Scheduling 209 

3. Continuous Processing Flowshop 

When there is no intermediate storage space available to hold partially 

completed jobs, the flowshop problem may be formulated in two ways: (1) a job 

waits at the first machine before starting its processing such that it can be 

continuously processed by all machines [8, 17], or (2) a partially completed 

job stays at a particular machine until the next one becomes available [14]. 

In this paper, the continuous case where jobs are delayed before the start of 

their first operation is considered. The following theorem restricts the 

number of feasible schedules to n! for this case. 

Theorem 2. For a continuous processing flowshop, only permutation sched­

ules are feasible. 

Proof: Consider two consecutive machines m1 and m
2 

where jobs are proc­

essed first on machine m
1 

and then on machine m
2

• Assume that job a is 

processed before job b on machine m
1 

and that job b is processed before job a 

on machine m
2

. Then, since all jobs follow the same technological processing 

order, it follows that job a will have to wait at least t(b,m1) + a (a,b) + 
m

1 
t(b,m

2
) on machine m

2 
before starting its processing on machine m

2 
after being 

completed on machine m
1

• Since the setup times and processing times are all 

positive, this waiting time cannot be zero. Therefore, in the schedule con-

sidered, job a cannot be processed continuously on all machines. Since m
1

, 

m2 , a, and b are all arbitrary, it follows that a feasible schedule has the 

same sequence of jobs on all machines. Hence the proof of theorem 2. 

Theorem 2 closely follows that in [8]. Since Panwalkar et. al. [15] and 

Szwarc [19] question the proof for t(a,m)=O for some a and some rn, comment.s 

are in order here. First, flowshop scheduling problem can be formulated in 

two ways, one where each job is routed through each machine even though the 

jobs do not necessarily require processing by a specific machine and the other 

where jobs may skip the machines [1]. In attempting to formulate the flowshop 

problem, it is usually assumed that there is no skipping of jobs. This is 

equivalent to saying that transportation links exist only between consecutive 

machines. Second, the flowshop is independent of the scale parameter implying 

that if the parameters A and B are so chosen that t(a,m) = A + Bp(a,m) for all 

a and m such that p(a,m) is non-negative for all a and m but can be zero, the 

optimal schedule for the original problem remains the same as for the new 

problem with p(a,m) as its processing times. Therefore, for the formulation 

of the flowshop that requires routing of jobs through each of the M machines, 

the results of theorem 1 are applicable for t(a,m) ~ 0 and a (a,b) ~ 0; 
m 
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210 J. N. D. Gupta 

~ a ~ nand 1 ~ m ~ M. Details of this argument are described in [12]. 

Since there is no intermediate storage space to hold partially completed 

jobs, jobs must wait before starting their processing at the first machine. 

Let the delay in the start of job b after completing job a at machine 1 such 

that job b is continuously processed on all M machines be denoted by D(a,b). 

The time interval denoted by D(a,b) assumes that jobs are processed as early 

as possible. With this definition of D(a,b), the following theorem 3 estab­

lishes its value as a function of processing and setup time of jobs a and b 

alone. 

Theorem 3. For the continuous processing flowshop where jobs are proc­

essed as soon as possible: 

(3) D(a,b) = max { max [ f t(a,5) - ~lt(b,5) + am(a,b»); a 1(a,b) } 
2~~M 5=2 5=1 

that: 

(4) 

(5) 

Proof: By definition of continuous processing on all machines, it follows 

T(Pa,m) 
m 

T(pa,l) + L t(a,5) 
5=2 

m 
T(pab,l) + L t(b,5) 

5=2 

Also, from equation (1), the condition of continuous processing is valid if 

and only if: 

T(Pab,rnrl) - T(Pa,m) - a (a,b) ~ 0 for all m. 
m 

Simplifying the above with equations (4) and (5) above, results in: 

m m-1 
(6) L t(a,5) - L t(b,5) + a (a,b) 

5=2 5=1 m 
for all m. 

However, D(a,b) is at least as large as a 1(a,b), the setup time of job b on 

machine 1. Therefore, (3) follows from (6), the above requirement and the 

fact that jobs are processed as early as possible. Hence the proof of 

theorem 3. 

Results of theorem 3 above show that the initial delay in the start of 

job b after processing job a is a function the processing times of jobs a and 

b alone. This implies that the problem can be modeled as a traveling salesman 

problem. To do so, define: 
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(7) a(a ,a) 

a(b,O) 
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M 

[D(a,b) + t(b,I)] Iw 
m=lm 

M m 
I w [ I t (b , s) ] 

m=2 m s=2 

fora=O, 1, 

b=l, 2, 

... , nand 

... , n. 

With the above distances, the following theorem can be stated: 
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Theorem 4. The schedule S=(a
1

, a
2

, •••••• , an) is optimal to the con­

tinuous processing flowshop scheduling problem if and only if the tour (0, aI' 

a2 , •••••• , an' 0) is optimal to the traveling salesman problem with distance 

matrix described by Equation (7) above. 

Proof: The length, L, of the tour (0, aI' a
2

, .••••• , an' 0) is given 

by: 
n-l 

L = d(0,a 1) + I a(a" a
i

+1) + a(an , 0) 
i";l ~ 

Simplifying the above expression with Equation (7) yields: 

M m 
(8) L = w1A + I W [A+ I t (a , s)] 

m=2 m s=2 n 

where: 
n n-l 

(9) A D(O, a 1) + I t(a" 1) + I D(a" a i + 1) 
i=l ~ i=l ~ 

Now a closer look at (9) reveals that A=T(S,I), the completion time of schedule 

S at machine 1. Therefore, recursive use of Equations (1) and (4) with Equa­

tions (8) and (9) results in: 

(10 ) L 
M 
I W [T(S,m)] 

m=1 m 

Thus, the total length of the tour (0, aI' a2 , ...... , an' 0) in Equation (10) 

equals the weighted sum of completion times on all machines for schedule 

S = (aI' a2 , ...... , an). Therefore, an optimal schedule for the flowshop 

problem is an optimal tour to the traveling salesman problem (and vice versa) 

provided the traveling salesman is stationed at city 0 and returns to city 0 

after visiting all the n cities. Hence the proof of theorem 4. 

While the theorem above showed that the problem is NP-complete, the 

traveling salesman formulation of the problem does have some advantages. 

First, there are several efficient approximate solution procedures available 
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to solve the traveling salesman problem (see Parker and Reardon [16] for a 

recent review), thus providing several approximate solution procedures for the 

solution of the continuous processing flowshop scheduling problem with sequence 

dependent setup times. Second, worst case analysis of approximate solution 

procedures for the traveling salesman problem is sometimes available indicating 

that performance guarantee for solution procedures for the flowshop problem 

under consideration is possible. And finally, probabilistic analysis for the 

performance of several approximate algorithms for the traveling salesman 

problem are now available which can be used for the flowshop problem under 

consideration. 

4. Flowshop with Limited or Infinite Intermediate Storage 

When there is limited or infinite capacity available to hold partially 

completed jobs, the results of Theorem 2 no longer hold and non-permutation 

schedules are feasible. In fact, even for the two machine case, permutation 

schedules are not necessarily optimal even for the makespan criterion [10]. 

Therefore, the no-passing assumption (that only permutation schedules are 

considered) is active even for the two machine case. 

The solution of this problem can be approached by implicit enumeration 

techniques, like the branch and bound procedures [9, 18]. However, these 

implicit enumeration techniques do not provide a practical approach to solve 

the problem because of their exponential nature of the computational effort. 

Realizing this, ~he traveling salesman approach to the continuous processing 

flowshop is adopted to generate approximate schedules for this case as well. 

This is done by finding an approximate solution to the traveling salesman 

problem using a suitable approximate algorithm. This is especially relevant 

ln Vlew of the fact that the schedules for the two cases are not that far 

apart from each other without setup times [3]. Therefore, the approximation 

should work quite well. 

The proposed approximate algorithm for the limited or infinite storage 

space flowshop, therefore, may be described as follows: 

1: Problem Formulation: Formulate the traveling salesman problem by 

using the distances given by Equation (7). 

2: Approximate Solution: Solve the corresponding traveling salesman 

problem in step 1 using an appropriate approximate procedure like 

the "closest city" heuristic. Accept the resultant schedule as an 

approximate solution to the flowshop problem. 
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The appropriate approximate algorithm for the traveling salesman problem 

in step 2 above can be selected from several available approximate solution 

procedures on the basis of the their computational effort and the relative 

accuracy of the solution obtained through their use. (See Parker and Reardon 

[16] for a recent review of the traveling salesman problem solution proce­

cedures). 

To measure the effectiveness of the proposed approximation, let: 

opt (continuous) - opt (infinite) 

opt (infinite) 

Approx(continuous) - opt (continuous) 

opt (continuous) 

Approx(infinite) - opt (infinite) 

e 3 = ------------------------------------
opt (infini te) 

Then, since Approx(continuous) is greater than or equal to Approx(in­

finite), it is easy to see that: 

Thus, knowing the worst case error bound for the traveling salesman 

heuristic and the worst case difference between the optimal values of the 

objective functions for the two problems, worst case error bounds can be 

found. 

5. Computational Experience 

Attempts to find error bounds for the worst case of the problem were not 

successful. Therefore, considerable computational experimentation was con­

ducted to test the validity of the above approximation for the case with 

infinite storage space. This case was selected for experimentation because 

it reflects the other extreme of the continuous processing case. For this 

purpose, the proposed approximate algorithm was programmed in FORTRAN to solve 

600 problems ranging from 3 to 7 jobs and 2 to 7 machines with the objective 

of minimizing makespan. Further, initial setup time at each machine was 

assumed to be sequence independent. The initial machine setup times and the 

processing times of these problems were generated from a uniform distribution 

in the range (1,99). The sequence dependent setup times of all jobs were 

generated frDm a uniform distribution in the range (1,9). Each of these 
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214 1. N. D. Gupta 

problems was solved by using the proposed approximate algorithm described in 

Section 4 above. The traveling salesman problem representing the continuous 

processing flowshop problem in Section 4, represented by Equation (7), was 

solved to optimality using an existing search algorithm [7]. The percent 

deviation of the approximate makespan thus found from the optimum makespan, 

found through complete ent~eration, was computed. 

Based on ZO problems of each size, the following statistics were 

collected: 

n 1 n~ber of times approximate makespan was optimal. 

nZ number of times the deviation of approximate makespan from the optimal 

makespan was greater than zero but less than or equal to 3 percent. 

n3 number of times the deviation of approximate makespan from optimal make­

span was greater than 3 percent but less than or equal to 5 percent. 

MIN: minimum percent deviation of the makespan from optimal makespan. 

AVR: average percent deviation of the approximate makespan from optimal 

makespan. 

MAX: maximum percent deviation of the approximate makespan from optimal 

makespan. 

Table 1 depicts these summary statistics for the 30 sets of ZO problems 

each. 

From Table 1, it is clear that the proposed algorithm finds near optimum 

solutions in many cases, with percent deviation of makespan from optimum 

makespan often being less than 5 percent. Therefore, it may be concluded 

that the proposed approxmlate algorithm is quite effective in minimizing the 

makespan for the flowshop scheduling problem with infinite storage space in 

the presence of sequence dependent setup times. 

To test the difference between the optimal makespan of the continuous and 

the infinite storage cases, the percent deviation of the optimal makespan for 

the continuous case from the infinite storage space case optimal makespan was 

computed. Table Z shows these results where n
1

, nZ' n3 etc. need to be inter­

preted in terms of the percent difference between two optimal makespans. 
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Table 1 Percentage Deviation from Optimum Makespans 

n M n 1 
n2 n3 AVR MIN MAX 

3 2 15 5 0 0.3552 0.0 2.6906 

4 2 9 8 3 0.8963 0.0 3.1142 

5 2 3 14 3 1.4590 0.0 4.6703 

6 2 3 14 0 1.9972 0.0 6.9307 

7 2 2 12 3 2.9240 0.0 13.5081 

3 3 17 3 0 0.2244 0.0 2.3196 

4 3 9 7 2 1.4757 0.0 6.9252 

5 3 6 12 2 0.8683 0.0 4.8458 

6 3 8 6 3.8746 0.0 12.2857 

7 3 3 10 2 2.6675 0.0 8.7097 

3 4 15 2 1.1729 0.0 7.5243 

4 4 8 9 1.1904 0.0 7.0352 

5 4 10 5 3 2.0935 0.0 13.5699 

6 4 2 11 2 3.2048 0.0 10.7325 

7 4 0 7 6 4.1305 0.9050 8.0371 

3 5 12 4 2 1.2276 0.0 8.9286 

4 5 5 9 3 2.1959 0.0 10.2249 

5 5 2 8 6 4.0464 0.0 15.3518 

6 5 3 9 4.2000 0.0 16.1597 

7 5 6 3 5.2678 0.0 11.2676 

3 6 15 4 0 0.6003 0.0 6.9085 

4 6 8 9 2 1.0604 0.0 6.0606 

5 6 6 9 2.3548 0.0 8.2372 

6 6 2 9 2 3.7998 0.0 12.1406 

7 6 0 4 4 5.9296 0.3989 13.6296 

3 7 15 2 3 0.8146 0.0 4.2802 

4 7 6 13 0 1.3090 0.0 6.2409 

5 7 3 10 4 3.1581 0.0 10.7198 

6 7 0 8 3 4.6118 0.1395 12.9506 

7 7 0 4 7 5.1556 1.1364 11.4873 

A comparison of Tables 1 and 2 shows that the optimal schedule for the 

continuous case yields solutions of better quality than the differences in the 

two optimal makespans. In other words, if e 2=0, actual error is less than 

e3 where e
l 

is given in Table 2. 
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Table 2 Percent Deviation of Optimal Makespan for Continuous 
and Infinite Storage Flowshops 

n M n 1 
n2 n3 AVR MIN MAX 

3 2 11 6 1.4195 0.0 10.7623 

4 2 5 7 5 2.3866 0.0 7.9585 

5 2 13 3 2.4020 0.0 6.1856 

6 2 2 8 2 4.5940 0.0 14.2857 

7 2 2 5 2 5.3575 0.0 13.7466 

3 3 13 6 0 1.0890 0.0 13.1868 

4 3 8 5 2 3.3226 0.0 15.7738 

5 3 0 9 4 3.5182 0.4598 8.0169 

6 3 0 3 8.4981 2.4017 17.7143 

7 3 0 6 6.7344 0.6483 20.7595 

3 4 11 4 2 2.4871 0.0 23.0469 

4 4 8 6 3.6995 0.0 13.8191 

5 4 0 4 3 7.6415 0.4184 19.5313 

6 4 0 2 9.1703 2.0305 17.0354 

7 4 0 0 2 9.3294 3.6199 16.4794 

3 5 8 3 3 3.3784 0.0 12.7358 

4 5 3 5 5 4.3692 0.0 12.5000 

5 5 5 3 6.9060 0.0 18.5501 

6 5 0 3 2 9.0049 1.8433 18.2509 

7 5 0 2 9.1840 1.8617 19.0394 

3 6 13 3 2 1. 3349 0.0 9.4991 

4 6 12 3 2.8258 0.0 9.0526 

5 6 2 4 4 5.1305 0.0 11.6585 

6 6 0 4 7.7955 1.3575 14.2020 

7 6 0 0 11.4400 3.5672 21.1852 

3 7 10 4 4 1.9615 0.0 11.4458 

4 7 2 12 2 2.8393 0.0 8.8388 

5 7 0 6 2 6.1105 0.4231 14.0669 

6 7 0 2 9.0520 1. 8939 17.6235 

7 7 0 0 10.4501 3.5461 19.3215 

The computational time for the proposed approximate algorithm was not 

measured since it depends on the solution method used to solve the traveling 

salesman problem. The transformation of the flowshop scheduling problem to a 

traveling salesman probleDl can be accomplished in polynomially bounded com-
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putational effort. Therefore, if the approximate algorithm for the traveling 

salesman problem is polynomially bounded, so will the proposed approximate 

algorithm for the flowshop problem. 

6. Conclusions 

This paper has discussed the flowshop scheduling problem with sequence 

dependent setup times and shown that the problem is NP-complete for the con­

tinuous processing and the limited or infinite or storage space available 

cases. A traveling salesman formulation of the continuous processing case has 

been proposed and used to find approximate solutions to the limited or infinite 

storage space cases as well. Computational results indicated that the proposed 

approximate algorithm was relatively effective in finding the optimal or near 

optimal solutions. While the finite storage space case was not considered 

during the computational phase, it is felt that the proposed approximate 

algorithm should perform better for this case because of its being somewhere 

in the middle of the two cases considered. Further, some computational simpli­

fications, like those indicated by Szwarc (19] for the sequence independent 

case can be used to decrease computational effort of the proposed algorithm. 
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