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Abstract We analyze a controlled queueing system with two independent exponential service stations arranged 

in tandem. Our model is constructed by two control problems. The fust one is arrival control in which the system 

is controlled by accepting or rejecting arriving customers. And second one is service mechanism control in which 

decision maker selects a station to be served. We formulate our model as a semi-Markov decision process and transi­

tion of state is represented by shift operator. Using the iteration method the monotomicity properties of the 

optimal policy are established. 

1. Introduction 

In this paper we consider a controEed queueing system with two indepen­

dent exponential service stations arranged in tandem. There is one server 

and only one of both stations is served at the same time. Customers arrive 

according to Poisson process with arrival rate A. Our model is constructed 

by two control problems. The first one is arrival control in which the system 

is controlled by accepting or rejecting arriving customers. And the second 

one is service mechanism control in which the decision maker selects a station 

to be served. We formulate our model as a semi-Markov decision process and 

transition of state is represented by shift operator. Using the iteration 

method the monotonicity of an optimal policy is established. 

The arrival controlled queue has beE~n studied in many papers (eg. Lippman 

and Stidham Jr. (1977), Stidham Jr. (1978), Nishimura (1982». The characteris­

tics of optimal policies, especially the monotonicity of critical number at an 

optimal policy are established. The controlled queue of service mechanism has 

many different problems, for example, removable server model in Heyman (1968) 

and Bell (1971), priority queue model in Harrison (1975), service rate control 
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192 s. Nishimura 

model in Doshi (1978), Gallish (1979), Sobel (1982), and Jo (1983). Our second 

control is one of optimal service rate problems, in which we restrict that 

service rate cost is not incurred and we select the station to be served. 

Network queueing systems are applied to a production process and an 

information processing. In a production process a cost is an important factor 

and in an information processing it is natural to assume a capacity of proc­

essing customers. Therefore it is important to control network queueing 

systems. Optimal control with two service stations are studied by Rosberg, 

Varaiya and Walrand (1982) and Hajek (1984). Moreover if in a tandem queueing 

system the departure from intermediate stations is allowed, the service time 

distribution is a mixture of Erlang distributions, which is frequently called 

a hyper-Erlang distribution. Such distributions can be used to approximate 

general distributions and optimal control of a general distribution using 

phase method is studied by Langen (1982) and Jo and Stidham (1983). 

Let i and j be the numbers of waiting customers to be served at the first 

and the second stations respectively. Partial order is defined on the set of 

current state x = (i,j) being a nonnegative integer valued vector. We intro­

duce shift operators on the state space and define a monotone function with 

respect to partial order. In section 3 we prove an arrival control monoto­

nicity and a service mechanism monotonicity of optimal policies for the finite 

horizon problems. The customer who is accepted in x is also accepted in y if 

x~y where the inequality ~ is a partial order on the state space. If at state 

x = (i,j) the first station is served then at current state y = (i+1, j-1) the 

first station is also served, and if at x = (i,j) the second station is served 

then at y = (i,j+1) the second station is also served. In section 4 we con­

sider infinite horizon problems both with and without discounting. The ex­

istence of optimal equation are proved and optimal policy for infinite horizon 

problems inherits monotomicities. 

There does not seem to be any study of optimal policies when arrival 

control and service mechanism are concerned. In general arrival mechanism 

and service mechanism influence each other and such a control problem is co~ 

plex. In our model, however, the monotonicity of optimal policy is obtained. 

In a single service station model the monotonicity of optimal policy is ob­

tained by the convexity of value function. In our case the state space is two 

dimensional and the proof is closely related to general framework of submodular 

function on lattice for monotone optimal policies (see Topkis (1978) and 

Heyman and Sobel (1984». 
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2. Shift Operator 

We consider controlled queueing systems denoted by M/M/1 ~ /M/1. 

Customers arrive at the system from Poisson process with parameter A. The 

rewards of successive customers are assumed to be independent random variables 

with finite mean and common distribution function F(r). First the system is 

controlled by accepting or rejecting arriving customers. Each accepted cus­

tomer goes to the first station and queues up for service at the first station. 

Having completed service there, he proceeds to a queue in front of the second 

station, and after completing service at the second station he leaves the 

system. It is assumed that service times at each station are mutually inde­

pendent exponential random variables with service rate~. There is one server 

who serves one of both stations at the same time. Second the system is con­

trolled by selecting a station to be served depending upon the state of the 

system. We formulate our model as semi-Markov decision process. Decision 

points are those epoch at which either a service is completed or a customer 

arrives. 

Let x be a two-dimensional integer-valued vector and X = {x = (i,j); 

i,j= ... , -l,O,l, ... }. Let RC X be the set of customer numbers in the system, 

where i and j are numbers of customers at first and at second station, respec­

tively. If x = (i,j) E R, i and j are nonnegative integers. Moreover we may 

put three boundary constraints I, J and K where I and J are upper bounds of 

customer numbers at the first and second station respectively and K is an 

upper bounds of total number of customers in the system. It is, however, 

possible that these upper bounds are infinite. Then we have 

(1) 

For any x 

R {x = (i, j); i = 0, ... , 1, j = 0, .•. , J and i + j = 0, ... , K}. 

(i, j) E X, we define shift operators S, T
1

, T
2

, 1 such that 

-1 
S x (i-1, j), 

-1 
T1 x = (i+1, j-1), 

(i, j-1), 1x = (i, j) 

-1 
T2 x = (i, j+1). 

The shift from x to Sx represents that an arriving customer is accepted and he 

enters the first queue, Tb (b = 1, 2) represents the completion of the service 

at bth station and 1 is the identity operator. In natural way we define the 
2 composition of shift operators, ST

1
, T2 and etc. where ST 1X (i,j+1) and 

T
2

2x = (i,j-2). Now a binary relation y ~ x is defined on X if there exists 

T1 or T2 such that T 1X = Y or T2x = y, or if there exists z such that y ~ z 

and z ~ x. If y = (k, ~) ~ x = (i, j), then we have k+~ ~ i+j and k S i. 

Therefore this binary relation ~ is reflexive, antisymmetric and transitive 
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and X is a partially ordered set (see, TOPKIS (1978». 

Let f(x) be any function on Rand T be any shift operator on R. For 

Tx £ R we define as 

Tf(x) = f(Tx). 

We assume the holding cost rate function h(x) on R satisfying the following 

conditions. 

a) If x £ Rand Tbx £ R, then 

(1 - Tb)h(x) ~ 0 (b 1, 2). 

b) If Sx £ R and Tbx £ R, then 

( 1 - S)(l - Tb)h(x) ~ 0 (b 1, 2). 

c) If Tb*x 
2 

£ R and Tb x £ R, then 

(Tb - Tb*) (1 - Tb)h(x) ~ 0 (b 1, b* 2 or b 2, b* 1) . 

In this assumption, for example, it means that 

Condition a) is monotonicity assumption and condition b) and c) correspond to 

convexity one in controlled queueing systems. 

3. Optimal Policy for Finite Horizon 

Let V (i, j, r) be the maximal expected a-discounted net benefit when 
n,a 

a customer with reward r has just arrived to a system when there are i and j 

customers at first and second stations respectively and the horizon length is 

n. If the decision maker accepts the arriving customer, he gains reward rand 

the next state is (i+1, j). If he rejects the customer the next state is 

(i, j) with no penalty cost. And let V (i, j) be the maximal expected a-
n,a 

discounted net benefit when the current state of a system is (i, j). The 

decision maker selects a station b = 1 or b = 2 to be served. Let Y1 and Y2 
be a residual interarrival time of customers and a residual service time from 

a decision epoch, respectively. Then Y
1 

and Y
2 

are independent and exponen­

tial random variables with parameter A and ~,erspectively. The random 

variable Z = min(Y1, Y2 ) is a time interval until the next decision and has 

exponential distribution with parameter A = A +~. The expected holding cost 

Z 
e-atdt = h(i, in this interval is EJ h(i,j) j)/(a+A). Moreover P{Y

1 
=tlz=t} 

0 

= A/A and p{Y
2 

= tlz = t} -aZ = ~/A and E[e ] = AI (a+A). Then we have the 
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following recurseive equations for n > 'I (V :: 0). - O,a 

(2) V (i, j, r) = max{r + V (;[+1, j), vn ~(i,j)} 
n,<l n,Cl ,u. 

(3) V (i, j) = [-h(i, j) + AIv 1 (i, j, r)F(dr) n,a n- ,a 

+ II max{V 1 (i-1, j+1), V 1 (i, j-1)}]/(a+A) n- ,a n- ,a 

where A A+ll. Using shift operators we rewrite Equation (2) and (3) as 

(4) V (x, r) = max{r+sv (x), V (x)} 
n,a n,a n,a 

(5) V (x) = [-h(X)+AJV 1 (x,r)F(dr) 
n,a n- ,a 

+ PUn- 1 a(x)]/(a+A), , 

where U
n

-
1 
,a (x) = max Tb Vn-

1 
a (x). Equation (4) is arrival control and 

b=1,2 ' 
Equation (5) is service mechanism control. 

Remark 1. In Equations (4) and (5) the current state x = (i, j) should 

be contained ~n R. If i = I or i + j = K then an arriving customer can not be 

accepted and V (x, r) = V (x) in Equation (4) . If i = 0 and j '" 0 then 
n,a n,a 

Tb in Equation (5) is equal to T2 and if i '" 0 and j = 0, Tb in Equation (5) 

is equal to T
1

• Finally if i = 0 and j = 0 (x = (0,0) = 0), Equation (5) is 

equal to 

(6) V (0) = [-h(O) + AJV 1 (O,r)F(dr) + llV 1 (O)]/(a+A). 
n,a n- ,a n- ,a 

We will discuss in this paper the monotonicity of an optimal policy given 

by Equations (4) - (5). First given n,a and r V (x) 
n,a 

monotone nonincreasing functions of x. For y ~ x(x, y 

and V (x, r) are 
n,a 

£ R), V (y) > V (x) 
n,ct - n,ct 

and V (y, r) ? V (x, r), which is equivalent to that for x £ Rand Tbx £ R, 
n,a n,ct 

(7) (T
b
-1)V (x) > 0 

n,ct -

and 

(8) (T
b
-l)V (x, r) ? O. 

n,ct 

Secondly if at the current state (x, r) oln arriving customer is accepted under 

an optimal policy then for y ~ x he is also accepted at the state (y, r). To 

prove this monotonicity of arrival control we will show that r + SV (x)? 
n,ct 

V (x) implies r + SV (y)? V (y). For this it is sufficient to prove 
n,ct n,ct n,ct 

(9) (l-S) (l-Tb )V (x)? O. 
n,a 
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The third one is the service mechanism monotonicity: if at the current state 

x the station 1 (the station 2) is served under an optimal policy then at the 

current state T
2

X(T
1

X) the station (the station 2) is also served. In other 

words, we will prove that for b 1, b* = 2 or b = 2, b* = 1 

Remark 2. We have to prove Equation (9) when all x, Sx, Tbx and STbx 

belong to R. From Equation (1) it is, however, easy to show that if negative 

terms Sx and Tbx in (l-S) (l-Tb )X belong to R then positive terms x and STbx 

also belong to R. Then it is sufficient to prove Equation (9) for any x such 

that sx £ Rand Tbx £ R. Similarly we will prove Equation (10) for any x such 

that negative terms in (Tb-Tb*) (l-Tb )x belong to R(Tb
2

x £ Rand Tb*X £ R). 

Let A (x, r) represent an action in optimal policy when a customer with n,a. 
reward r arrives to the system at current state x, n periods remain and the 

discount rate is a. ~ 0: 

(11) A n, (x, r) = { 
o (reject) 

(accept) 

if (l-S)V (x) n,a. 

if r > (l-S)V (x). n,a. 

Let B (x) be the optimal served station when the system is in state x, n n,a. 
periods remain and the discount rate is a. ? 0: 

(12) B (x) { n,a. 
2 

if (T
1
-T

2
) V (x)::: 0 n,a. 

if (T
1
-T

2
)V (x) < O. 

n,a. 

Define as 

(13) Sa = { ~ 
if a=O 

if a = 1. 

The first theorem establishes the monotonicity of V (x) in x. n,a. 

Theorem 1. Given n and a., V (x) and V (x, r) are monotone non in-n,a. n,a. 
creasing in x. That is, if for each b = 1 or 2, x £ Rand Tbx £ R, then 

( 14) (T
b
-l)V (x) > O. n,a. -

Proof: The proof is by induction on n. For n = 0 Vo (x) = 0 and 
,a. 

Vo (x, r) = max{r, a}. The result follows immediately. To prove Theorem 1, ,a. 
we establish the following Lemma 1 and Lemma 2. 

Lemma 1. Suppose that (14) is satisfied for n. If x £ Rand Tbx £ R, 

then 
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(15) (T
b
-1) V (x, r) ? 0 

n,a 
(b =: 1,2) . 

Proof: We put a =: A (x, r) and S is defined in (13). From the 
n,a a 

definition of R in (1) it follows that if x E R, Tbx E R and Sax E R, then 

We have 

(16 ) 

where the first inequality comes from the fact that in negative term V (x, r) n,eI 
an action a =: A (x, r) is chosen and the second inequality comes from the n,eI 
induction assumption (14). 

Lemma 2. Suppose that (14) is satisfied for n. If x E Rand Tbx E R 

then 

(Tb-l)U (x)? 0 . n,eI 

Proof: Define b ' =: TbB (x) and b" =: B (x), in which b ' and b" are 
n,o. n,Cl 

numbers of stations to be served under optimal policy in current states 'l'bX 

and x, respectively. If b ' =: b", we easily have 

(17) (T
b
-1)U (x) =: T

b
,(T

b
-1)V (x) ~ 0 . 

n,eI n,a 

If b ' ,,; b", then from TbTblx E Rand Tb"x E R we have that TbTb"x E R holds 

and 

Using Lemma 1, Lemma 2 and holding cost assumption a), 

(T
b
-1)v 1 (x) n+ ,a [-(T

b
-1)h(x) + Ai(Tb-nv (x, r)F(dr) n,eI 

+ ~(T -l)U (x)]/(eI+A) ~ 0 • 
b n,a 

This completes the proof of Theorem 1. 

To prove the monotonicity of optimal policy we need to establish the 

following Lemma 3 to Lemma 7. 

Lerrrna 3. Suppose that V (x) satisfies (9), (10) and (14) for n. 
n,a 

3 x E R and Tb x E R, then 

( 19) -(1-T
b

)2(1+T
b

)V (x) ~ 0 
n,a 

(b 1,2) • 

Proof: In general we have 

(20) 

If 
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(21 ) 

where b ; 1, b* ; 2 or b = 2, b* ; 1. Four negative terms in right side Qf 
3 -1 

(20) are 1, Tb'S Tb and Tb*Tb . From the assumption of this Lemma (x £ R, 

Tb3x £ R) and Remark 2 if s-l Tbx ; T
b

*Tb
2

x £ Rand TbTb*x £ R, then all terms 

in (20) are contained in R. Using the induction assumptions (9) and (10) it 

follows from (20) that (19) holds. Using the same discussion if STb2x 
-1 -1 2 

T
b

* Tbx £ Rand Tb* Tb x £ R then from (21) we also get (19). Since x £ R 

and Tb3x £ R it can be shown that either (Tb*TbX £ Rand Tb*Tb
2

x £ R) or 
-1 -1 2 

(T
b

* Tbx £ Rand Tb* Tb x £ R) is satisfied. This completes the proof. 

Lemma 3 

cavity (-1 (1-T
b

)2v (x) 2: 0) . 
n,a 

Lemma 4. Suppose that V (x) satisfies (9), (10) and (14) for n. If 
2 n,a 

Tb*X £ R and Tb x £ R then 

(22) (Tb-Tb*) (l-Tb )U (x) ~ 0 , ll,a 

where b ; 1, b* ; 2 or b 0' 2, b* ; 1. 

Proof: In the case of b 

and b" ; T2B (x) then we have n,a 

(T 1-T2) (1-T 1)Un ,a(x) 

1 and b* = 2 let b' 

{(1-T 1)T
1 

- (1-T 1)T2 }Un ,a(X) 

2 {( l-T1 )T1 Tb' - (1-T1 )T2Tb ,,}Vn ,a (x) 

2 
Tl B (x) n,a 

(23) {(Tb ,-T2) (1-T 1)T1 + (Tl-Tb"H1-T1)T2}Vn,a(X) ? 0 

From assumption of T12x £ Rand T
2

X £ R we get T1
2T

2
X £ Rand T

1
T

2
X £ R. It 

follows that all terms in (23) are contained in R. Using induction assump­

tions (9) and (10) we conclude the last inequality in (23). In the case of 

b ; 2 and b* ; 1 we can prove (22) in the same way. 

Lemma 5. Suppose that V (x) satisfies (9), (10) and (14) for n. If n,a 
Sx £ Rand Tbx £ R then 

(24) (1-S) (1-T
b

)U (x) ~ 0 
n,a 

(b ; 1,2) • 

Proof: First in the case b ; 1 we will prove (24). Negative terms in 

(l-S) (1-T 1) are Sand T
1

. Let us put b ' ; SB (x) and b" ; T1B (x). Since n,a n,a 
b' ; 1 or 2, and b" ; 1 or 2, there are the following three cases: 
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i) Case of b' = b" 

(1-S)(1-T 1)U (x) ~ (1-S)(1-T 1)Tb ,V (x) ~ o. n,a n,a 

ii) Case of b' = 1 and b" = 2 

(I-S)(I-T 1)U (x) = {(l-S) - (1-S)T1}U (x) n,a n,a 

~ {(1-S)T 1 - (1-S)T 1T2}Vn ,a(x) = T1(1-S)(1-T2)Vn ,a(x) ~ o. 

iii) Case of b' = 2 and b" = I 

(I-S)(1-T
1

)U (x) = {(1-T 1) - (1-T 1)S}U (x) n,a n,a 

~ {(I-T1)T2 - (I-T 1)ST
1

}Vn ,a(x) 

-1 2 
-T2 (I-T l ) (I+TI)Vn,a(x) ~ 0 

where the last inequality comes from Lemma 3. Using Remark 2, it follows from 

Tb,SX £ Rand Tb"T 1X £ R that all positive terms in i), ii) and iii) are con­

tained in R. 

In the case of b 

then using (6) at T
2

X 

2 the proof is the same as this. However if x 

(0,0) we have 

(0,1) 

(25) (I-S)(I-T2)U (0,1) = V (0,1) - max{V (0,2), V (1, a)} ~ 0 
n,a n,a n,a n,a 

The last inequality in (25) comes from (14). 

Lemma 6. Suppose that V (x) satisfies (9), (10) and (14) for n. If 
n,a 

Sx £ Rand Tbx £ R then 

(26) (1-S) (I-T
b

)V (x, r) 2 0 
n,a (b = 1, 2) • 

Proof: For b = 1 we will prove (26). In the case b = 2 the proof is the 

same as this. Define a' = T1A (x, r) and a" = SA (x, r). n,a n,a 
Then 

We consider the following three cases: 

i) Case of a' = a" 

(l-s) (1-T
1
)V (x, r) 

n,a (l-S) (l-I?I)S,v (x) ~ 0 . a n,a 

ii) Case of a' = 1 and a" 0 

(1-S)(1-T 1)V (x, r) ~ {S(1-T 1) - S(1-T1)}V (x) n,a n,a o . 

iii) Case of a' = 0 and a" 1 

(I-S)(I-T
1
)V (x, r) ~ {(l-T ) - s2(I-T )}V (x) 

n,a 1 1 n,a 

= {(I-S) (I-T
1

) + S(I-S) (1-T
1
)}V (x) ~ 0 • 

n,a 
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This completes the proof. 

Lemma 7. Suppose that V (x) satisfies (9), (10) and (14) for n. 
n,a 

(28) (Tb-Tb*) (l-Tb )V (x, r) ~ 0 . rI,a 

Proof: In the case of bland b* = 2 we will prove (28). 
2 Define a' = Tl A (x, r) and an = T A (x, r). n,a 2 n,a 

i) If a' = an, we have 

(T 1-T2) (1-T 1)Vn ,a(x, r) ~ Sa,(T1-T2) (1-T 1)Vn ,a(x) ~ O. 

ii) If a' = 0 and an = 1, we have 

(T 1-T2)(1-T1)Vn ,a(x, r) = {(1-T 1)T1 

~ {(1-T 1)T1 - (1-T 1)T2S}Vn ,a(x) 

-1 
(1-T 1) (T 1-T1 )Vn,a (x) 

-Tl-1C1-Tl)2(1+Tl)Vn,a(x) ~ 0 . 

iii) If a' = 1 and an = 0 we have 

- (1-T 1)T2}V (x, r) n,a 

(T 1-T2 ) (1-T 1)Vn ,a(x, r) = {(Tl-T2)-(Tl-T2)Tl}Vn,a(x, r) 

~ {(T 1-T2) - (T 1-T2 )T1S}Vn ,a(x) 

-1 
T2 (T2-T1)(1-T2)Vn ,a(x) ~ 0 . 

If 

The next theorem establishes arrival control monotonicity and service 

mechanism monotonicity in optimal policies. 

Theorem 2. Let b = 1, b* = 2 or b = 2, b* 1. If Sx E Rand Tbx E R 

then 

(29) (l-S)(l-T
b

)V (x) ~ 0 . 
n,a 

Proof: The proof is by induction on n. For n = 0 it is easily shown to 

prove (29) and (30). Now suppose that for n (29) and (30) hold. Using Lemma 

4 to Lemma 7 we have 

(l-S) (l-T
b

)V 1 (x) = [-(l-S) (l-T
b

)h(x) n+ ,a 

+ \!(l-S) (l-Tb )V (x, r)F(dr) n,a 

+ (l-S)(l-T
b

)U (x)]/(a+h) ~ 0 
n,a 
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(Tb -Tb*) (1-Tb )Vn+1 ,a. (x) = [-('rb-Tb*) (l-Tb )h(x) 

+ AI (Tb-Tb*) (l-Tb )Vn ,a. (x, _r')F(dr) 

+ (Tb-Tb*) (l-Tb )Un ,a. (x)] I «(l+A) ?: ° 
This completes the proof. 

4. Infinite Horizon 

In this section we consider infinite horizon problems, both with and 

without discounting. The existence of optimal equations is proved and the 

monotone optimal policies for infinite horizon problems are obtained as a 

limit of finite horizon problems. 

Let V (x) be the maximal expected ':x - discounted net benefit when the 
a. 

201 

current state of a system is x and horizon length is infinite. We can apply 

the same argument of Theorem 8 in St idham (1978). Then we have 

(31) V (x) 
a. 

lim V (x) 
n-><>o n,a. 

and the optimal equation ~s satisfied 

(32) V (x) = [-hex) + AIv (x, r)F(dr) 
a. a. 

+ ~ max Tbv (x)]/(a.+A), 
b=l ,2 a. 

where Va.(X' r) = max{r+S V (x), V (~)}. a. a. 

Theorem 3. Let b = 1, b* = 2 or b 2, b* = 1. For any a. > 0, V (x) is 
a. 

monotone nonincreasing in X«Tb-1)Va.(x) ?: 0). Furthermore if Sx E Rand 
2 Tbx E R then (l-S)(l-Tb )Va.(X) ?: 0, and if Tb*x E R and Tb x E R then 

(Tb-Tb*)(l-Tb )Va.(X) ~ 0. 

Next we consider the infinite horizon undiscounted problem (a. 

which the objective is to maximize long-run average return. 

0), in 

Theorem 4. Suppose h(O,l) > h(O,O). Then there exist the optimal long­

run average g and a function vex) such that for some sequence {a. } (a. -+ 0+ as \I \I 
\I -+ (0) 

(33) lim[v (x) - V (0,0)] 
\I+<» a.\I a.\I 

and 
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(34) 

where 
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vex) [-hex) + AJV(X, r)F(dr) 

+ ~ max TbV(X) - g]/A, 
b=1,2 

vex, r) = max{r+S vex), vex)}. 

Furthermore, vex) is monotone nonincreasing in X«Tb-1)v(x) ~ 0). If Sx € R 
2 

and Tbx € R then (l-S)(l-Tb )V(X) ~ 0 and if Tb*x € R and Tb x € R then 

(Tb-Tb*)(l-Tb )V(X) z O. 

Proof: We prove the existence of a stationary optimal policy, which is 

obtained by the limit of a sequence of discounted optimal policies. When the 

system is in state x, and the discount rate is a, the accept ion rate is given 

by A{l - F«l-S)V (x»}. If for all sufficiently large JxJ (JxJ == 2i+j) and 
a 

all sufficiently small a > 0 2A{1 F«l-S)V (x»} < ~ then the assumptions 
a 

of Theorem 4 in Lippman (1973) are satisfied and then (33) and (34) hold. To 

prove this it suffices to show that 

(35) Hm 
a-+O+ 

lim (l-S)v (x) = 00 

JxJ-+oo a 

Using the same discussion of (16) in Lemma 1, let us put a 

then we have 

(l-S)V (x, r) ~ (l-S)S V (x) 
n,a a n,a 

~ (l-S)v (x) ~ min (l-S)TbV (x), 
n,a b=1,2 n,a 

SA (x), 
n,a 

where the second and the third inequalities come from (29) in Theorem 2. 

Also from (17) and (18) 

Hence 

where 

Therefore 

(l-S) U (x) ~ min Tb (l-S)V (x). 
n,a b=l,2 n,a 

(a+A) (l-S)V (x) = -(l-S)h(x) + AJ(1-S)V 1 (x, r)F(dr) n,a n- ,a 

+ ~(l-s)u 1 (x) n- ,a 

~ 0 + A min Tb (l-S)V 1 (x), 
b=1,2 n- ,a 

h(l, 0) - h(O, 0) > O. From iteration we have 

(l-S)V (x) ~ 0 
n,a 

min[n, JxJ] 
I 

k=O 

k [A/(a+A)] /(a+A). 
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lim (l-S)V (x) 
et 

lim lim (l-S)V (x) 
ixi-- n+oo n,et ixi--

(Xl 

:::. 0 L 
k=O 

k [A/(et+A)] /(et+A) = 8/et, 

and (35) holds. The remainder of this theorem ~s inrrnediately obtained from 

Theorem 3. 
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