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Abstract The optimal production rate (production capadty) for a single product system with some deterministic 

dynamic demands is considered. Under a linear-additivity assumption on the associated cost information, the 

existence of the optimal solution for production capacity is verified. For the model, two solving techniques (point­

wise computation and L.P. approaches) are developed for both uniilled-demand handling cases of lost-sales and 

backlOgging, with which example problems are tested to show the superiority of the point-wise computation ap­

proach to L.P. approach. 

1. Introduction 

Given a finite time horizon [O,T] partitioned into several time-periods 

(time-intervals) during which the period--wise demands are variant accordingly, 

the optimal capacity determination of a production system is practically of 

great importance in investment view. Furthermore, when the operation of the 

system at a fixed production rate, say A" through the time horizon is con­

sidered, the associated inventory systems should be accounted for to derive 

the optimal investment decision giving rise to an optimal value A* 

Florian and Klein [2] and Lambrecht et al. [5] have studied the problems 

of production scheduling with the allowance of the period-wise different pro­

duction quantity, given the known demands. Their works were based on a given 

system with bounded capacities, so that some of its production schedules may 

include certain idle periods. 

By the way, from the standpoint of the system utilization and cost caused 

from production changes, the operation of a system at a fixed production rate 

is sometimes important. For example, consider the problem of selecting a 
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production system for a commodity. Then, the system operation schedules would 

be studied with respect to its full utilization. This problem can be inter­

preted as the problem of finding a schedule for the ssytem to be operated at 

a constant (fixed) production rate and without any idle period. 

For this study, both cases of backlogging and lost-sales are to be treated 

for the optimal production rate A* at which the total profit through the time 

horizon is maximized. 

In the following section, a production rate decision model for both cases 

of lost-sales and backlogging is developed. In fact, a more general problem 

including this problem as a special case can be formulated as a linear pro­

gramming problem and hence can be solved efficiently. Therefore, for the 

model, the optimal solution algorithms are proposed in L.P. and point-wise 

computation approaches. It is then shown that for the special case the point­

wise computation algorithm is more efficient than L.P. algorithm. 

2. Total Profit Model 

The model dealt with in this section is of determining the optimal capa­

city of a production system corresponding to a sequence of the deterministic 

future demands. For its analysis, a total profit through the time horizon is 

defined as follows; 

Total Profit 

(TR) 

(quantity sold) x (unit price) + (salvage value) 

- (inventory holding cost) - (shortage cost) 

- (initial investment) - (manufacturing cost). 

Let N be the total number of periods over the time horizon and fit be the 

manufacturing cost for a product in period t. Then, the first term of TR is 
N 

represented as I UtS t , where St is the quantity sold during period t and Ut 
t=l 

is the unit price of a product. Salvage value is composed of two elements, 

one for the initial investment and the other for the products salvaged. The 

latter is denoted by kI
N

+, where k is the salvage value of a product (k < fi ) - t 
and IN+ is the positive inventory. The former is represented by rCA estimated 

at the end of period N, where r (JrJ < 1) is the salvage value conversion rate 

and CA is the initial investment for the system which is assumed to be linearly 

proportional to A. 

Let h
t 

be holding cost per unit held from period t to t+1 and TIt be 

shortage cost. Under the assumption that inventory holding costs are linearly 

proportional to the net inventory at the end of priod t (denoted by It)' TR is 
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expressed as follows; 

N N-1 N N 
(1) TR(A) tu tSt + reA + + 

tI
O

ht +1I t 
+ I TItI t - CA - I lntA = kIN -

t=l t=l t=l 

where + 
max(O, It)' It and It max (0, -It)' 

3. Optimal Solution Search: Lost-Sales Case 

In this section, a model will be analyzed for which the unsatisfied demand 

for a period assumes lost. Then, St and 1t can be expressed as follows: 

denoting by d
t 

the demand during period t, 

(2) + min(dt , A + max(It _ 1, 0» = min(d
t

, A + I
t
-

1 
) 

Eqs.(2) and (3) depend piece-wisely upon A. Such dependency is summarized 

in Table 1. 

Table 1. It and St Piece-Wisely Depending upon A. 

+ -
of A t It It It St range 

--r----- -

A-d1 0 d1 A2d1 1 A-d
1 

--

0 d1-A A A~d1 
-

2A-d
1
-d

2 0 d2 
A2d

1 & 2:\:<!d
1
+d

2 ZA-d
1
-d

2 
--

0 d
1
+d

2
-2\ 2A-d

1 A2: d 1 & 2A~d1+d2 
2 

A-d2 0 d
2 A~d1 & A2d2 A-d2 

0 d2-A A A~d1 & A~d2 

· · · · · · · · · · · · · · · · · · -- - --
NA-d 1-· .-d

N 
0 d

N 
NA-d

1
-· .-d

N 
-

0 d 1+·· .dN--NA NA-d
1
-· .-dN-

1 --· · · · · N · · · · · · · · · .-
A-d

N 
0 d

N A-d 
N 

0 dN-A A 
-
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Now, it will be shown that TR is a piece-wise affine function of A. 

Theorem 1. The function TR is a piece-wise affine function of A and its 

slope changes occur at the points, d 1, d2 ,···, dN' (d 1+d2)/Z, ... , (dN_ 1+dN)/2, 

(d 1+d2+d3 )/3, ... , (dN_2+dN_l+dN)/3, ... , (d 1+· .+dN)/N. 

Proof: + 
From Table 1, it is seen that It ,It and St for t=1,2, ..• ,N 

are piece-wise linear functions, respectively, depending upon the ranges of 
N-l N N 

A. This implies that I ht +1I t +, I TItIt - and r UtSt are piece-wise linear 
t=O t=l t=l 

functions. Meanwhile, the rest part of the function TR is also a linear func-

tion of A. Therefore, TR is a piece-wise linear function of A whose slope 

changes occur at the boundary points given above. 

For example, consider the case of "N = 1". Then, the two possible dis­

tinct ranges (intervals) of A are in the set {O~A~dl' dl~A}. Over each range 

in the set, TR(A) is defined as follows: 

(a) For the range dl~A; 

TRa(A) = (rc-c-m1+k)A + (U
1
d1-kd

1
), 

(b) For the range O~A~dl; 

TRb(A) = (rc-c-m1+u1+TI 1)A - TI 1d 1, 

where TR.(A) denotes the objective function defined over the range i (i=a,b). 
~ 

These two functions, TRa(A) and TRb(A) , show that each of them is a linear 

function defined over its associated range (interval), and further that they 

are equal at the point A = d
1

• 

Also, consider the case of "N = Z". Then, all the demands, d
1 

and d
2

, 

can be ranked as d(1)~d(2) in their nondecreasing order, where d(i) denotes 

the ith smallest value. Thereupon, the associated range set can be defined as 

{O~A~d(l)' d(1)~A$(d(1)+d(2»/2, (d(1)+d(2»/2~A}. Now, assume without loss 

of generality that dl~d2' Then over each element in the range set {O~A$dl' 

dl~A~(dl+d2)/2, (dl+d2)/2~A}, TR(A) is defined as follows: 

(a) For the range O!>A!>d1; 

TRa(A) = (rc-C-ml-m2+ul+u2+TI1+TI2)A - (TI 1d1+TI 2d2), 

(b) For the range dl~A~(dl+d2)/2; 

TRb(A) = (rC-C-ml-m2+2U2-h2+2TIz)A + (uldl-u2dl+h2dl-1T2dl-TI2d2)' 

(c) For the range (dl+d2)J2~A; 

TRc(A) = (rc-c-m1-m2+2k-h2)A + (Uldl+U2d2-kdl-kd2+h2dl)' 
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This also shows that each of the three functions is a linear function, and 

further that TRa(A) and TRb(A) are equal at A = d
" 

and TRb(A) and TRc(A) are 

equal at (d , +d2) /2. These imply that 'l'R is a piece-wise affine function de­

fined over the whole domain of A, O~A. 

Likewise, in general, N demands d 1,dZ"'" and dN can be ranked as 

d(1)$d(2)$ ... $d(N) in their nondecreasing order. It follows that the whole 

domain of A (O~A) can be decomposed into the distinct intervals of whose 

boundary points are in the set {O,d" ... ,dN,(d,+d2)/2, ... ,(dN_,+dN)/2, ... , 

(d,+d2+d3)/3, ..• ,(d,+dZ+ •.• +dN)/N}. Then, it can be seen that over each of 

these intervals, TR is defined as a flinear function of A, and further defined 

over the whole domain of A as a piece-wise affine function. This completes 

the proof. 

The results of Theorem 1 lead to Theorem 2 which shows the existence of 

the optimal solution. 

Theorem 2. The function TR has the maximum value at either 0 or one of 

the boundary points resulted from Theorem 1. 

Proof: From the piece-wise affinity, TR(A) may have local maximums at 

the boundary points. Therefore, it is sufficient to check the values of A in 

the ranges outside the smallest and the greatest boundary points. 

If A is in the range beyond the greatest boundary points, St=dt , 
fi N-1 

I/=tA-d , - ... -dt , It-=O for t=1,2, ... ,N. Thence, TR(A)= A(rC-C- L mt - It ht+1 
t-1 t=1 

fi N-1 
+ NK) + constant, which decreases as A increases, because (rC-C- L m - I t h 

t=1 t t=O t+1 
+ NK) < O. So, the local maximum of TR(A) over the range is attained at the 

greatest boundary point. 

Meanwhile, if A is in the range below the smallest boundary point, St=A, 

It+=O and It =dt-A for t=1,2, ... ,N. Thence, 

N N N 
TR(A) ( I Ut + rC - C - ~ m + ~ TIc)A + constant. 

t=l t=l t t=l 1: 

This implies that, as A decreases, TR(A) decreases or increases depending upon 

the coefficient of A. Hence, the local maximum over the range is attained at 

either the smallest point or O. 

Thus, the proof is completed. 

A solution algorithm, PWA1(abbreviation of point-wise computation ap­

proach 1), is then suggested based on Theorems 1 and 2. 
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Algorithm PWA1 

Step Compute values of (d
1
+d2)/2, ... , (dN_ 1+dN)/2, ... , (d

1
+d2+d

3
)/3, 

... , (dN_2+dN_1+dN)/3, ... , (d 1+ .•. +dN)/N (Let them be Pi (i=l, 

2, ... ,N(N+1)/2+1) including d
1

, ... ,dN and 0) 

Step 2 Compute TR(Pi ) for each Pi' where 

Step 3 

I =I+ + P. - d 
t t-1 ~ t 

St=min(dt , Pi +I:- 1) 

Compare the values of TR(P.) and find the optimal value A* 
~ 

maximizing TR such as 

A*={Pk ; TR(Pk)~TR(Pi)' ¥i} 

Now, consider the computational complexity of Algorithm PWA1. When the 

order of computation rather than the detail number of computations is taken 

into account as the measure of complexity, the algorithm is of order N 3 , which 

is proved in Lemma 1. 

Lemma 1. Point-wise approach is 0(N 3 ) for the lost-sales case. 

Proof: The number of points to be computed is the number of boundary 

points for the intervals of A and zero point, and so N+(N-1)+ ..• +1+1=N(N+1)/2+1. 

+ -
Given a boundary point of A, values of It (It) and St are obtained from 

iterative computation at each partitioning point of time horizon [0, T], and 

so the number of iterations is N. 

Thus, the number of computations for optimal A* is [N(N+1)/2+1]N=N 2 (N+1)/ 

2+N. This completes the proof. 

The algorithm is now illustrated with a numerical example with N=4. 

Example 1 

Assume that the required informatoin is given as follows; 

d1=3, d2=1, d3=4, d4=2, N=4, TIt=O.S, ht =0.2, IDt =2, Ut =3.3 for t=1, ... ,4, 

c=4, r=O.l, k=2.S. 

Then, 

P1=3,P2=1, P3=4, P4=2, PS=2, P6=2.S, P7=3, PS=S/3, Pg=7/3, P10=2.S, P11 =0. 

So, 

TR(P 1 ) TR(P7) = 2.6 TR(P2) -1.4 

TR(P
3

) -0.2 TR(P4 ) TR(P
S

) 2.0 

TR(P
6

) TR(P
10

) 3.0S TR(P
S

) 2.9 

TR(Pg ) 2.7 TR(P 11) = -S 
A* 2.S 
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Our problem can also be handled in linear programming (LP) approach. 

From Eqs. (1), (2) and (3), the problem can be formulated in LP as follows: 

maximize 

A 
+ 

s. t. - Il + Il d
1 

2S
1 

- A + 
+ 

Il + Il d
1 

A 
+ + 

+ I t - 1 
- It + It d

t 

2S
t 

- A + + - I t - 1 + It + It d
t 

+ 
St 2 0, It ~ 0, It: ~ 0, ¥t 

A ~ 0. 

Observe that the vector of constraint coefficients for I
t

+ is linearly 

dependent with that of I
t

- This meanE that I + and I cannot both be in a 
t t 

basic solution, and hence that the conE,traint It + 'I
t

- = 0, implied by the 

definition of on-hand inventory and backorders, is automatically satisfied and 

does not have to be represented explicitly in the model. 

4. Optimal Solution Search: Backlogging Case 

Another model shall be analyzed for which unsatisfied demands can bE! 

satisfied later. In this case, St and It are expressed as follows: 

(4) min [max(I
t

_
1

, 0) + A, d
t
-min(I

t
_

1
, 0)] 

min 

(5) 

Eqs.(4) and (5) also depend piece-wisely upon A. Such dependency is 

summarized in Table 2. 

The function TR, even if it is nevdy defined with St and It given in 

Eqs.(4) and (5), can be proved to have similar solution properties to those 

in the lost-sales case. The properties are stated in Theorems 3 and 4. 
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Table 2. It and St Piece-Wisely Depending upon A 

t It I + 
t It 

-
St range of A 

A-d
1 0 d

1 A~d1 
1 A-d

1 
0 d

1
-A A ASd

1 

d
2 A~d1 & 2A-d1~d2 

2A-d
l
-d

2 
0 

d
l
+d

2
-A A,;:d

1 
& A~dl+d2-A 

2 ZA-d
1
-d

2 
ZA-d

1 A~dl & 2A-d1~d2 
0 d

1
+d

2
-ZA 

A ASd
l 

& A,;:d
l
+d

2
-A 

· · · · · · · · · · · · · · · · · · · d
N · · 

NA-d
l
-· .-dN 0 

d 1+:· .+dN- 1 · · N NA-d
l
-· .-d

N · -(N-l)A · 
· NA-d l -·· .-dN- l · · 0 d l +· .+dN-NA · A · · 

Theorem 3. The function TR is a piece-wise affine function of A whose 

slope changes occur at the points d
l

, (d
l
+d

2
)/2, (d

l
+d

2
+d

3
)/3, ... , 

(d1+·· .+dN)/N. 

Proof: The proof is straightforward when the proof steps of Theorem 1 

are followed by use of Table 2. 

Theorem 4. The function TR has the maximum value at either 0 or one of 

the boundary points resulted from Theorem 3. 

Proof: It is easily proved by use of the results of Theorem 3 when the 

proof steps of Theorem 2 are followed. 

Based on the results of Theorems 3 and 4, a solution algorithm, PWA2 

(point-wise computation approach 2), for the backlogging case is then devel­

oped. 

Algorithm PWA2. 

Step 1 Compute the values of d
l

, (d
l
+d

2
)/2, (d

l
+d

2
+d

3
)/3, •.. , 

(d l + ... +dN)/N (Let them be represented by Pi (i=1,2, ... ,N+l), 
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respectively, with P =0) 
N+l 

Step 2 Compute TR(Pi ) for each Pi' where 

It = I t - 1 + Pi - d t 

St = min(I:_ f + Pi' d t + I~_l) 

Step 3 Same as step 3 of PWA1. 

185 

As done for Algorithm PWA1, when the order of computation is considered 

as the measure of computational complexlty, Lemma 2 shows that Algorithm PWA2 

is of order N
2

, which can be proved in the same way as for Lemma 1. 

Lemma 2. For the backlogging case, point-wise approach is 0(N2
). 

Example 2 is presented for illustrating Algorithm pWA2. 

Example 2 

The required data are the same as those of Example 1 except 1T
t

=0.3 for 

t=l, 2, 3, 4. 

Then, 

P1=3, P2=2, P
3
=8/3, P4=2.S, PS=O and so, TR(P 1) = 2.6, TR(P2 ) -3.3, 

T~(P3) = 3.36, TR(PS) = 3.S, TR(PS) = -7.S, 1-* = 2.S 

From Eqs. (1), (4) and (5), the baeklogging problem is also formulated 

into LP as follows: 

I-
+ s.t. I1 + Il d

1 

2S
1 

I-
+ 

d
1 

+ I1 + I1 

I-
+ + 

+ I
t

_
1 It I t - 1 

+ It d
t 

+ + 
2St I- I

t
_

1 
+ It I

t
_

1 
+ It d

t 

t=2, ... ,N 

0, 
+ 

:2 0, 0, ¥t. l- D St :! It -[t :! :! 

5. Comments on Computational Complexity (Point-wise Computation vs. LP) 

Bazaraa [1] illustrated the number of operations required during an 

iteration in solving LP problem by the revised simplex method. Bazaraa's 

result with the number of operations required for the point-wise computation 

approach is listed in Table 3, where LP is based on one iteration but point-
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wise approach is based on the whole computation, and d is the density of non­

zero elements in the constant matrix. 

Table 3. LP vs. Point-Wise Computation Approach (N periods) 

Operation 
Method 

Multiplication Addition Comparison 

Revised Simplex (ZN+1) 2 ZN(ZN+1) ZN 

(one iteration) + d 2N(ZN+1) + d ZN(ZN+1) + 3N+1 

PWA1 
}2 (N+ 1) + }(N+1) }2 (N+1 )+N(N+1) }2 (N+1) + ¥(N+1) 

+N(N-1)/Z +N+N(N+l) (N+Z)/6 +N(N+1) /Z 

ZN 2+3N SN2+3N+N 2N2+ZN 
PWAZ 

+(N-l ) +N(N+ 1) /Z-1 +N 

Garey and Johnson [3] have stated that with reference to Klee and Minty 

[4], the simplex algorithm for LP has exponential time complexity. However, 

in practice, the simplex method has an impressive record of running quickly. 

Meanwhile, there is no general conclusion for the number of iterations required 

for finding the optimal solution in the simplex method. Therefore, it is 

difficult to conclude which approach is the more efficient one, in general, of 

two. 

Several numerical examples are solved on Cyber 174 to make a computational 

efficiency comparison in CPU time between PWA's and LP approaches, with the 

variations of cost coefficients of A and of the planning horizon N, the results 

of which are listed in Table 4 and 5. In Table 5, CA represents the function 
N 

of C d~fined as C = C - rC + ~ m. Table 4 shows CPU time requirements for 
A t=l t 

finding optimal solutions to each of the problems generated by varying the 
+ 

information of Ut' TIt ' TIt ' 

k=1.5 and mt=Z.O. And Table 

h
t 

and N, for the fixed data of C=4.0, r=O.l, 

5 shows such CPU time requirements for the prob­
+ lems generated for the fixed data of U

t
=3.3, TIt =0.3, TIt =0.5, ht=O.Z, k=I.S 

and mt=Z.O. 
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Table 4_ Computation Time Comparison in CPU on Cyber 174 between 
PWA's and LP with c=4.0, r=0.1, k=1.5 and m

t
=2.0. 

Data 

Ut '!Tt h t 

3.3 0.5 0.2 
(0.3) 

0.8 0.2 
(0.6) 

0.4 

1.1 0.4 
(0.9) 

3.3 1.1 0.6 
(0.9) 

3.0 0.5 0.2 
(0.3) 

0.8 0.2 
(0.6) 

0.4 

1.1 0.4 
(0.9) 

0.6 

periods 

4 
12 
24 

4 
12 
24 

4 
12 
24 

4 
12 
24 

4 
12 
24 

4 
12 
24 

4 
12 
24 

4 
12 
24 

4 
12 
24 

4 
12 
24 

1 ost-sales case 
(sec. ) 

F 'WA1 

0 
0 
o 

o 
o 
0 

o 
o 
0 

o 
0 
o 

o 
o 
o 
-

0 
o 
0 

0 
0 
o 

o 
o 
o 
-

o 
o 
o 
-

o 
o 
o 

.058 

.089 

.215 

.056 

.086 

.220 

.058 

.088 

.221 

.058 

.084 

.216 

.058 

.083 

.221 

.056 

.083 

.208 

.058 

.085 

.213 

.055 

.085 

.213 

.057 

.086 

.214 

.057 

.082 

.220 

LP 
--

0.929 
1.156 
1.518 

0.902 
1.164 
1.509 

0.903 
1.146 
1.509 

I 
0.905 
1.128 
1.523 

0.910 
1.142 
1.533 

0.916 
1.144 
1.512 

0.920 
1.131 
1.549 

0.931 
1.120 
1.529 

0.913 
1.128 
1.539 

0.898 
1 .121 
1.572 

---'--

+ (Note: Values in parentheses indicate IT
t 

values). 

backlogging case 
(sec.) 

PWA2 LP 

0.056 0.933 
0.082 1.268 
0.204 1.710 

0.055 0.917 
0.083 1.263 
0.205 1.713 

0.056 0.911 
0.085 1.261 
0.205 1.710 

0.058 0.907 
0.083 1.244 
0.207 1.743 

0.056 0.912 
0.083 1.254 
0.213 1. 712 

0.055 0.917 
0.086 1.293 
0.212 1.699 

0.057 0.913 
0.084 1.271 
0.210 1.717 

0.056 0.911 
0.083 1.274 
0.202 1.706 

0.056 0.911 
0.089 1.248 
0.213 1.711 

0.056 0.907 
0.082 1.274 
0.208 1.715 

187 
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Table 5. Computation Time Comparison in CPU on Cyber 174 between 
PWA's and LP with U

t
=3.3, TI

t
+=0.3, nt -=0.5, r=O.l, 

h t =0.2, k=1.5 and ID
t
=2.0. 

Data 
lost-sales case back logging case 

(sec. ) (sec.) 

C CA periods PWA1 LP PWA2 LP 

4.0 11.6 4 0.058 0.929 0.056 0.933 
27.6 12 0.089 1.156 0.082 1.268 
51.6 24 0.215 1.518 0.204 1. 710 

100.0 98.0 4 0.052 0.942 0.051 1.013 
114.0 12 0.080 1.555 0.080 1.641 
138.0 24 0.211 2.529 0.204 2.611 

200.0 188.0 4 0.051 0.948 0.052 1.051 
204.0 12 0.080 1.558 0.077 1.644 
228.0 24 0.216 2.726 0.206 2.749 

Tables 4 and 5 show that given three N values 4, 12 and 24, in our PWA 

approaches CPU time does not vary with the cost coefficients of A, while it 

greatly depends on the variations of planning horizon N. However, LP approach 

spent ten times the CPU time in searching each associated optimal solution, 

even if it is less sensitive to the variations of N values than PWA approaches. 

Furthermore, Table 5 shows that as C increases, the CPU time requirement in 

LP approach also increases. 

In conclusion, for problems with N not large, our PWA approach is effi­

cient more than ten times in comparison with LP approach. In particular, 

when C is greater than 200 and N is less than 12, the superiority of PWA to LP 

approach in computational efficiency becomes more conspicuous. We further 

claim that PWA approach could be practically appreciated in its application to 

fairly large planning problems such as monthly production planning over five 

years, weekly production planning over season, etc. In fact, under a variety 

of uncertain industrial environments, forecasted demands will be meaningful in 

product management only over a certain limited time interval, so that the 

problem size parameter, the number of time-periods N, of our problem won't be 

large. Therewith, it can be argued that with reference to the computational 

complexity comparisons shown in Tables 3, 4 and 5 the point-wise computation 

approach is superior from the practical application view, because the study 

objective of determining the optimal product rate A* is based on the forecasted 

future demands. 
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Remarks: 

It is noted that the above piece-wise computation approach can also be 

directly applied for searching the optimal solution of A to the piece-wise 

total profit function which consists of convex functions defined over each 

interval of A. This occurs when each cost function with respect to inventory 

holding and shortage and initial investiment is assumed concave in I
t

+, It 

and A, respectively. In fact, the maximum value of a convex function for an 

interval is attained at one of the boundary points of the interval. 

As shown in Algorithms 1 and 2, for the specific problem the computational 

complexities in PWA's depend on the number of horizon periods rather than the 

coefficient of A. If we consider a situation in which the conditions k!:mt for 

all t are removed and rather a production capacity restriction is placed as 

an upper bound of A, then a maximum valw~ of TR would also be guaranteed, 

since the capacity bound should be included as a boundary point. 

6. Conclusion 

As shown through this work, two searching approaches are suggested for 

finding the optimal production rate for a system, the total profit function of 

which is a piece-wise affine (linear or convex) function, given a sequence of 

deterministic demands. 

The importance of this study is placed on the case in which the produc­

tion management is highly dependent upon the optimal utilization of facilities. 

It may also be of practical interest to some production systems, of which the 

change of production rate is too costly. 

From the efficiency comparison between the two approaches, the point-wise 

computation approach seems to be advantageous in its applying to real problems. 

Certain production systems with stochastic demand processes are currently 

under investigation as an extension of this work. 
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