Journal of the Operations Research © 1986 The Operations Research Society of Japan
Society of Japan
Vol. 29, No. 2, June 1986

A FLUID FLOW APPROXIMATION ANALYSER FOR
BUFFER TYPE QUEUEING SYSTEMS

I. M. Premachandra Hidenori Morimura
University of Sri Lanka Tokyo Institute of Technology

(Received November 1, 1985: Final February 17, 1986)

Abstract Queueing systems in which idle times of servers seldom occur are commonly seen in many practical
areas such as manufacturing, transportation, etc. Here we call such a system buffer type queueing system. It is
known that the fluid flow approximation technique is efficient in analysing such systems. This paper presents an
algorithm based on this technique and a comprehensive computing tool (FFQA) which employs it. The applicability

and the accuracy of FFQA are illustrated through some examples.

1. Introduction

In practice, there are many examples of a type of queueing system
in which idling of the servers seldom occurs. Let us consider a situation
of unloading ores from a freighter to barges. As far as there are empty
barges near the freighter, the unloading process continues. In case of
manufacturing processes, they wusually have no interruption due to the
shortage of materials since buffer storage is avallable. In the present
paper, we shall call such queueing systems buffer type.

Newell, G.F.[6] proposed the so-called fluid flow approximation
technique to analyse such queueing systems. It is known that the technique
is efficient and simple. Also, Nakamura, Z.{5] recommends to use it in
analysing work system improvement. But, when we apply the technique to
analysis of a complex queueing system such as above examples, it is not
so simple to obtain some evaluation quantity (e.g., mean waiting time)

analytically. We analysed such a case{ll]. If we have a computing tool

156

Buffer Type Queueing Systems 157

that can be manipulated easily, then such an analysis becomes simple.

The purpose of this paper 1is firstly, to develop an algorithm
based on the fluid flow approximation to compute the mean sojourn time or
the mean number of customers in complex queueing systems and to test
whether it could be used efficiently with a sufficient accuracy. The
second purpose 1is to 1illustrate the outline and the computational
experience of a program package FFQA(Fluid Flow Queueing Analyser)
which employs this algorithm.

When we have mno any computing tool, we may use some popular
simulation language such as GPSS[{12], Q-GERT[2}, SLAM II{1,13,14] etc.
If we use them, of course we can obtain many informations about the system
behaviour, but the treatment 1s not so simple. We are expected to be
familiar with many inherent terminolcgies and symbols.

The rest of the paper 1s organized as follows. Section 2 discusses
the basic ideas behind the algorithm. Section 3 1llustrates the outline
of FFQA. Some numerical examples are given in § 4 and a comparative study
of FFQA with other simulation languages appears in §5. Finally, Section 6

presents some concluding remarks.

2. Basic Ideas Behind the Algorithm

We summarize below the basic ideas behind the algorithm; available

in Appendices A and B.

2.1 Concept of Node

The flow of different commodities in a system 1is taken 1into
consideration by defining service stations with respect to each commodity.
We call such service stations nodes in order to distinguish them from
service stations in usual sense. Hence, 1if there 1s only one type of
commodity flowing through the system then the nodes mean the existing

service stations. To explain this concept consider the following example.
Example - 1 (loading unloading problem)

Consider the loading and unloading problem of an ore freighter.
Raw materials brought by the freighter are first loaded into the barges.

The loaded barge 1is then pulled to the yard by a tugboat. At the yard
the loaded barge is unloaded by a crane. The empty barges generated at

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

158

1. M. Premachandra & H. Morimura

the yard due to unloading are pulled back to the freighter in order to
keep the process going. This loading unloading process is continued until
the materials in the freighter are completely unloaded.

In usual terminologies, the first service station in this process
is an unloading crane on the freighter. Input customers are ores and
output customers are loaded barges. The server is interrupted 1f there
are no empty barges. The server in the second service station 18 a
tugboat and the customers are loaded barges. This approach 1is rather
complex But, if we consider the following seven types of customers and
appropriate seven nodes, we can explain the system in a natural form as
illustrated in Fig. 1

1) Materials in the freighter (MAT)

11) Empty barges waiting near the freighter (EBF)

111) Tugboats waiting near the freighter (TAF)

iv) Loaded barges waiting near the freighter (LBF)
v) Loaded barges waiting at the yard (LBY)

vi) Empty barges waiting at the yard (EBY)

vii) Tugboats waiting at the yard (TAY).

For the notational convenience hereafter we shall denote a node

ouly by a circle with a number iungside.

MAT

I @'—’—- (MATERIALS)
LBF LBY EBY EBF \.

I K2 AT AT KA)= (BARGES)

s~

TA TAY

-
il '@ ”HHH@-— (TUGBOATS)

______ LOGICAL CONNECTION

Fig. 1 Flow Diagram of the Loading Unloading Problem

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Buffer Type Queueing Systems 159

2.2 Fluid Flow Approximation

Under the heavy traffiec condition, we can use the fluid flow
approximation method to approximate the queueing processes.

When the nodes are combined into a network form such as in Fig. 1,
the output from one node 1is considered to be the input to the next
immediate nodes in the flow diagram. The direction of the flow of

commodities in the flow diagram is indicated by an arrow.

2.3 Constraint and Induced Delay

The flow diagram itself may unot give a full description of the
real system under consideration unless the interdependence of the nodes
is defined.

Thus, with respect to each node i of the flow diagram we have to
define (if necessary) a set of constraints 1in order to detect the
pattern of the departure process from the node If at least one of these
constraints is satisfied at any time t, then FFQA sets the departure
process from node i to an interrupted state for a certain time interval
which we call here induced delay. The following example illustrates this
fact and for details refer (8,9,10}].

Example - 2 (tandem queue with blocking)

Consider a two stage tandem queue which serves a single type of
commodity. Assume that the node 2 (i.e., stage 2) has a finite waiting
room of capacity 3. The departing commodity from node 1 is assumed to be
blocked if the waiting room at the second node is full.

Let Aj(t) and Dy(t) be the cumulative arrival to node 1 and the
cumulative departure from node i respectively.

In this case we have to define the condition Ag(t) - Da(t) = 3
as a comstraint to node 1. Whenever (time tgp in Fig. 2) this constraint
is satisfied, FFQA interrupts the departure process from node 1 for a time
interval p dzl' where W 42 is the service rate at node 2. The
dotted lines in Fig. 2 indicate the process after the induced delay.

2.4 Additional Node

In modeling a real system using FFQA, one may require to model a
situation where a commodity takes a certain time DTy to move between two
nodes 1 and j. In this case we have to 1input only the delay DTy so
that FFQA automatically introduces an additional node into the flow

diagram between the nodes i and j. The mean service time of this node is

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

160

cons idered to

1. M. Premachandra & H. Morimura

be DTy. Strictly speaking the arrival and the departure

processes of the additional node r can be given as A, (t) = Dj(t) and

Dp(t) = Ap(t+DTy), where r 18 the number assigned to the additional

node by FFQA.

CUMULATIVE FLOW

CUMULATIVE FLOW

2.5 Indicato

NODE 1

.
v

— -

5 INDUCED DELAY
— FROM NODE 2 = g

. /

—_—

—
TIME
Fig. 2 1Induced Delay in Case of Blocking

r Variable

FFQA checks whether the constraints defined to each node are

satisfied or

follows.

¢c(41,3)

not on the basis of the indicator variables defined as

1 if the j—-th comstraint of node i is satisfied

0 otherwise

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Buffer Type Queueing Systems 161

for i = 1,2, ..., M and j = 1,2, ... ny where M is the total number of

nodes and nj is the number of constraints defined to node i. So, if at
ny

any time t, the value ¥ CC(i,3j)# O then FFQA sets the departure
=1

process from node i to an interrupted state. Refer Appendices A and B

for details.

2.6 Termination of the Computation

The ending of the computation in FFQA is determined by meaus of a
termination condition defined by the user. Informations such as the time
at which the computational process 1is to be stopped or the number of
commodities required to be processed at a particular node before the
termination can be used to define the termination condition. A detailed

discussion is available in [10].

2.7 A Rapid Algorithm

Appendix A discusses the main algorithm used in FFQA. In this
algorithm, the computation is performed by incrementing the simulation
time in small time intervals. We call the software associated with this
algorithm FFQA-GAP (FFQA ~ General APproach). This approach may allow
the user to 1input any type of constraint in BASIC statements and
therefore a wide variety of queueing systems including networks can be
tackled.

But on the other hand, the algorithm in FFQA-GAP may increase the
CPU time because the clock time is incremented by small time intervals.
Therefore we propose a rapid algorithm (see Appendix B) and its program
package FFQA-RAPID, by removing the condition that the clock time is
incremented by small time intervals. In principle, the computational
process in FFQA-RAPID searches the wminimum time point t* of t: at

Ry
which z CC(1, 3j) # 0 for each node 1 and advances the simulation time
J=1

to t*(see Appendix B). Here R; 13 the number of constraints that
uses informations about the node 1. In order to ease the computation in
FFQA-RAPID we impose here the following restrictions.

(a) Restrictions imposed on the flow diagram

1) Flow diagram should have only oue initial node., Here

an initial node is a node which does not have incoming

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

162

1. M. Premachandra & H. Morimura

arrows which are emanated from other nodes; e.g., node 1
in Fig. 1.

ii) The input set and the output set of all the nodes should
consist of at most one element. Here the input set of
any node 1 is the set of nodes whose outgoing arrow
becomes an incoming arrow to node i. Similar definition
can be given to the output set.

(b) Restrictions imposed on the constraints
FFQA-RAPID allows only the constraints of the form

Aj(e) - Dy(t) =p (p=0)or

Ag(t) -Dg(t) §q (q>0).
Note that these constraints are the types that are frequently used in
modeling many of the queueing situations using FFQA. Because of the
above restrictions the applicability range of FFQA-RAPID ‘becomes narrow
compared with FFQA-GAP. It is also to be noted that in future it may

be possible to release the restriction (a).

3. Outline of FFQA

FFQA is written in BASIC and is rum on a personalcomputer (NEC
PC-9801, 528 KBytes). Input data to the package is received by three
subroutines DATA 1 ~ 3.

DATA 1 receives incremental simulation time A (=0.25 in the
default case) and the general data corresponding to each node such as
node number, service rate, queue size at t=0, input set, output set,
percentage of commodities moved from node to node and the delay occured
in moving a commodity from one node to another. Statements such as
NODE NUMBER: SERVICE RATE etc., will appear on the screen automatically
so that the user can input the relevant data through the keyboard.

In DATA 2, FFQA checks the initial nodes in the flow diagram on
the basis of the data in DATA 1 and will request the user to input the
data such as arrival rate, time arrival begims etc., corresponding to
them. Various arrival patterns will appear on the screen and the user can
input these values through the keyboard.

DATA 3 is for inputting the informatioms such as comnstraints,
termination condition etc., in BASIC statements. In principle, any

appropriate mathematical expression 1s permitted as a comnstraint.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Buffer Type Queueing Systems 163

Summary report (see [10]) prints out all the input data and the
output data such as mean sojourn time, cumulative arrival, cumulative
departure, maximum, minimum and the average uumber of commodities with
respect to each node.

Due to the conversational ability of FFQA, the manipulation is
very simple.

4. Numerical Examples

In order to illustrate the applicability of FFQA-GAP and
FFQA-RAPID, we present here some numerical examples and for details and
more examples refer [7]. The accuracy of the results from FFQA is
checked by comparing with GPDS (General Purpose Discrete Simulator -

almost same as GPSS) results obtained from Melcom Cosmo 700 machine.

4.1 Tandem Queue with Blocking

Congsider Example ~ 2 and assume that the service rates in node 1
and 2 be 0.51 and 0.32 respectively. It 1is also assumed that the
commodities arrive at node 1 at the rate of Mgy - The system is
simulated using FFQA-RAPID and GPDS and the results appear in Table 1
below.

In Table 1, GPDS(det) refers to the case where the {interarrival
times and the service times at the nodes are constants at 1/ u 41,
1/.51 and 1/.32 respectively. For the sake of comparison, we also consider
an extreme case where these times are exponentially distributed with the
same means as above and the corresponding results appear under the column
GPDS(ran). The bracketed figure 1s the estimated standard deviation
from 12 runs.

It can be seen from Table 1 that for values I 417 > 0.5 (during
this range the traffic intensity of node 1 > 1)FFQA gives good approximate
values. In the case of node 2, the fit is good even for M 51 > 0.4.
results corresponding to the random case are almost the same as that in
the deterministic case. It is to be noted that the same set of raudom
numbers is wused to estimate the means and the standard deviations

corresponding to the different values of M 41.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

164 1. M. Premachandra & H. Morimura
B 41 Node Avg.Sojourn time Maxi.contents
number GPDS(ran) GPDS(det) FFQA-RAPID GPDS FFQA-RAPID
(det)
.9 1 46.35(11.86) 45.91 46.14 30 30.1
2 8.35(1.11) 8.40 8.28 3 3
.8 1 42.83(11.7) 42.43 42.74 27 28
2 8.28(1.16) 8.46 8.28 3 3
.7 1 39.01(11 5) 38.2 38 25 25.3
2 8.23(1.15) 8.51 8 3 3
.6 1 33.3 (10.8) 32.2 32.5 21 21.3
2 8.22(1.22) 8.56 8.28 3 3
.5 1 27.0 (9.4) 23.83 24.3 16 15.9
2 7.96(1.37) 8.67 8.28 3
Wb 1 18.4 (7.25) 11.76 12.2 8 8.4
2 7.71(1.3) 8.5 8.18 3 3
Table 1. Average Sojourn Times of the Tandem Queue

We also use Example - 2 to illustrate the efficiency of FFQA-RAPID

over FFQA-GAP. The computed values are illustrated in Table 2 below along

with the computation times.

FFQA-RAPID FFQA-GAP
A = 0.5 A = ,25
average sojourn time in node 1 42.74 43.12 42.85
average sojourn time in node 2 8.28 8.22 8.26
time taken to input data 1 minute & 3 minutes 3 minutes
12 seconds
computation time 2 minutes & 7 minutes l4minutes
30 seconds

Table 2.

Computation Times of FFQA

Table 2 shows that FFQA-RAPID is faster than FFQA-GAP. It can also be seen

that when

A (incremental simulation time) decreases the accuracy of

the computed values from FFQA-GAP increases eventhough the CPU time

becomes large.

In simulating the problems hereafter, preference is given to

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Buffer Type Queueing Systems 165

FFQA-RAPID due to the time factor and only the problems that cannot be
tackled by FFQA-RAPID are simulated by FFQA-GAP.

4.2 Tandem Queue with a Delay

We consider here a tandem queue with 3 nodes and it 1is assumed
that it takes 2 time units for a commodity to move from node 2 to 3.
Furthermore, we assume that at time t=0 there are 20 commodities in node 1
and after that no arrival occurs. Thé service rates of each node are
agssumed to be 0.8,0.5 and 0.3 respectively.

In this case FFQA automatically introduces an additional node to
the flow diagram between the nodes 2 and 3 with an average service time
of 2, before the computation starts. The computed values appear in

Table 3 below.

Node Avg.sojourn time Maxi.contents
number GPDS(ran) GPDS(det) FFQA-RAPID GPDS FFQA-RAPID
1 12.64(3.14) 13.12 13.12 19 20
2 10.39(5.72) 9.12 9.12 8 8.3
3 15.84(7.0) 15.96 16 8 8.8

Table 3. Average Sojourn Time of a Tandem Queue with Delay

4.3 Loading Unloading Problem

Congider Example ~ 1. In this case one of the objectives may be to
minimize the waiting time of the freighter. So, for example one may be
interested in finding out the optimal number of barges required to
minimize the waiting time of the freighter under say, a cost constraint.
It is assumed here that the loading rate of materials into the barges is
0.8 and the unloading rate at the yard is 0.5. It is also assumed that
it takes 3 time units for the commodities to move between the nodes 2+3,
4+5, 6+7 and 7+6 in Fig. 1. For the details of the input data refer [10].

The average waiting time of the freighter is plotted in Fig. 3
against the number of barges. It can be seen from Fig. 3 that FFQA-RAPID
gives close values to that of GPDS.

4.4 A Queueing System with Feed Back

Let's consider the queueing system 1llustrated in Fig. 4 below.
Assume that the service rates of the nodes 1,2 and 3 are 0.8, 0.6and 0.4
respectively. 60% of the commodities departing from node 3 join node 2

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

166 I. M. Premachandra & H. Morimura

again and the rest depart from the system. It i1s also assumed that the
queue size in node 1 at t=0 is 50 and no arrival will occur thereafter.

The system 1is simulated using FFQA-GAP and GPDS until 60 commodities

[a 8

L

= 4

5 o FFQA-RAPID

o AT GPIS

& 16} '

w9

=

u-14_.

')

<

=12} 4

O

=z

= A

<3(10.. CIANE Y A

9

3 .
5 7 9 11 13

NUMBER OF BARGES

Fig. 3 Average Waiting Time of the Freighter

- 7N\ o 7N\ 407,
Yeox

A

Fig. 4 Queueing System with Feed Back

are served at node 3 and the output data is listed in Table 4.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Buffer Type Queueing Systems 167

Avg.sojourn time

FFQA-GAP GPDS(det)
A = ,25
average sojourn time in node 1 32.00 31.87
average sojourn time in node 2 21.93 21.89
average sojourn time in node 3 28.02 26.53

Table 4. Average Sojourn Times of a Feed Back Queue

4.5 A Complicated Network Type Queueing System

Consider the queueing network illustrated by the flow diagram 1in
Fig. 5. The percentages of commodities moved along in each direction are

indicated in the diagram. The service rates of the nodes are assumed to

ARRIVAL
RATE:=.9

ARRIVAL
RATE=.8

Fig. 5 Flow Diagram of the Network

be 0.4, 0.5, 0.5, 0.4, 0.4, 0.5, 0.3 and 0.5 respectively. The queue
sizes of the nodes 2 ~ 7 at t=0 are assumed to be 10, 8, 12, 15, 8 and 20
respectively. This example is presented here in order to illustrate the
capability of FFQA to tackle complicated network type queueing systems.
The computed results from FFQA-GAP and GPDS are shown in Table 5.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

168

1. M. Premachandra & H. Morimura

Node number Avg.sojourn time
FFQA-GAP GPDS(det)
A = .25
1 34.36 34.42
2 33.78 33.20
3 28.79 29.23
5 16.99 17.15
4 31.43 33.34
7 36.53 33.33
6 6.93 7.1
8 20.01 20.8

Table 5. Average Sojourn Times of the Network

Note that the computing order of the nodes determined by the sub
algorithm *ORDER in Appendix A is 1, 2, 3, 5, 4, 7, 6, 8.

5. A Comparison with Other Methods

In this Section, we compare FFQA with other accepted simulation
languages such as DYNAMO and SLAM II for the purpose of illustrating the
computational efficiency and the simplicity in manipulation of FFQA.

From the numerical results in Section 4 we can see that FFQA gives
reasonable approximate mean values for the queueing characteristics when
the system 18 in heavy traffic condition. Therefore, FFQA can be used
as a tool to analyse such systems.

The use of GPDS and SLAM II requires a specialized knowledge about
their block symbols and the programing terminologies. But, in case of
FFQA the data input procedure 18 very simple and therefore even a
beginner can use the package without such a preparatory training. The
other attraction in FFQA is its conversational ability.

We can view the computational process 1in FFQA as a continuous
simulation or a process in which the computation is performed on the basis
of a fluid flow model instead of a discrete simulation. Therefore we
compare the results from FFQA with that from B-DYNAMO [3] which 18 a
micréocomputer version of DYNAMO. We use the example discussed in Section

4.1 for comparison purposes and the corresponding results appear in

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Table 6.

In Table 6

Buffer Type Queueing Systems

U 41 is the arrival rate to the node 1.

169

From the

table we can see that in case of B-DYNAMO the computation time 1is less

L o1 Node Description GPDS(det) FFQA~-RAPID SLAM I1 B-DYNAMO
1 Avg.sojo.time 45.91 46.14 44 .35 47.35
.9 Maxi.contents 30 30.1 30 33
2 Avg.sojo.time 8.46 8.28 8.95 9.28
Maxi.contents 3 3 3 3.2
1 Avg.sojo.time 42.43 42.74 40.92 44.03
.8 Maxi.contents 27 28 27 30.8
2 Avg.sojo.time 8.46 8.28 8.95 9.28
Maxi.contents 3 3 3 3.2
1 Avg.sojo.time 38.2 38 36.51 39.23
.7 Maxi.contents 25 25.3 25 27.5
2 Avg.sojo.time 8.51 8 8.95 9.28
Maxi.contents 3 3 3 3.2
1 Avg.gsojo.time 32.2 32.5 30.63 32.82
.6 Maxi.contents 21 21.3 21 23.3
2 Avg.sojo.time 8.56 8.28 8.95 9.28
Maxi.contents 3 3 3 3.2
1 Avg.sojo.time 23.83 24.3 22.56 23.79
.5 Maxi.contents 16 15.9 16 17.3
2 Avg.sojo.time 8.67 8.28 8.94 9.28
Maxi.contents 3 3 3 3.2
1 Avg.sojo.time 11.76 12.2 10.74 10.73
4 Maxi.contents 8 8.4 8 8.67
2 Avg.sojo.time 8.5 8.18 8.66 8.96
Maxi.contents 3 3 2 3.2
Program input time by the keyboard * 1 minute 5 minutes 9
& 12 sec. & 30 sec. minutes
Computation time per one 2 minutes 11 25
value of @t a1 & 30 sec. minutes s econds

* In case of FFQA

input time.

Table 6.

no program is

required and

this means the data

Average Sojourn time values from different simulation languages

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

170 I. M. Premachandra & H. Morimura

than FFQA. But, One of the difficulties in using B-DYNAMO when compared
with FFQA is that since it is not designed for the purpose of simulating
queueing systems, the user has to add subprograms written in BASIC to
the main package in order to compute the required queueing
characteristics. The other difficulty is that it requires a knowledge
of systems dynamics concepts [4].

Finally, the results from FFQA are compared with SLAM II which‘is
considered to be a discrete simulator designed for the use in

microcomputers. In this case, the computation time is larger than that in

FFQA.

6. Conclusions

In this paper we proposed a simple software package based on fluid
flow approximation technique to analyse buffer type queueing systems
approximately. Queueing situations in heavy traffic condition are often
seen in many practical areas. An engineer, however, in attacking such a
practical problem may require to make some preliminary estimates in order
to decide whether a system will work or not. If the decision is still in
doubt after the crude estimates, then he may need more accurate estimates.
Therefore, a simple tool such as FFQA that could be used to analyse such
systems approximately is of practical value.

It can be seen from Table 1 ~ 6 that FFQA gives reasonable
approximate values. In addition to the rapidness of computation and its
accuracy, FFQA 1is simple to handle. Its conversational ability 1is
another advantage. Note that FFQA can be programmed on any microcomputer
such as PC-9801(528 KB) using a 8 inch or a 5 inch disk and it needs only
the operating system Ngg — BASIC.

One of the serious drawbacks of FFQA is that it cannot be used to
simulate queueing systems in light traffic conditioms.

Acknowledgement

The authors would like to express their sincere thanks for the

referees for thelr valuable comments made on this paper.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Buffer Type Queueing Systems 171

Appendix A

The main algorithm mentioned in Section 2.7
We shall define here a cycle to be the fragment of the simulation
process covered by a time interval A (= incremental simulation time).
Let CUMA(1,1) and CUMA(1,2) be the cumulative arrival to node 1
during the previous cycle and the current cycle respectively. CUMD(1i,1)
and CUMD(1,2) are the corresponding values of the cumulative departure
from node 1.

STEP 0 : Set t = 0. Set CUMA(1,1) = Q4(0) aund CuMD(i,1) = O for
1i=1,2,.... M, where Q(0) is the queue size of node 1 at t = 0 and M
is the total number of nodes. Determine the computation order of the
nodes by using the sub algorithm *ORDER (see below)

STEP 1 : Increase t by A and calculate the cumulative arrival
CUMA(1,2) and the cumulative departure CUMD(1,2) corresponding to each
node 1 as follows. This computation is dome in the order determined by
the sub algorithm *ORDER.

(1) for any initial node i, CUMA(i,2) = CUMA(1i,1) + A U 54 where U 44
is the arrival rate to the node 1.
(11) 1f we let I(1) be the input set of any node 1 (i is not an initial
node) then
CUMA(1,2) = CUMA(i,1) +) B(k) B ggPq A
keI(1i)
where
1 if C(k,L1) = 0
B(k) =
0 if c(k,1) * 0,
U gk is the service rate of node k, Pyy 18 the fraction of commodities
b 3
input from node k to 1 and C(k,1) is the value 2 CC(k, j) corresponding
=1
to the previous cycle. Here ny 1is the number of comstraints defined to
node k.
(111). for any node 1
CUMD(1,1) if C(k,1) ¢ O
CUMD(1,2) =
CUMD(1i,1) + ¥ 44 A if cC(k,1) = O
STEP 2 : calculate the areas covered by the arrival and the departure

curves with the time axis during the interval A4 . Executing the BASIC

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

172 1. M. Premachandra & H. Morimura

statements input by the user, determine the new values of the indicator
variables CC(1,3j) and then calculate
ny
c(1,2) = | cc(i,j) for 1 =1,2,....,M.
I=1
STEP 3 : obtain theset of nodes S = { h| C(h, 2)¥#0 } . With respect
to the departure processes of each node in S, induce the delay
corresponding to the comstraint satisfied at time t.
STEP 4 : set C(i,1) = C(1,2) , CUMA(i,1) = CUMA({1,2)
and CUMD(1,1) = CUMD(1,2) for 1 = 1,2, , M. If the
termination condition is not satisfied then STEP 1 is executed else STEP 5.
STEP 5 : Print out the summary report
We mentioned in Section 2 that the output of any node i {s
considered to be the input to the next immediate nodes in the flow
diagram. This implies that the computation of CUMA(1,2) and the
CUMD(1,2) of the nodes should be done in a particular order. The sub
algorithm *ORDER explained below 13 used to determine this computation

order.

Sub Algorithm *ORDER
STEP 0 : Define the matrix A = (aj §), 1 =1,2,....,M;
j=1,2,...,M where

0 if 41 =3
ajj= 1 if there is an arrow emanating from node i to j
0 if there does not exist an arrow emanating from

node {1 to j
For the sake of computation, let's call a node j as an initial node if
ajj = 0 for all i. Set R = 1.

STEP 1 : Find the set of node numbers § = { k | aj =0, Vi }.
Assign the node numbers in s' to the variables X(R), X(R+1), .00, X(IS'I)
in any order.

STEP 2 : For any k¢ S', set a4 = 0 for ¥ j. Setting agy = 0 forVj

-——will -create at least one more initial node. Let this set of initial
nodes be S8''. Aggign the node numbers in S'' to the variables
X(R+1),X(R+2),..., X(R+|S''|~1). This procedure is repeated with
respect to each of the initial nodes so created until all the elements

in A become zero.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Buffer Type Queueing Systems 173

Thus the sequence X(1),X(2),...X(M) indicates the sequential order
of the nodes according to which the computation in STEP 1 of the main
algorithm is done.

Appendix B

The Rapid Algorithm mentioned in Section 2.7

STEP 1

Let Ry be the number of constraints that uses informations about
node 1 and tij be the time at which the j-th constraint that uses
informations about node i is satisfied.

Consider node 1 first. We know that there are R; constraints that
use node 1 informations. The times tlj(j-l,Z,....,Rl) at which each
of the R} constraints are satisfied are calculated and the minimum
(B.1) t; -Min (tiys tyzs e tml)
is obtained. The ammount that can be processed until t; is 1input
to the next node that 18 node 2 in Fig. 6. For node 2, the times
tzj(jul,Z,...,Rz) at which each of the Ry constraints are satisfied
are calculated for an input within ts t; and their minimum
(B.2) t) = Min (3, tyy .-, Epp) ,
is obtained. The same procedure is then repeated to calculate tj,

* *
ths eer s tye

A NODE 1 A NODE 2 A NODE 3

=

9

[T N =

W

E

5

% *-;;’--— !‘°"'_’

© ,J¥u§ 4 %#)
& TME

Fig. 6 Flow of Commodities among the Nodes

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

174 I. M. Premachandra & H. Morimura

STEP 2
The overall minimum
(8.3) £ = Min (t], th, .eoe, ty)

is obtained and the area between the arrival and the departure processes
of each node until t* 18 calculated. The cumulative arrival and the
cumulative departure at t* are also calculated for each node and these
informations are later used in the programme as restarting conditions..

STEP 3

Ry
For each node 1(i=1,2,..., M), the quantity z cC(1,3) is
=1
Ry
calculated and the set 5 of nodes whose X CC(1,3) # 0 1s obtained.
=1
Note that for all nodes x € S, t; = t*. For nodes x€ S, the induced

*
delay corresponding to the constraint satisfied at t, is induced to
the departure process of the node concerned. The 'h:lstory of the system

until t* is neglected and the process STEP 1 STEP 3 is repeated.

References

[1] Alan B. Pritsker, A., Introduction to Simulation and SLAM II,
John Wiley and Sons, 1984.

{2] Alan B. Pritsker, A., Modeling and Analysis using Q-GERT Networks,
John Wiley and Sons, New York, 1977.

{3] Hayashi, S., B-DYNAMO user's Manual(Version 1.1 and 2.1), presented
at the 58th Conference of the Operational Research Society of Japan,
Oct 1985(in Japanese).

[4] Jay W. Forrester, Industrial Dynamics, M.I.T. Press, 1961

(5] Nakamura, Z., Cumulative Flow Graph Analysis for Work System
Improvement, Journal of Japan Industrial Management Association,
Vol.36 No.2, 1985 (in Japanese)

[6] Newell, G.F., Applications of Queueing Theory, Chapman and Hall, 1982.

[7] Premachandra, I.M., Analysis of Buffer Type Queueing Systems, Ph.D
Thesis, Tokyo Institute of Technology, December 1985.

[8) Premachandra, I.M and Morimura, H., Analysis of Buffer type Queueing
Systems, Research Reports on Information Scilences, No. B-169, Tokyo

Ins titute of Technology, July 1985.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Buffer Type Queueing Systems 175

[9] Premachandra I.M and Morimura, H. Analysis of Buffer Type Queueing
Systems: The General Approach, Research Reports on Information
Sclences No. B-171 Tokyo Institute of Technology, September 1985.

[10] , FFQA-RAPID and FF(QA-GAP (manual), Research Reports on
Information Sciences, No. B-170, Tokyo Institute of Technology,
September 1985.

[11] , Modeling and Analysis of a Queueing System Existing in
a Bank, Journal of the Operations Research Society of Japan, Vol.28
No.2, 1985.

[12]) Reference Manual - GPDS (MELCOM, NM-SRO0-69A<73A0>)

[13]) SLAM II PC Version User's Mamnual, Pritsker and Associates, Inc.

[l4] SLAM 1II Quick Reference Manual, Pritsker and Associates, Inc.

Hidenori MORIMURA: Department of
Information Science,
Tokyo Institute of Technology,
2-12-1, Oh-okayama, Meguro-ku,
Tokyo 152, Japan.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

