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Abstract 
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Inflnite boxes 0, 1,2, ...... are arranged in a row in this order. An evader starts from a certain box and 

chooses at each period one of three decisions: to stay in the current box and to move to the nearest box either 

to the right or to the left. A searcher looks in anyone box except box ° which is a safe region (goal) for the evader 

because it is unsearchable. Two types of cond~tional detection probability are given, that is, one is used in the case 

that the evader stays and another is used in the case that he moves. It is assumed that the searcher is informed of 

the evader's position at the end of each period. The evader maximizes the probability that he is not detected for 

given periods and the searcher minimizes it. This two-person zero-sum sequential game is solved recursively. The 

evader's optimal strategy indicates to run into the goal as scon as possible if his position is near the goal, to go ahead 

or stay if he is somewhat away from the goal, and to go back with a positive probability if he is far away from the 

goal. 

I . I ntroduct ion 

In this paper we consider the following evasion-search problems with a 

goal, formulate them as a discrete-time two-person zero-sum sequential game 

and solve it recursively. 

(i) Displaced persons, who have been burned out in a war, wish to move toward 

their safe region with avoiding their enemy. Which of the following 

three actions should they choose? 

(a) They should run into the safe region as soon as possible. 

(b) They should stay in the current place because the movement 

quickens detection. 

(c) They should go back for putting the enemy off the scent and wait 
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the end of the war. 

(u) A transport ship, which was detected by the enemy in a war, intends to 

run away to the safe port in his own country. How should he run away? 

(Ui) How should the pursuit for the criminal intending to run away into his 

safe region be carried out? 

The study in the area of the discrete-time sequential evasion-search 

game has begun recently and contains only a few papers. In the Washburn's 

model [5], both players can move with their own free wills, but the searcher 

suffers a travelling cost as well as a searching cost. The payoff is the 

expected total cost to detect the evader. Under the assumption of a noisy 

searcher and perfect detection, he obtains the optimal strategy for the 

searcher. In the Nakai's model [2], the evader can go ahead as he likes~ but 

cannot go back. The payoff is the expected total reward (reward minus search 

cost) for the searcher in a given length of periods. Under the assumption of 

a noisy evader, he obtains the optimal strategies. In the Lee's model [1], 

the evader is noisy and can move to only one of the neighboring boxes of the 

current box at each period. There is a safe region (goal) for the evader. 

The payoff is the number of detections before the evader runs into the goal. 

Under the assumption of perfect detection, he obtains the optimal strategies 

for both players. The models of Ruckle [3] and Stewart [4] are sequential in 

the real development of games, but are one-stage games in the mathematical 

treatment. 

2. Model And Formulation 

Infinite boxes 0,1,2, are arranged in a ~ow in this order. The evader 

(player I) states from some box and when he is in box n (~ 0), he must choose 

one of the three decisions: (i) to stay in box n, (u) to go to ahead to box 

(n-l) and (Ui) to go back to box (n+l). The searcher (player IT) can at each 

period look in anyone box except box O. Since box 0 is unsearchable, it is 

a safe region for the evader and is called the "goal". When the evader has 

come from the neighboring box at the preceding period, let a(O<a<l) be the 

conditional detection probability given that the current position of the 

evader is looked. When the evader stays in the same box from the preovious 

period, let S(O<S<l) be the conditional detection probability. Note that a 

and S are independent of the number of the box. We assume that the evader is 

noisy, that is, the searcher is informed of the evarder's position at the end 

of each period. The payoff is given by the probability that the evader is not 
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detected in the given K(~l) periods. Player I (IT) intends to maximize 

(minimize) it. 
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The state of the process can be denoted by a pair (k,n) where k is the 

number of the remaining periods and n is the current position of the evader. 

Let v(k,n) be the game value of the sequential game which starts from a 

state(k,n). Since a,S < 1, it is evident that O<v(k,n)'::'l for any k,n. 

Moreover by the definition of v(k,n), v(O,n)=v(k,O)=l for any k.n: If the 

evader is in box 1, he can escape from the searcher by running away into box 

o and therefore v(k,l)=l for any k. When the state is (k,n) (k~l, n~2), 

player I has three pure strategies: Hi ( to hide in box i) : i=n-l, n, n+l, 

and player IT has infinite numbers of pure strategies : L. (to look in box j) 
J 

: j=1,2,···. But it is useless to look in a box which does not contain the 

evader, that is, pure stragegies L. (j\'n-l,n, n+l) are dominated. If the 
J 

evader hides in box n-l and the searcher looks in the same box, with proba-

bility a the detection occurs and the process stops with the payoff 0, but 

with probability I-a the evader is not detected and the process transfers to 

the next period at which the state is 0:-1, n-l) and therefor in this case 

the payoff for the evader is given by (l-a)v(k-l,n-l). By the similar con­

siderations, we can obtain the followi.ng recurrent relation. 

L 
n-l 

L Ln+l n 
H

n
_

l [ 
(I-a) V (k-l "n-l) v(k-l,n-l) v(k-l,n-l) 

(2.1) v(k,n)=Val H V(k-l,n) (l-s)v(k-l,n) V(k-l.n) J n 
Hn+l v(k-l,n+l) v(k-l,n+l) (l-a)v(k-l,n+l) 

(k=1,2,3, .. ··; n=2,3,4,"') 

where Val denotes the game value. Let l'(k,n) be the matrix game in the right­

hand side of the equation (2.1). 

3. Optimal solution 

The following theorem states that t~he increase of the number of the 

remaining periods k ( or the evader's position n or conditional detection 

probabilities a,S) is of no benefit to the evader. 

Theorem I. The game value v(k,n) is nonincreasing in k, n, a and S. 

Proof: The proof on k. By induction on k, we prove that v(k,n).:y(k+l,n) 

for any n. The case of k=O is clear since v(O,n)=l and v(l,n).::.l. Assume that 

the assertion is satisfied for k=0,1,2,'···,t-l. Comparing each component of 

r(t,n) with that of r(t+l,n), the former is larger by the assumption of 
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induction and therefore v(~,n)~(~+l,n) for any n which states that the 

assertion is satisfied for k=~. Therefore the proof on k is completed. 

Similarly by induction on k we can prove that v(k,n)~(k.n+l) for any n. 

Finally we prove the nonincreasing property in ~ and S by induction on n. 

The case of k=O is clear since v(O.n)=l for any ~ and S. Assume that v(k. 

n) is nonincreasing in ~ and S for k=0.1.2.···,~-1. Each component of r(~,n) 

is nonincreasing in ~ and S and therefore the assertion is satisfied for 

(q.e.d. ) 

As a matter of convenience, in the below discussion we often use a 

notation w(n)=v-l(k-l,n) for fixed k. 

The following theorem expresses the value and the optimal strategies at 

the first period of the sequential game starting from the state (k.n) by 

values of (k-l)-period sequential games. Hence the solution of the sequential 

game with any number of periods can be calculated recurrently. 

Theorem 2. The optimal strategy x*(y*) for player I (ll) at the first 

period and the value of the sequential game starting from the state (k.n) 

(k~1.n~2) are given as follows: 

(i) If W(n-l)~(l-~)w(n). then 

(3.1) x*=y*= ~ 1,0,0) and V (k,n)= (l-a)v(k-l.n-l). 

(ft) If w(n-l»(l-a)w(n) and Sw(n-l)+aw(n)~(a+S-aS)w(n+l). then 

(3.2) 
( Sw(n-l) aw(n) 

0) 
x*= 

SW(n-l}+aw (n) Sw(n-l)+aW(n) 

( w(n)-(l-S)w(n-l) w(n-l)- (l-"a)w(n) 
, 0) y*= 

Sw(n-l)+aw(n) Sw(n-l)+aw(n) 
(3.3) 

(3.4) v(k.n) = ------
Sw(n-l)+aw(n) 

(:fii..) If w(n-l»(l-a)w(n) and Bw(n-1)+aw(n»(a+S-aB)w(n+1) , then 

(3.5) x*-
( 

Sw(n-l) aw(n) Sw (n+l) ) 

Sw(n-l)+aw(n)+Sw(nfl)'Sw(n-l)+aW(n)+SW(nfl) • Bw(n-l)+aw(n)+Sw(ntl) 
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<
aW(n)+BW(n+I)-(a+B-aB)W(n-l) w(n-1)+W(n+I)-(2-a)w(n) 

, , 
a{Bw(n-1)+an(n)+Bw(n+1)} Bw(n-1)+aw(n)+Bw(n+l) 

Bw(n-1)+aw(Il)-(a+B-aB)w(n+1) ) 

a{Bw(n-1)+o.w(n)+Bw(n+1)} 

(3.7) v(k,n)= --------
Bw(n-1)+aw(n)+Bw(n+1) 

Proof: In case (i), the result is clear since the matrix game r(k,n) 

has a saddle point at (I, I)-element. In case (ft) , Xi*~O( =1,2,3), 
3 3 
~ x.*=l and E y.*=l are clear. u}(n)-(1-B)w(n-1):w(n-1)w(n)x 

i=l 1.- j=l J 

* [v(n-l)-(I-B)v(n»)>O by Theorem 1 and B>O, and hence YI >0. Also w(n-l)-
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(l-a)w(n)=w(n-l)w(n) [v(k-l,n)-(I-a)v(k-l,n-l»)>O by the assumption, and hence 

* Y2 >0. Next by simple calculation, we can check [x*r(k,n»)1=[x*f(k,n»)2= 

v(k,n) and [x*r(k,n»)3=(a+B)/[BW(n-I)+a!AJ(n»)>v(k,n). Similarly we can check 

* [r(k,n)Y*)1=[r(k,n)Y*J 2=v(k,n) and [r(k,n)y )3=v(k-l,n+1)2.v(k,n). Hence the 

solution is give~by (3.2), (3.3) and (3.4). In case (Di), x.*>O ( =1,2,3), 
~ 3 1.-

L x.*=l and l YZ*=l are clear. By the assumption and Theorem 1, aw(n)+ 
i=l 1.- j=l 

Bw(n+l)-(a+B-aB)w(n-l»{a+B(2-a)}X{w(n+l)-w(n-l)}~0, and hence Yl*>O. Also 

* * W(n-l)+w(n+l)-(2_a)W(lz)>w(n+I)-w(n)~0 and hence Y2 >0. Y
3 

>0 is clear by the 

assumption. Next by simple calculation, we can check [x*r(k,n)]j=[r(k,n)Y*)i = 

v(k,n) for any i and j. Hence the solution is given by (3.5), (3.6) and (3.7). 

(q.e.d.) 

Note that by the property of the problem the solution in the case of n=l 

is given by x*=<l,O,O» y* is arbitrary, and v(k,l)=l. 

The assumption of the case (i) in Theorem 2 states that even if the 

searcher looks in box (n-l), moving to box (n-l) is not worse than staying in 

box n (of course, than moving to box (n+l». On the other hand, if the 

searcher looks in box n or n+l, it is clear that moving to box (n-l) is better. 

Hence the r~sult of the case (i) is reasonable. 

In the following lemma, the game value v(k,n) is shown to be convex in n. 

Lemma I. v(k,n+l)/v(k,n) is nondecreasing in n for any k. 

Proof: By induction on k. The case of k=O is clear since v(O,n)=1 for 

any n. Assume that v(k,n+l)/v(k,n) is nondecreasing in n for k=0,l,2,···,~. 
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We show that the assertion is satisfied for k=t+l. There are nine cases 

according to types (in Theorem 2) of the game values v(t+l,n) and V(t+l,n+l). 

For example, if v(t+l,n) and v(t+l,n+l) are given by cases (li) and (Hi) in 

Theorem respectively, 

v(Hl,n+l) cx+2 B-cxB 

[ 

cx+BvU,n)/v(t,n-l) ] 

B+cxv(t,n)/v(t,n+l)+Bv(t,n)/v(t,n+2) v(Hl,n) cx+B-cxB 

which is nondecreasing in n by the assumption of induction. Similarly in 

other eight cases, we can check that v(t+l,n+l)/v(t+l,n) is nondecreasing in 

n. Hence the proof is completed. (q.e.d. ) 

In the following lemma, we clarify the meanings of conditions of three 

cases in Theorem 2. 

Lemma 2. For a fixed k, we put 

(3.8) nl*=max{nlw(n-l)~(l-CX)W(n)} 

(3.9) n2*=max{nlcxw(n-l)+CXW(n)~(CX+B-CXB)w(n+l)}. 

For 

(i) 

(li) 

(Hi) 

any n (>2), 

n{:lnl ~ ~ W(n-l){: }(l-CX)W~n) 
n{:}2*~ BW(n-l)+cxW(n){ :}(CX+B-CXB)W(n+l) 

O<n *<n *<00. 
-1-2-

Proof: By Lemma 1, w(n-l)/w(n)=v(k-l,n)/v(k-l,n-l) is nondecreasing in 

n for any k, and hence the result of case (i) is clear. Similarly [Bw(n-l)+ 

cxw(n)]/w(n+l)=Bv(k-l,n+l)/v(k-l,n-l)+cxv(k-l,n+l)/v(k-l,n) is nondecreasing in 

n for any k, and hence the result of case (li) is clear. To prove (Hi), we 

show that if w(n-l)~(l-cx)w(n), then Bw(n-l)+cxw(n)~(cx+B-cxB)w(n+l). 

Bw(n-l)+cxw(n) w(n) 

[ 
w(n-l) ] 

B --- +ex ~cx+B-cxB 

w(n) w(n+l) w~n+l) 

by the assumption and Theorem 1. (q.e.d.) 

Taking Theorem 2 and Lemma 2 into consideration, we can obtain the 

following theorem without proof. 

Theorem 2. Define nl* and n2* by (3.8) and (3.9) respectively. 

The solution of the sequential game starting from the state (k,n) is given as 

follows: 

(i) If 2~n~nl*' then the solution is given by (2). 
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(ii) If nl*<n2n2*' then the solution is given by (3.2), (3.3) and (3.4). 

(ill.) If n 2*<n, then the solution is given by (3.5), (3.6) and (3.7). 

When the evader is near the goal, he must go ahead with probability 1. 

When he is somewhat away from the goal, he must go ahead or stay, but never 

go back. When he is far away from the goal, he must go back with a positive 

probability, and therefore his optimal stragegy is completely mixed. Namely, 

the further the evader's position is away from the goal, the more complicated 

his actions become, and it is optimal to wait the end of the process with 

putting the searcher off the scent. On the other hand, the searcher must look 

in the box for which the evader's optimal strategy allocates a positive 

probability. The author cannot clarify the more concrete meaning of the 

probability in optimal strategies (3.2), (3.3), (3.5) and (3.6). 

Corollary I. If n>k (=1,2",,), then the solution is given as follows: 

(3.10) 

(3.11) 

x*=y*= (_-:a:--_l --:-
2a-l +f3- l 

v(k,n)=ak 

where a=(a+2f3-af3)/(a+2f3). 

-1 
13 

-1 

a_l -1) 
2a +J.l 

Proof: By induction on k. In the case of k=l, we can check that the 

case (ill.) in Theorem 2 occurs and therefore the results can be derived from 

(3.5), (3.6) and (3.7). Assume that the results (3.10) and (3.11) are 

satisfied for k=1,2,··· ,lI.. For any n(>,Hl), v(i,n)-(l-a)V(i,n-l)=aai > 0 and 

f3v- l (i,n-l)+av-l (i,n)-(a+f3-af3)v-l (i,n+l)=af3ai >O, and hence the case (ill.) in 

Theorem 2 occurs. Then the results can be derived from (3.5), (3.6) and (3.7). 

(q.e.d. ) 

When the evader's position n is la:cger than the number k of the remain­

ing periods, the evader cannot reach to the goal during k periods even if he 

runs into the goal as soon as possible. Therefore he gives up running into 

the goal and hides near the current pos:ltion optimally as if the goal does 

not exist. Namely, he hides in his nearest boxes with the rates proportional 

to the inverses of the conditional dete(:tion probabilities. On the other hand, 

the searcher's optimal strategy is to look in those boxes with the same rates. 

4. Discussion 

We consider some modifications of our model. 
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(i) Assume that when the evader is in box n, he can move to one of the (m
l 

+m2+l) boxes numbered n-ml,···n-l, n, n+l···, and n+m2• Also in this 

case, it seems that the fundamental property of our model holds still. 

Namely, near the goal the evader must run into the goal at full speed 

and in the very far position from the goal he. must behave as if there is 

no goal. 

(u) When the conditional detection probability depends on the number of the 

looked box, it seems that with only slight modification our result 

remains valid. 

(lli) The following two modifications of our model are valuable open problems. 

a. Introducing the detection reward and the search cost, we define the 

payoff as the expected total loss (cost minus reward) until the 

searcher stops the search. 

b. Assume that the evader is silent, that is, the searcher is not 

informed of the evader's position at each period. The model is a 

sequential game with incomplete information. 
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