
Journal of the Operations Research 
Society of Japan 

Vol. 29, No. I, March 1986 

APPROXIMATION OF A TESSELLATION OF 

THE PLANE BY A VORONOI DIAGRAM 

Atsuo Suzuki 
University of Tokyo 

Masao Iri 
University of Tokyo 

(Received September 18, 1985: Revised January 17, 1986) 

Abstract In this paper the problem of obtaining the Voronoi diagram which approximates a given tessellation 

of the plane is formulated as the optimization problem, where the objective function is the discrepancy of the 

Voronoi diagram and the given tessellation. The objective function is generally non-convex and nondifferentiable, 

so we adopt the primitive descent algorithm and its variants as a solution algorithm. Of course, we have to be 

content with the locally minimum solutions. However the results of the computational examples suggest that 

satisfactory good solutions can be obtained by our algorithm. This problem includes the problem to restore the 

generators from a given Voronoi diagram (Le., the inverse problem of constructing a Voronoi diagram from the 

given points) when the given diagram is itself a Voronoi diagram. We can get the approximate position of the 

generators from a given Voronoi diagram in practical timl:; it take~ db out 10 s to restore the generators from a 

Voronoi diagram generated from thirty-two points on a computer of speed about 17 MIPS. Two other practical 

examples are presented where our algorithm is efficient, one being a problem in ecology and the other being one in 

urban planning. We can get the Voronoi diagrams which approximate the given tessellations l which have 32 regions 

and are defmed by 172 points in the former example, 11 regions and 192 points in the latter example) within 10s 

in these two examples on the same computer. 

1. Introduction 

The Voronoi diagram has been recognized as a concept of fundamental 

importance in many kinds of problems in geometry, urban planning, 

environmental control, physics, biology, ecology, numerical analysis, 

etc. [8]. The computational problem of constructing the Voronoi diagram 

in the plane has been one of the main subjects of computational geometry, 

and many algorithms have been proposed. Recently, our research group 

developed a practical fast algorithm to construct a Voronoi diagram for 11 

points in linear time, i.e., O(n) on the average [9]. [10], although its 
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70 A. Suzuki & M. Iri 

worst-case time complexity o(n2) is inferior to the theoretically optimal 

complexity O(n log n) of divide-and-conquer type algorithms. 

This fast algorithm has made it possible to solve a class of 

location problems numerically within a practicable time, which had been 

thought to be far from being practically solvable because it needs many 

subroutine calls for the Voronoi diagram construction (7). We call such 

a class of location problems ,geographical optimization problems. 

In (7), the problem was formulated and solved as a most common 

geographical optimization problem, which is to obtain the locations of 

facilities in such a way that the total cost of people who enjoy the 

service from the facilities is minimized under the assumption that people 

should always access the nearest facility, i.e., the problem of 

minimizing 

F(XI, .. ·x )= I f(min 11 x-x .11 )<p (x) dNx 
n . ~ 

~ 

where x. 
~ 

(i=l, ..• ,n) is the locations of facilities, and 11·11 represents 

the Euclidean distance, f is the function repersenting the relation 

between distance and cost, and cp (x) is the function representing the 

population density. 

In this paper, we formulate another type of geographical 

optimization problem, i.e., the problem of obtaining the Voronoi diagram 

which best approximates the given tessellation of the bounded subset of 

RN as the minimization problem with the discrepancy between the given 

tessellation and the Voronoi diagram as the objective function. We 

propose a method to get a solution -- a method which belongs to a class 

of techniques we call the geographical optimization method. Computational 

results are shown and discussions are given. 

The first case in which our method should be efficient is that the 

given diagram is itself known a priori to be a Voronoi diagram. The 

problem is to restore the generators from the given Voronoi diagram, that 

is, the inverse problem of cons truc ting the Voronoi diagram from the 

given points. For this problem itself, geometrical approaches have been 

proposed as will be shown in section 2. If the exact Voronoi diagram 

were given, we could determine the position of the generators by such an 

elementary geometrical method. However, such a situation is unrealistic. 

Even if theoretical consideration tells us that the diagram which appears 

in a phenomenon should be a Voronoi diagram, the error in observation 

process must perturb the original diagram. Therefore, the geometrical 

method would always tell us that the diagram is not the Voronoi, i.e., it 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Approximation by Voronoi Diagram 

Fig. 1. Territories formed by Tilapia mossambica [13] 

would give us no information in almost every case. However the method 

proposed in this paper always tells us at least approximate positions of 

the generators. Figure 1 is an example of this case. It is taken from 

[13, Fig. 1], which is a schematic diagram of the photograph in [3, 

Fig. 1]. The latter is the photograph of the sand pattern formed by male 

mouth breeder fish, Tilapia mossambicc!, kept in a large outdoor pool with 

an initially uniform sand floor. Ti Iapia mossambica excavates breeding 

pits by spitting sand away from the pit center toward his neighbors, then 

reciprocal spitting results in sand parapets, which are conspicuous 

territorial boundaries. These facts sc.ggest that this diagram might be a 

Voronoi diagram. 

The second case is the problem of voting precincts and school 

districts. 

access the 

In these problems, all the people living in an area have to 

facility (polling place or school) determined by 

administrative condition for enjoying the service. Therefore, if ea eh 

voting precinct (school district) is the Voronoi region belonging to the 

polling place (school), these voting precincts (school districts) are 

equitable because people enjoy the service from the nearest facility. 

The discrepancy between the present voting precincts (school districts) 

and the Voronoi diagram may be an index of the equitableness in that 

sense [8]. Figure 2 is the junior high school districts of TSllkuba in 

Japan. 
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72 A. Suzuki & M. Iri 

Fig. 2. Junior high school districts in Tsukuba 

Judging from these examples. it is worth while in practice to 

consider the Voronoi diagram approximating a given tessellation. We 

apply our geographical optimization method to these examples in section 

5. 

2. A Geometrical Method to Restore the Generators from the Given Voronoi 

Di aqram 

First we show the formal definition of the Voronoi diagram. P(x) 
N denotes a point in the ~dimensional Euclidean space R , where x is an 

I 2 N 
~dimensional vector (x. X ••••• x ). 

P2(x2) • ... , Pn(xn) given in RN. 

For n distinct points PI (xl)' 

(2.1) V.= n hERNlllx-x.II<llx-x./I} 
~ .. ../.. ~ ] 

.7 :.7T~ N 
is the set of points in R which are closer to P . (x.) than to any other 

~ ~ 

P j Vc j) (Hi), where 11-11 denotes the Euclidean distance . Vi fS a convex 

V V i V l' 2'~:" n par-
tition RN into n convex regions in the sense that we have 

set because it is the intersection of half spaces. 

(2.2) N 
U V.=R and V. nv .=<1> (ilj) , 

i=l ~ ~ ] 

n 
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Approximation by Voronoi Diagram 

Fig. 3. An example of the Voronoi diagram (with 50 generators) 

where A denotes the topological closure of set A. The partition 

determines in an obvious manner a polyhedral complex, which is called the 

Voronoi diagram for the given 17 points p. (x.)'s. This partition is also 
1. 1. 

called the Dirichlet tessellation or the Thiessen tessellation [5], [12], 

[14], [15]. We sometimes call Pi(x) (i=l, ... ,n) generators. Each V. 
1 

(i=l, ... ,n) is a kind of "territory" of point Pi(x
i

) (i=l, ... ,n) and is 

called the Voronoi region of Pi (x) (i = 1, •.. ,n ) • In the two- dimensional 

case, N=2, the vertices of the polygonal Voronoi region are called the 

Voronoi points and the edges the Voronoi edges. Figure 3 is an example 

of the Voronoi diagram with n=50 generators. 

It is easy to obtain the generators from the given Voronoi diagram 

in the two-dimensional case by purely geometrical method [8, p. 100] . 

This method is based on the geometrical property of the Voronoi diagram 

given below: In Fig. 4, P
1

, P
2 

and P3 are generators; Q
1 

is a Voronoi 

point which is the circumcenter of 1'1 P 1 P 2P 3' Q2' Q3 and Q4 are the 

neighboring Voronoi points. Let 

LQ
2

Q
1
Q

3 
= Cl 

then 

L P 1 P 3P 2 IT-Cl 

and from the theorem of the angle at clrcumference 

LP 1
Q1Q4 =LP2

Q1Q4 = IT-Cl. 

Therefore, if we are given an exact Voronoi diagram, a generator can be 

determined as the intersection of rays such as r 1 and r 2 in Fig. .5 
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74 A. Suzuki & M. Iri 

Fig. 4. PropertLes of the Voronoi diagram 

(P l' P 2 ,P 3 : generators; Ql' QZ' Q3' Q4 
Voronoi points) 

Fig. 5. The geometrical method to obtain the generators 

from the Voronoi diagram 

emanating from the endpoints of a Voronoi edge, for example, Q
1 

and Q4. 

Once the generator P
1 

of a Voronoi region V
1 

is obtained, we can get the 

generators of the Voronoi regions which share a Voronoi edge in common 

with V 1 as the mirror images of P 1 with respect to the Voronoi edges 

bounding V
1

. Then, by repeating this procedure, all the generators can 

be determined --- at least in principle. F,urthermore, it is proved in 

[2) that a proper convex plane tessellation, all of whose vertices have 

degree 3, is the Voronoi diagram if and only if all such rays as ri' r
2 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Approxi1'/1lltion by Voronoi Diagram 

Fig. 6. A necessary and sufficient condition for a tessellation on the 

plane to be a Voronoi diagram 

and r 3 shown in Fig. 6 have a point in common for each region. Using 

this condition, we can determine whether a given tessellation is the 

Voronoi diagram or not. However, in practical situations, we would 

hardly have a chance to be given an exact Voronoi diagram. Even if the 

diagram is known to be the Voronoi diagram from the theoretical point of 

view, the errors in observation process would perturb the shape of the 

original diagram. Thus in practical situations, nothing can be obtained 

from the geometrical method explained above. 

3. Problem Formulation and a Solution Algorithm 

Let Pi (xi) (i=l, ••• ,n) bethegene~rators of a Voronoi diagram and 

<jl (x) be a positive, finite-valued and smooth function defined on a 

bounded subset UA. (A.nA.=0 (ifj)) of the N-dimensional Euclidean space 
] ~ ] 

RN. Intuitively, <jl(x) is thought to represent a population density in 

practical situations. Our objective function is the discrepancy 

F(xl,· .. ,x )= L J <jl(x)dNx 
n i"h v.n A. 

~ ] 

(3.1) 

between the given tessellation {A.} .nl of the bounded subset of RN, and 
] J= 

the Voronoi diagram {Vi}i~l generated by Pi (xi) (i=l, ... ,n), the 

discrepancy being measured with <jl(x) as the weighting function. Before 
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76 A. Suzuki & M. Iri 

entering into the discussion of the solution algorithm, we should make 

some observation on the properties of the objective function F of (3.1). 

F qua function of the Nn vector X: 

x-(" ')' - x l ,x2 ,···,xn 
is generally non-convex, and has nondifferentiable points. In fact, it 

has a local minimum which is not the global minimum, such as shown in 

Fig. 7. In Fig. 7. {A.1.~1 is a Voronoi diagram so that the minimum J J- _ _ _ 

value of F should be o. However, if X= (x i .... ,x~)' be the exact solution 

constituted from the coordinates of P .(x.)'s generating the Voronoi 
~ ~ 

diagram, and if we put x=(xi'··.x~)', where xZ=xm' xm=xZ' and xi=xi 
(j.I-Z,m) (A

Z 
is not adjacent to Am)' then F is one of the local minima 

which is not global minimum because F is not equal to 0 and any small 

change of X increases the discrepancy. Figure 8 shows one of the typical 

cases of nondifferentiable points of F (see the legenda of the Figure). 

Next we note that the minimization <If F is equivalent LO the 

maximization problem of 

Fig. 7. An example of local minima of F 

(Shaded areas represent the discrepancy.) 

It is easy to show that 
n n n 

U (V.nA.)=U {( U V.)nA.}=U{(U A.-V.)nA.} 
i,j ~ J j=l i:i#j ~ J j=l i=l ~ J J 

Nj 
n n 
UA.- U (V.nA.). 

j=l J j=l J J 
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A. 
~ Vi x~ 

"tt:.' --x~ __ _ 

/' --,: .... ----

A. V. 
J J 

Fig. 8. An example of nondifferentiab1e pOints of F 

If x. movps toward x'., the partial derivative of F with respect 
1. 1. 

to x. changes discontinuously at X'~ • 
1. 1. 

Thus, we have 

(3.2) F(X1 , .. ·,Xn )=I n <P(X)dNx-j' I <p(x)dNx. 

The 

and 

UA. 1.-1 V.nA. 
j=l ] 1. 1. 

first term of (3.2) is the total measure of U A . which is constant 
] n 

the second is F 1 , the coincidence of {Ai}i~l and {Vi}i=l' 

Since no general optimization algorithm is available at present 

which works for such functions better than a most primitive class of 

descent methods, we have to resort to a variant of primitive descent 

algorithms. We also have to be content with one of local minima. Thus 

we shall investigate the algorithms of the following type: 

[Algorithm) Starting with a given initial guess X (0), repeat 

(1)-(3) forv=0,1,2, ... until some stopping criterion is satisfied. 

(1) Search direction:--- Compute the gradient 'IF (x(V» of F at the V-th 

approximate solution x(V). Then determine the search direction d(V) 

using VF(X(v» and some other auxiliary quantities if we want. 

(2) Line search:--- Determine ~(v) (up to a certain degree of 

approximation) such that 

F(X(v)+a (v) d(v»= min F(X(\I)+exd('J». 
ex 

(3) New approximation:--- Set 

x(v+1) =X(v) +w~ (\I) i\l) . 

Here, w is an acceleration factor to avoid undesirable stagnation at 

nondifferentiab1e points (6), [11]. 

There are a number of variants of the algorithm of the above type with 

different choices of the search direction in (1), of the acceleration 

factor in (3) and of the stopping rule.. We have tested several variants 

as will be described in section 5. 
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4. Calculation of the Partial Derivatives 

Since the objective function in (3.1) is not familiar in form, it 

may not be useless to explicitly ~rite down its partial derivatives (the 

gradient and the Hessian). In so doing, we adopt the tensor notation in 

RN in order to keep the geometrical meanings of the relevant expressions 
N 

as clear as possible. Thus, we denote by gAK the metric tensor in Rand 

adopt Einstein's summation convention. For example, the inner product of 

two vectors x, y in RN is expressed as 

K ANN 
(4.1) (x,y)= gAK x y (= L L gAKXKy~). 

K=l A=l 
We need notation for the Voronoi diagram {V) .n1 and the given 

~ ~= 

tessellation {A) '~1 • The (N-l)-dimensional face bounding two adjacent 
] ]-

Voronoi regions V. and V . is denoted by 
~ ] 

(4.2) W .. ='dv.nav. 
~] ~ ] 

and the intersection of Wij or Wji and Ai by 

(4.3) L. .=W .. n A. 
~ ,] ~] ~ 

(see Fig. 9). L .. is of essential importance when we calculate the 
~,] 

partial derivatives because F varies as L. .' s move. It is easily shown 
~ ,J 

that L. .=0 when W .. =0 or 
~.] ~.J 

v. nA.=0. 
~ ~ 

The distance between two generators 

x. and x. will be denoted 
~ .J 

by 

(4.4) a .. 9Ix.-x.ll. 
~.J ~ ] 

The partial derivative of the F of (3.1) with respect to xi is due 

to the varia tion of the regions Vi n Aj U:/j, W i/0) . 

A 

Fig. 9. Components of {Vi} and {~} 
boundary of V. and V. (W.·) 

~ ]~] 

boundary of ~ and Aj 

(Shaded areas represent the discrepancy.) 
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(4.5) f 
1 K K N-l 

. L { -- g (x .-x )4>(x)d x 
..J.d. Cl •• AK ~ 

]:W .. TYI L .. ~] 
~] ~ ,] 

dX~ 
~ 

f 
1 K K N-l } 

- -- Cl (x .-x )4>(x)d x. 
Cl.. -)'K ~ 

L. . ~] 
],~ 

The equation (4.5) can be rewritten into the form, 

dF 
-\= 

dX. 
~ 

(4.6) 
\ 1 K -K K -K L -- g, {].I(L . . )(x.-x . . )-].I(L . . )(x.-x . . )}, 

j:W. j0 Clij AK ~,] ~ ~,] ],~ ~ ],~ 

where ].I (L. .) =I 
~,] L 

i,j 

~] 

<P(x)dN-lx is the "length" of L .. and 
~,] 

-K r K N-l 
X .• = x 4>(x)d x/].I(L .. ) 
~']JL.. ~,] 

is the "centroid" of L. ., each defined 
~,] 

~,] 

with respect to the weight q,(x). 

The second derivatives of F may be calculated in a similar vein but 

with more complicated manipulation of formulas as follows. (See Appendix 

for detailed derivation.) 

(4.7) 

where 

(4.8) 

(4.9) 

ax~ax~ 
] ~ 

o 

1 N-l 

(otherwise) , 

--g 4>(x)d x, 
a.. AK 

L. . ~] 
~,] 

"k f 1 v v ].1].1 N-l G~] = - -3-g, (x.-x)g (x.-x.)q,(x)d X 
AK AV ~ K].I ~ ] 

L .. Cl .. 
~,] ~J 

I 1 v v ].1].1 N-l + ---3-g\ (x.-x)g (x.-x.)q,(x)d x 
L .. Cl.. v ~ K].I ~ ] 
J,~ ~] 

+f ~3' (x~_xV)g (x].l_x].l)~(x~_x~)dN-lx 
AV ~ K].I k axS ] ~ 

L .. Cl .. 
~,] ~] 

-j ~3 (x~_xV)g (xk].l-x].l)~(X~-X~)dN-lx 
AV ~ K].I as] ~ 

L .. Cl.. X 
],~ ~] 

79 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



80 

(4.10) 

+J 
aL. . 
~,J 

A. Suzuki & M. Iri 

1 1 v v ].J].J N-Z 
Z 8( ) g, (x.-x)g (xk-x )~(x)d x tan x AV ~ K].J 

Cl •• 
~J 

J 
1 1 V v ].J].J N-Z 

- ---Z- 8( )gA (x.-x)g (xk-x )~(x)d x, 
aL. . Cl. • tan x v ~ K].J 
J,~ ~J 

J 
1 v v 

- ----g (x .-x ) 
L nav Cl •• AV ~ 
j,i k ~J 

The 8(x) in (4.9) is the angle between the hyperplane containing W
ij 

and 

that containing AinAj at each point x on aL .. , and the 8(x) in (4.10) 
~,J 

is 

5. Numerical Examples 

In the following numerical examples we deal with the two-dimensional 

case (N:Z) with metric tensor 

gAK = oAK (A,K=l,Z) 

where the density function ~ (x) is equal to 1 in 

outside it. 

UA and vanishes 
j 

We performed a number of experimental computations with two 

different kinds of search directions using various acceleration factors 

in §5.1 and §5.Z. As the simpler search direction aC V
), we took the 

direction of steepest descent (abbreviated as S): 

(5.1) 

In the terminology 0 E tensor analysis, d (v) is a contravariant vec tor 

whereas VF(X(v» is a covariant vector. Hence, the steepest descent 

direction does not have an invariant meaning under the 2n-dimensional 

affine transformation and that even under the rescaling of coordinate 

axes in RZ. We also investigated a more sophisticated direction 

(abbreviated as M): 

(5.Z) 
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Approxirruztion by Voronoi Diagram 81 

which is obtained by modifying the steepest descent direction with the 

following approximation H of the Hessi.an (2nx2n matrix) of F. Since the 

exact Hessian (see (4.7) is too complicated to incorporate in the 

iteration process, we adopted as the approximate Hessian 

L (I1j+u!i). 
·.w #0 AK AK 
J. ij 

(5.3) 

It is numerically not a good approximation, but is a symmetric and 

positive-definite covariant tensor of valence 2, having the same 

tensorial character as the exact Hessian. Therefore, descent direction 

(5.2) is invariant under the 2-dimensional rescaling. 

It is difficult to compare theoret:ically these two kinds of descent 

directions from the viewpoint of computational efficiencies, but it will 

be good for a numerical method to have such a property of invariance. In 

fact, it is reported in [7] that the descent direction M is superior to S 

with respect to computational time for another kind of geographical opti­

mization problem. 

For the line search, we adopted the so-called "Goldstein method" 

[4], which chooses d(\I) so as to satisfy the inequalities 

(5.4) 

wi th appropriately prescribed parameters III and 112 (0 <Ill <11
2 

<1) . (We 

chose 11
1
=0.2 and 11

2
=0.8 throughout our experiments.) 

For the selection of the acceleration factor w, we investigated the 

speed of convergence of the obj ective function and the properties of the 

resulting solutions numerically for various values of w ranging from 1.0 

to 2.6. The integrals in the expressions of F, VF and H were computed by 

means of numerical quadrature formulas: The integration on V. n A. Gf'j) 
~ ] 

was done with the seven-point formula of the Gaussian type for a triangle 

given in 

formula. 

[1, p.893] and that 

HITAC M-280H (about 

on L. . with the three point Gaussian 
~, ] 

17 MIPS with array processor) at the 

Computer Centre of the University of Tokyo was used i.n FORTRAN through­

out the experiments. 

5.1. The inverse problem of the Voronoi diaqram construction 
We applied our algorithm to the problem of restoring the generators 

from a given tessellation which is known to be a Voronoi diagram. We 
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5 

Q) 

~ '" :s, n=16 ... 
1.0 • :S, 

=> 
C- A :M, 
u 

o :r1, 

La 1.4 1.8 2.2 2.6 
acceleration factor w 

Fig. 10. CPU time for obtaining the soiution 

(average of five different initial guesses) 

{A.} : a Voronoi diagram 
] 

Stopping criterion: F $ O.Olx ( area of UA
j

) 

5 steepest descent direction (5.1) 

M modified direction using H (5.2) 

adopted for sample tessellations two Voronoi diagrams generated from 

sixteen and thirty-two points, respectively, distributed in the unit 

square (-0.5,0.5)x(-0.5,0.5), and investigated the effect of the descent 

direction (5 or M) and the acceleration factor w(varying from 1.0 to 2.6 

by 0.2) on the speed of 

needed, starting with an 

to have the discrepancy 

the convergence. We measured the CPU times 

initial guess x~O) randomly located in each A" 
~ ~ 

between the given Voronoi diagram and the 

solution reduced to 1.0 % of the total area of U A " The plots in Fig. 
] 

10 are the average CPU times on five different initial guesses for 

different search directions and acceleration factors. From Fig. 10, it 

is seen that as to the search direction, M is superior to 5 in the large 

and is less sensitive than 5 to the choice of acceleration factor. 
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(b) 

Approximation by Voronoi Diagram 

given tessellation (thick lines) 

initial Voronoi diagram for generators (e) each 

chosen in A. (thin lines) 
] 

given tessellation (thick lines) 

approximate solution Voronoi diagram when the 

discrepancy (shaded areas) has been reduced to 

1.0 % of the area of UAj (thin lines) 

Fig. 11. Initial guess (a) and obtained solution (b) ----

{A J is the Voronoi diagram generated by thirty-two points 
] 

randomly distributed in the unit square. 
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Figure 11 is the example when the given Voronoi diagram is generated from 

the randomly distributed thirty-two points in the unit square: (a) is 

the initial guess x~O) randomly located in each A.,and (b) is the nearly 
~ ~ 

optimum solution when the discrepancy is reduced to 1.0 % of the area of 

UA .' 
] 

5.2. A small but practical example 
As another sample tessellation {A j} j:1' we took part of Fig. 1 of 

section 1 (the territories of Tilapia mossambica) which has ten regions 

in the rectangular area (0,4.3)x(0,3.5), and investigated how well 

{Aj}j~l can be approximated by a Voronoi diagram. In section 4 we have 

shown that our algorithm yields in general a local minimum but not always 

the global. Thus the solution we ultimately have is expected to be 

highly dependent on the descent direction, the acceleration factor and 

the initial guess. In order to examine this dependence numerically, we 

took five different initial guesses by choosing each xlO) randomly in Ai' 

and for each initial guess, we applied the variation of our algorithm 

with search directions S and M and with different acceleration factorsw 

ranging from 1.0 to 2.0 (step 0.2). Iteration was continued until we 

have either 

I K (v+l) K (v) I 
max x. -x. 

-2 
< l.oxlO . ~ ~ 

or 
K,.l 

v=50. 

Hence, we had 60 "solutions" in all, among which the solution with the 

4th initial guess, search direction M and acceleration factor w =1.4 gave 

the smallest value, P
min

=0.4472 

the total area ]l( UA.)=15.05.) 
] 

(p-p . )/P. for each initial 
m1n m1n 

of the objective function. (Note that 

The plots in Fig. 12 show the value 

guess, each search direction and each 

value of w, where it is seen that the solution depends on the initial 

guess considerably. Thus it seems important to start with a physically 

meaningful initial guess. How to do it depends on the problem (see also 

§5.3 and §5.4). We furthermore tested another fifteen initial guesses, 

but no solution gave a value of the objective function less than F min' 

This would mean that it is not of much use to repeat solutions starting 

with randomly chosen initial guesses but we had better start with a few 

physically plausible initial guesses, which are chosen, for example, by 

inspection. 
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& .00 t:. five different initial guess 

------- steepest descent direction S (5.1) 

modified direction M (5.2) 

5.3. Territories of Tilapia mossambica 

We adopted Fig. 1 in section 1, the territories of Tilapia 

mossambica, as fA ,} ?1' The density 'P (x) is 1 if XE UA . and otherwise O. 
] ]= ] 

The number n of territories is equal to thirty-two and the number of 

pOints defining the tessellation 

distribution of the angle of Fig. 1 

is 

was 

equal to 172 • In [13], the 

compared statistically with the 

distribution of the angles of the Voronoi diagram obtained from the 

computer simulation under some mathematical model in order to back up the 

validity of the model proposed. Our method should offer a way to compare 
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Fig. 13. Territories of Tilapia mossambica 

(thick lines) and solution Voronoi diagram after 50 

iterations (thin lines) (.; generators) 

Fig. 1 directly with the Voronoi diagram. Starting with an appropriate 

initial guess obtained by inspection, we got the Voronoi diagram of Fig. 

13 using descent direction M and W =1.2 after 50 iterations. The 

discrepancy between the tessellation of Fig. 1 and the Voronoi diagram 

was reduced from 24.8 % to 3.8 % of the total area ~(UA.). Computation 
] 

time for one iteration was about 0.15s. This result tells us that Fig. 1 
in [3J may be regarded approximately as a Voronoi diagram. 

5.4. School districts in Tsukuba 

As the last example we took the school districts of junior high 

schools in Tsukuba as .:A,} .n1 (Fig. 2). The density'" (x) is 1 if Xo. UA. 
] J= ~ ] 

and otherwise O. The number n of the districts is eleven and the number 

of points defining {A.J is 192. We adopted the descent direction Hand 
] 

W=1.4. Starting with the present locations of those junior high schools 
n 

as the initial guess, we could reduce the discrepancy between {Vi}i=l and 

{A.} .n1 from 20 % to 10 % of the total area ].J(UA.) after 20 iterations. 
] J= ] 

Computation time was 65-70 ms for one iteration (Fig. 14). 
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(a) (b) 

Fig. 14. Junior high schools of TS1.lkuba and their school districts 

school districts of Tsukuba (thick lines) 

initial Voronoi diagram (thin lines) generated 

by the present junior high schools (.) 

Discrepancy (shaded area) = 20 % of J.I (U Aj ) • 

school districts of Tsukuba (thick lines) 

solution Voronoi diagram after 20 iterations 

(thin lines) 

• present locations of junior high schools 

• generators of the solution Voronoi diagram 

Discrepancy (shaded area ) = 10 % of J.I (U A.) . 
] 

6. Conclusions and Discussions 

The problem which minimizes the discrepancy between a given 

tessellation of a b,ounded subset of R2 and a Voronoi diagram has been 

formulated, and a practical algorithm for approximately solving it has 

been proposed. This problem includes as a special case the inverse 

problem of constructing the Voronoi diagram when the given tessellation 

is itself a Voronoi diagram. 

practical also in this case. 

We have shown that our algorithm is 

From the methodological point of view, the solution obtained by our 
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algorithm is only one of the local minima. However, if we can get the 

physically meaningful initial guess, it is possible to obtain even the 

global minimum with appropriately chosen descent direction and 

acceleration factor. Furthermore, any solution obtained by our method is 

certainly an improvement on the initial solution. We have shown through 

examples in §5. 1 and §5. 2 that the invariant descent direction with 

respect to the Nn-dimensional affine transformation is better than the 

steepest descent direction in CPU time, sensitivity for the acceleration 

factor, and quality of the solutions. Also we have shown that it is 

efficient to use the acceleration factor even in a primitive way such as 

constant acceleration factor. 

How satisfactory the obtained solution is may be evaluated from the 

standpoint of Operations Research, but not from mathematical 

consideration alone. For example, in §5.3 we get the solution that the 

discrepancy between the territories of Tilapia mossambica and the Voronoi 

diagram is 3.8 % of the total area concerned. Although we do not know 

whether this solution is the global minimum or only one of the local 

minima, we can see this solution satisfactory by considering the 

magnitude of errors associated with the fluctuation inherent to the pheno­

menon and with the physical measurement to make the schematic diagram from 

the photograph, which is supposed to be of the order at least 3-5 %. 

The example in §5.4 might seem unrealistic because it is impossible 

to relocate the junior high schools. However, it can be said that the 

solution of this example gives us a quantitative index about the 

equitableness of the present distribution of the schools and the present 

definition of the school districts. Furthermore, each region Ai was 

approximated by one Voronoi region Vi in this example. We can easily 

extend our method to the case where Ai is approximated by more than one 

Voronoi region V il" ",Vil(Z~2). If Ai is approximated well by the union 

of several Voronoi regions, it is helpful to geographical information 

processing because the Voronoi diagram has many a nice property for compu­

tational analysis [8]. 
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Appendix. Calculation of the Gradient and the Hessian of F 

In this appendix, the detailed derivation of (4.5)-(4.10), the 

gradient and the Hessian of F, is shown. Before entering into the 

derivation, we note some fundamental relations for a given tessellation 

{A.} and the Voronoi diagram {V.} (see Fig. AI): 
J ~ 

av.=v.\V., w .. =av.nav., L';,J,=W';J.lA.;o aL .. =L. j\L. " 
~ ~ ~ ~J ~ J ~ ~ ~ ~,J~, ~,J 

89 

Also we assume that the angle e between the hyperplane containing IV ij 

and that containing 

objective function is 

A.nA. is known at each point on aL.·. 
~ J ~ ,J 

(A.l) 
r N 

F(Xl ,··· ,x )=)' J <P(x)d x. 
n i~j v.nA. 

~ J 

Our 

First the gradient of F is considered (see Fig. A2). The hyperplane 

containing W ij is represented as (w, c) 
K AK) 

(A.2) wKx=c (g wKwA=l. 

The hyperplane (w, c) moves to (w+ow, C + OC ) corresponding to the 

increment Ox. of the variable x.' Let h be the distance between two 
~ ~ 

hyperplanes (w, c) and (wHw, c+Oc), then the increment of F caused by 

f 
if-I 

thechangeofL .. is given by h.p(x)d x. 
~,J L .. 

~,J 

The hyperplane (w, c) is the perpendicular bisector hyperplane of Pi Pj , 

i.e. , 

(A.3) 

(A.4) 

w (x~+x~) /2=c, 
K J ~ 

1 
w= 

A Cl •• 
~J 
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where 

(A.5) h=w OX
K

, 
K 

A. Suzuki cl M. Iri 

where ox is the vector, of whose endpoints one is on (w, c) and the other 

on (w+ow, c+oc). Eliminating c from (A.2) and (A.3), and differentiating 

by xi' we obtain the equation 

(A.6) 

Substituting (A.4) and its derivative 

(A.7) ow = _1_ IS K 
" (X ••• g"K xi 

~J 

into (A.6), we get 

(A.8) K 1 K K " 
W ox = --- q (x.-x )ox .. 

K (X..' "K ~ ~ 
~J 

Thus, we have 

(A.9) 1 K K " h= -a-- g" (x.-x )ox .. 
ij K ~ ~ 

Therefore the increment of F for L .. is 
~,J 

(A. ID) J 
N-l J 1 K K" N-l M,(x)d x = --g" (x .-x )ox . <j>{x)d x. 

L. . L. . (Xij K ~ ~ 
~,J ~,J 

By similar calculation for L .. , we obtain (4.5), i.e., 
],~ 

(A.ll) 

We investigate the increment 1 
/:;" of the first term in the braces 

of (A .11) corresponding to the increment ox. of 
] 

the variab le x. 
] 

(jE{Z I Z4i, W' Z ~ 0}, see Fig. A3). In Fig. A3, ox is perpendicular to 
~ 1 

the hyperplane (w+ ow, c+ oc). Then /:;" is given by 

(A.12) 
K K K N-l 

g, {x.-(x +ox )}~(x+ox)d x 
I\K ~ 

I lK K N-l --g" (x.-x H(x)d x. 
L. . (Xij K ~ 
~,] 
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Fig. A2. Derivation of the gradient of F 

Substituting the following relations (i\.13)-(A.1S) into (A.12), we obtain 

(A.16). 

(A.13) v I AA KVV 
oX ;= -2- g A (x .-x )ox .(x .-x.), 

Cl.. K ~ ] ] ~ 
~J 

(A.14) I A A K 
OCl .. ;= -- g A (x .-x . ) ox ., 

~J Clij K ] ~ ] 

(A. IS) ( lA ;, K ~ ~ am 
</> x+Ox)-<p(x)= -- g (x .-x )ox .(x .-x .)~ 

2 KAJ JJ~ ~. 
Clij ax 
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4> (xl 

i " Fig. A3. "'eight of the increment "" of dF/dXi 
~,~~,~~ weight of the second term of (A.16) 

~~ weight of the third term of (A.16) 

Next, we investigate the' increment ,,; of the first term in the 

braces of (A.II) corresponding to the increment 8x
k 

of the variable x
k 

(kE{ZIW
ii 

navZ,J. 0,iJ}, wij 10}, see Fig. A4). 

(A.17) 

where 

(A.18) 
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Fig. A4. Weight of the increment 62 of dF/dX~ , ~ 

~~ discrepancy 

~ weight of 6~ 

c/l(x) 

When j=i, the first term of (A.12) is slightly changed, i.e., 

(A.19) J 
1 K K K K N-l 

----::---g, {x.+Ox.-(x -tax )}.p(x+ox)d x. a .. +oa.. I\K ~ ~ 
L. . ~J ~J 
~,J 

Thus the increment of the first term in the braces of (A.ll), 6~, 
corresponding to the increment oX

i 
of the variable xi is given by 

(A.20) J 
1 K N-l 

-- g, ox . .p(x)d 'x 
L. . aij I\K ~ 
~,J 

J 
1 v v ,~~ K N-l 

-3- g, (x .-x)g I,X .-x .)ox .<j>(x)d x 
L. . a. . v ~ K~ ~ ] ~ 
~,J ~J 

r 1 v v ,~~ K ~ ~ ~ N-l + J -3- g'v(xi-x)g i,X.-X )ox.(x.-x.) ~ d x. 
L. . a. . K~ ~ ~ ] ~ dX 
~,J ~J 

+ J 
Cl L. . 

1 
2 

a .. 
~,J ~J 
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From (A. 16), (A.17) and (A. 20), and by similar calculation for the 

second term of (A.ll), we obtain 

(A.2l) 

where 

(A.22) 

(A.23) 

(A.24) 

K A 
Clx .Clx. 

J ~ 

o 

iJ' f 1 N-l H = -- q <jJ(x)d X, 
AK' La.. AK 

. . ~J 
~,J 

(j=i) , 

(otherwise) , 

Gijk= J __ 1_ v v j.! j.! N-l 'K - 3 q, (x.-x)q (x.-x.)<jJ(x)d x 
1\ L .. a. . I\V ~ Kj.! ~ . J 

~,J ~J 

J 
1 v v j.! j.! N-l + --3- qA (x .-x)q (x .-x .)<jJ(x)d x 

L .. a. . v ~ Kj.! ~ J 
J,~ ~J 

+J __ 1_ g (x~_xv)g (xj.!-xj.!)~(X(,-X(,)dN-\ 
L. . a~ . AV ~ Kj.! k Clx(, j i 
~,J ~J 

( __ 1_ v v j.! j.! ~ (, (, N-l 
- 3 gAV(X.-X)g (xk-x) ~ (x.-x.)d x 

JL .. a.. ~ Kj.! Cl x" J ~ 
J,~ ~J 

+( ~ 
J ClL .. a .. 

~,J ~J 

-J + ClL .. a .. 
J,~ ~J 

Kijk J _1_ g (x~_xv) 
AK L nav a. . AV ~ 

i,j k ~J 

( 1 v v 
- -- g (x.-x) 

JL .. nClV a .. AV ~ 
J,~ k ~J 

When N=2, ClL. . and L.. n ClVk are points 
~,J ~,J 

2 in R, then the 

integration of the fifth and the sixth term of (A.23) and (A.24) become 

the summation of each intebgand which has the value corresponding to the 

ClL or L nClV. 
i,j i,j k 
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