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Abstract The worst-case performance of heuristics with bucketing techniques and/or spacefilling curves for 

the planar matching problem and the planar traveling salesman problem is analyzed. Two types of heuristics are 

investigated, one is to sequence given points in a spacefilling-curve order and the other is to sequence the points in 

the order of buckets which are arranged according to the spacefilling curve. The former heuristics take O(n log n) 

time, while the latter ones run in O(n) time when the number of buckets is O(n). It is shown that the worst-case 

performance of the former and that of the latter are the same if a sufficient number of O(n) buckets are provided, 

which is investigated in detail especially for the heuristics based on the Sierpifiski curve. The worst-case perfor­

mance of the heuristic employing the Hilbert curve is also analyzed. 

1. Introduction 

The planar matching problem is to find a minimum-length perfect matching of n (even) 

points in the plane, that is, to determine how to match the n points in pairs so as to min­

imize the sum of the lengths between the matched points. The planar traveling salesman 

problem, or simply the planar tour problem, is to find a tour (circuit) of minimum total 

length that visits each of n given points in the plane_ Both problems have many applica­

tions in various fields. The planar tour problem is NP-complete (Papadimitriou [11]), while 

the planar matching problem can be solved in O(n3 ) time (Lawler [9]); however, from the 

practical point of view, even such an O(n3)-time algorithm seems to be too complicated 

and take too much time for large-scale problems_ 

In order to solve the large-scale problems, fast and simple heuristics have been pro­

posed. Concerning the matching heuristics, see a survey by Avis [2]- !ri, Murota and 

Matsui [6], [7], [8] have proposed linear-time beuristics for the planar matching problem 

in connection with the application of the problem to drawing a figure by a mechanical 
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plotter. Their algorithms use the bucketing techniques, run quite fast in practice and give 

satisfactory solutions (concerning the use of bucketing techniques in various problems, see 

[1]). The worst-case performance ofthese heuristics, which is analyzed in [8], is comparable 

to that of heuristics taking more time. 

Bartholdi and Platzman [3], [4], [12] have posed an O(nlogn)-time algorithm for the 

planar traveling salesman problem, which uses spacefilling curves, especially, the Sierpinski 

curve. A spacefilling curve is a continuous mapping from the unit interval onto the unit 

square. The spacefilling curve itself forms a path, and their algorithm is to sequence the 

given points as they appear along the spacefilIing curve and form a tour of the points in 

that order. The algorithm using the Sierpinski curve can be implemented in O(nlogn) 

time, where the main part is sorting the given set of points along the curve. The worst-case 

performance for the Sierpinski-curve algorithm is theoretically analyzed in [12]. 

In this paper, we shall investigate the worst-case performance of heuristics with buck­

eting techniques and/or spacefilling curves for the planar matching and tour problems. Iri 

(e.g., see [1], [5]) pointed out that, given a spacefilling curve such as the Sierpinski curve and 

the Hilbert curve, we can devise linear-time heuristics using buckets the number of which 

is proportional to the number of points and which are acranged in the spacefilling curve 

order. When the Sierpinski curve is concerned, triangular buckets are introduced, which 

themselves are of theoretical interest. These heuristics are superior to those sequencing, 

directly, given points in the spacefilling curve order with respect to the time complexity; 

however, the worst-case performance of the former might become worse than that of the 

latter. We show that, if buckets are sufficiently provided, the worst-case performance of 

the bucketing heuristics is the same with that of spacefilling-curve heuristics. Especially, 

we give tight bounds for the bucketing heuristics in which buckets are sequenced in the 

Sierpinski curve order, where we adopt an approach similar to that used in [8] in order to 

analyze the worst-case performance. However, unlike in [8], it is not easy to obtain tight 

bounds for distances of any two points in two buckets, which is investigated in detail in 

the paper. The worse-case performance of the heuristic sequencing points in the Hilbert 

curve order is also analyzed, which has not yet been studied. In this analysis, we partly 

take an approach given in [8] and use a recurrence relation in the main part. Although 

we shall not go into details here for analyzing the worst-case performance of the bucket 

heuristics using the Hilbert curve, we can readily obtain bounds, which may be a little 

loose, for those heuristics by combining the above-mentioned results for the Hilbert-curve 

algorithm with the lemma given in section 2. 

These analyses show that, with respect to the worst-case performance as defined in 

section 2, the spacefilling-curve heuristics and the bucket heuristics where buckets are 

ordered in the spacefilling-curve order are a little worse than the spiral-rack algorithm 

recommended in [8]. 
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2. Heuristics for Planar Matchings and Tours 

As fast heuristics for planar matchings and ';ours, the following two types of algorithms 

are known, where the first one runs in O(n) time, and the second one runs in O(nlogn) 

time for n points. 

A. Bucket algorithms 

These algorithms are proposed by !ri, Murota and Matsui [6], [7], [8]. In these algo­

rithms, we partition the unit square, where n points are distributed, into subsquares or 

subtriangles, called buckets, as depicted in Fig.2.1. Each point belongs to one of those 

buckets. In the case the unit square is divided into k x k square buckets, we can determine 

the bucket to which a point belongs by multiplying the coordinates of the point by k ana 

then truncating off the fractional parts, which can be done in a constant time. In the case 

of triangular buckets, this can be similarly determined in a constant time although it takes 

a little more time. 

(a) square buckets (b) triangular buckets 

Fig.2.1. Partition of the square into buckets 

The buckets are ordered in a prescribed order (in Fig.2.2, two orders of square buckets, 

the serpentine order and the spiral-rack order, proposed in [8] are depicted). We number 

the n points so as to form a sequence which is consistent with the order of buckets the point 

belongs to; that is, points in the same bucket may arbitrarily be ordered among themselves, 

but points in different buckets must be ordered consistently with the order of the buckets. 

Then, for an approximate solution for matchings, we adopt the matching consisting of 

pairs of the (2i - l)st point and the 2ith (i = 1,2, ... , nj2). For an approximate solution 

for tours, we simply connect the points in the (l,bove sequence where the first and the last 

points in the sequence is connected to form a tour. 

Concerning the algorithm for matchings, the following variants of the algorithm are 

proposed. 
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,....~ ,.... ~ r"~ p-to ~ 

.... ~ .... ~ .... ~ .... .... 
(a) Serpentine order (b) Spiral-rack order 

Fig.2.2. Two orders of square buckets [8] 

(i) Preprocessing: Before ordering points, match a pair of points in the same bucket as 

much as possible (hence, in ordering the remaining points, each bucket contains at most 

one point). 

(ii) Tour: As an approximate solution, take the cheaper of the two, one is a matching 

consisting of pairs of the (2i - l)st and the 2ith points, and the other is a matching 

consisting of pairs of the 2ith and (2i + l}st points. 

When the unit square is divided into O(n) buckets and the order of buckets can be 

computed in O(n) time, these algorithms run in O(n) time, quite efficiently. 

B. Spacefilling-curve algorithms 

These kinds of algorithms are proposed by Bartholdi and Platzman [3], [4], [12]. In 

order to obtain an approximate tour, these algorithms sequence n points as they appear 

along a spacefilling curve, such as the Sierpinski curve and the Hilbert curve. As for 

matchings, simply match the (2i - l)st and the 2ith points in the sequence; we can also 

apply the technique, tour, as described above to obtain a better matching. Since sorting 

the n points along the curve is needed, these algorithms take O( n log n) time. 

Let us now describe algorithms which will be investigated in the paper. A spacefilling 

curve is a continuous mapping from the unit interval onto the unit square. As the space­

filling curve, the Sierpinski curve and the Hilbert curve are well known. The Sierpinski 

curves Si of order i (i = 3,4,5,6) are defined as in Fig.2.3. Soo is a spacefilling curve, 

called the Sierpiriski curve. The Hilbert curves Hi of order i (i = 1,2,3) are defined as in 

Fig.2.4, and Hoo is a spacefilling curve, referred to as the Hilbert curve. The worst-case 

performance of the spacefilling-curve algorithm with the Sierpinski curve, to be called a 

Sierpiriski-curve algorithm, is almost analyzed by Platzman and Bartholdi [12], while that 

with the Hilbert curve, to be called a Hilbert-curve algorithm, has not yet been studied. In 
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Fig.2.3. Sierpinski curves S, of order i (i = 3,4,5,6) 

I -, r r h r 
L ...J I L !-I 

I -, r- L h r 
r ...J Lr 

- - I 

L ...J r ...J L h 
L_ 

- - r -, L -, r ~ r -, 
I I I 

(b) H2 

Fig.2.4. Hilbert curves H, of order i (i = 1,2,3) 

section 4, we shall investigate the worst-case performance of the Hilbert-curve algorithm. 

In Fig.2.3, we draw the partition of the unit square into congruent isosceles right 

triangles, called triangular buckets, with the curves themselves so that the definitions of 

the curves are easy to understand. As is seen from the figure, an order of triangular buckets 

is naturally introduced; that is, buckets are ordered as they are traversed by the Sierpinski 

curve of order i, which is referred to as a Sierpiriski bucket order of triangular buckets. 

Then, we can consider the bucket algorithm with the Sierpinski bucket order as in the way 

described above, which is referred to as a Sierpiriski-bucket algorithm. In this algorithm, 

we partition the unit square into 2Pog2o:2nl triangular buckets with a parameter D:. The 

order of buckets can be computed in linear time by the "folding-over" algorithm, similar 

to one in [10]. This algorithm with taking D: infinitely large coincides with the Sierpinski­

curve algorithm. As D: grows larger, the worst-case performance of the Sierpinski-bucket 

algorithm would become better, but it comes to take more time and space. In section 3, we 

shall investigate the worst-case performance of the Sierpinski-bucket algorithm in detail. 

The worst-case performance of a heuristic is estimated not by the worst-case ratio of a 

solution obtained by the heuristic and an optimum solution, but by the worst-case absolute 

value of a solution obtained by the heuristic j~)r all possible configurations of n points in 

the unit square. For a fixed algorithm for matchings, let Mn be the supremum of the costs 
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of matchings obtained by the algorithm over all possible configurations of n points in the 

unit square, and put 

fio = lim sup Mn/.;n. (2.1) 
n-+oo 

The efficiency of algorithms using buckets depends heavily upon the number of buckets 

employed in the algorithms, so that, for an algorithm using a2n buckets, let Mn(a} be the 

supremum of the costs of matchings obtained over all possible configurations of n points 

in the unit square, and put 

fio(a} = limsupMn(a}/.;n, 
n-+oo 

fio = fio(ao} = minfio(a}. 
Cl 

(2.2) 

fio can be considered to be the efficiency of the algorithm in the worst case. 

For a fixed algorithm for tours, let Tn be the supremum of the costs of tours obtained 

by the algorithm over all possible configurations of n points in the unit square, and further, 

define Tn(a}, To and To (a) similarly as Mn(a}, fio and 'uo(a}, respectively. 

Concerning the distance, we consider not only the L2 distance but also the Loo distance, 

since the Loo distance is suitable in applying the matching heuristic to the problem of 

drawing a figure by a mechanical plotter efficiently [7], [8]. In Table 2.1, we summarize 

the results obtained in this paper with some of the previously known results. 

In concluding this section, we consider the relation of the worst-case performance of a 

spacefilling-curve heuristic and that of a bucket heuristic employing the same spacefilling­

curve. The upper bounds, which may loose, of fio(a} and To(a} of the bucket heuristic 

can be obtained from fio and To of the spacefilling-curve heuristic, which we shall show in 

the following lemma. 

Lemma 2.1. Let JL and T be fio and To, respectively, of the spacefilling-curve heuristic 

HT. Consider the bucket heuristic HB where a 2n buckets are ordered by the spacefi11ing 

curve. Let ~ be the maximum distance of two points in the same bucket in HB, where 
Clv n 

c is a constant. Then, fio(a} and To(a} of HB are bounded as follows. 

(i) Concerning To (a), we have 

T C 2V2c -+- (0 < a ~ --) 
V2 a T 

To(a} ~ aT 2 2c (2V2c ~ a ~ 4C) (2.3) --j--
8c a T T 

4c 
T (a:;:,-) 

T 
(Note that for the planar matching heuristic without preprocess and with tour, fio(a) ~ 

To(a}/2}. 
(ii) For the matching heuristic with preprocess and without tour, we have 

fio(a} = { 
aJL2 c c 
- + - (0 < a ~-) 
2c 2a JL 

c 
(a:;:' -) 

JL 

(2.4) 
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Table 2.1. Asymptotic supremum p,o, for the optimum value QO, 

and p,o(a) of (the costs of matchings)/y'n 

49 

L2 distance Loo distance 
Algorithm 

P,o Qo p,o QO 
Sierpinski-curvea 1.414 1.414 

Sierpinski-curvea 
1c 1 

with tour 

Hil bert-c urvea ~ 1.105 ~ 1.011 
with tour Z 1.045 Z 1.006 

Spiral-rackb,d ~ 1.014 
[1.712]e 0.866 1.732 

with preprocess, tour Z 0.932 

p,o(a) a p,o(a) a 

Sierpinski-bucketb,f 
a 1 ha 1 -+- a~2 2(- +-) a~l 
2 a 2 2a 

wi th preprocess 
V2 az V2 V2 az1 

Sierpinski-bucketb,f ~ VI + 1/a2 a ~ 2V2 ha 1 2(- +-) 
4 2a 

a ~ V2 

with tour a 2 
2V2 ~ a ~ 4 <-+- 1 a Z V2 - 8 a 

1 az4 

aO(n log n)-time algorithm, bO(n)-time algorithm, cFrom [4], dFrom [8], eThe value 

corresponding to the upper bound of p,o, fThe number of buckets is 2k2 where k = 
2fiog2 av'nl- 1/ 2 . 

(iii) For the matching heuristic without preprocess and without tour, we have 

p,o (a) ~ JL + ~ . 
a 

(2.5) 

Proof: (i) For sufficiently many n points distributed in the unit square, let nb be the 

number of buckets containing at least two points, and n' be the number of points contained 

in such buckets, where n' Z 2nb. For each bucket bi containing at least two points, let 

Pi,l> P;,2 be the first and the last points in b; that appears in the obtained tour T, and 

Pi,3 be the next point of Pi,2 in the tour. Update the edge set of T by replacing edge 

{Pi,2, P;,3} by edges {P;,l> Pi,2} and {Pi,l> P;,3}' and denote the resultant edge set by T'. 
By the triangle inequality, the total length of the tour T is bounded by that of T'. The 

total length of T' is bounded by (the maximum possible length of the tour of n - n' + nb 

points in the unit square formed by the spacefilling-curve heuristic )+n' x (the maximum 
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possible distance of two points in the same bucket). Hence, for the heuristic HB, we have 

where x = n' In, 0 ~ x ~ 1. Hence, 

Solving this, we obtain (2.3). 

(ii) Let n' be the number of points matched in preprocessing. Then, we have 

(2.6) 

ex 
where x = n'/n. Hence, tto(a) ~ max {J.L~+-}, and, solving this, we obtain (2.4). 

O<x<l 2a 
As is seen from (2.6), this bound i; tight. 

(iii) Let n' be the number of points each of which is matched with a point in the same 

bucket, and let nb be the number of buckets containing two points which are matched with 

points in the other buckets (n' + 2nb ~ n). Then, we have 

and hence tto(a) ~ J..L +~. 0 
a 

From this lemma, it is seen that, except the matching heuristic without preprocessing 

and without tour, the worst-case performance of the spacefilling-curve heuristics and that 

of the bucket heuristics are the same if a is taken to be sufficiently large (that is, a sufficient 

number of buckets are provided), although the bounds for the tour given above are slightly 

loose. In the next section, we shall give tight bounds for the Sierpinski-bucket algorithm. 

3. Sierpinski-Bucket Algorithms 

In the Sierpinski bucket order, we name buckets from b1 in the Sierpinski bucket oder 

as in Fig.3.1. For a pair of buckets b;, bj , define d(b;, bj ) to be an upper bound for the 

distance (L= or L2) between two points contained in these two buckets b; and bj • For j, 

define ej to be max d(bi , bi+j-d. In order to adopt an approach taken in Iri, Murota and 
I 

Matsui [8] for estimating the worst-case performance of the bucket algorithm, we must first 

evaluate ej, which is not so easy in the case of the Sierpinski bucket order. We first consider 

the case of L= distance and then that of the L2 distance. We shall only consider the case 
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y 

x 
Fig.3.l. Sierpinski bucket order 

in which the unit square is divided into k 2 subsquares, and each subsquare is divided into 

two triangles (the number of triangular buckets is 2k2 and k = 2i for an integer i). 

3.1. Worst-case analysis with respect to the Loo distance 

We trivially have Cl = Ilk, and C2, C3 = 2/k. However, it is not trivial to evaluate Cj 

for general j, which we shall first investigate. For two buckets bi and bj , a pair (bi , bj ) is 

called congruent to (bl , bt) (1 = j - i + 1) if the Sierpinski curve from bi to bj is congruent 

to the Sierpinski curve from bl to bl. For eX.3,mple, (b3 , b4 ) is congruent to (b l , b2 ), but 

(b2 , b3 ) is not. Define F (j) by 

F(l) = 1, F( .) = j + 4
J 

h J 'I J 1 J 3 . 2J ~ I were = I og4 2 (j ~ 2). 

It is noted that F(j) is increasing in j. 

Theorem 3.1. When the unit square is divided into 2k2 triangular buckets, 

(i) For j ~ 2, j -=I- 2· 4i , 5· 4i (i ~ 0, integer), we have kCj '5:: F(j - 1) < F(j). 

(3.1) 

(ii) For j = 2· 4i or 5· 4i , we have k· d(bt, bl+j~l) '5:: F(j) if (bl' bl+j~d is congruent to 

(bl,bj), and k· d(bl,bl+j~d '5:: F(j - 1) < F(j), otherwise. 0 

We provide three lemmas for proving this theorem. We define dj to be d(bt, bj). 

Lemma 3.1. For j = 1, 2· 4i , 5· 4i , kdj ::: F(j). For other j, kdj '5:: F(j - 1). 

Proof: The cases of j = 1,2 are trivial. Suppose that the lemma holds for j with 

j '5:: 2 . 4i~l, and consider j with 2 . 4i~1 < j S: 2·4;. See Fig.3.2. 

(i) For j with 2· 4i~1 < j '5:: 4;: We have kd j '5:: 2; = F(2' 4;~1) '5:: F(j - 1). 

(ii) For j with 4i + 4112 < j '5:: 4; + 41 , I ::: {O, 1, ... , i}: The case of I = ° is trivial. 

For other I, from the induction hypothesis, w€ have kdj '5:: 2; + F(j - (4; + 41/2)). Define 
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Fig.3.2. Proof of Lemma 3.1 

/(j) to be F(j - 1) - (2; + F(j - 4; - 41/2)). As is readily seen, /(j) is nonincreasing in 

j. We have, for each I = 1, ... ,i - 2, 

/(4; + 41) = 3. ~;-1 [(2; - 21)(2;-1 - 21) - 1] > 0, 

and /(5.4;-1 - 1) = 1/(3.2;-2) > 0 and /(2.4; - 1) = 0, so that, for j i- 5·4;-1,2·4;, 

we have kdj :S F(j - 1). 

For J" = 5.4;-1,2·4;, we directly have kdj = F(j). 
(iii) For other j: This case immediately follows from the arguments for (ii). 0 

Fixing the x- and y-coordinates as in Fig.3.I, we define dj and F(j) by 

dj = max{ Yj I point (Xj, Yi) E bi }, 

F " _ j+2.4l1ogdJ 
(J) - 3. 2l1og4jJ (j ~ 1). 

(3.2) 

(3.3) 

(e.g, d1 = d2 = d3 = I/k, d4 = 2/k, d13 = 3/k, etc.; note that F(j) is increasing in n 
Lemma 3.2. For j i- 4i, kdj :S FU - 1) < FU). For j = 4i, kdj :S F(j). 
Proof: The case of j = 1 is obvious. Suppose that the lemma holds for j with j :S 4;-1, 

and consider j with 4;-1 < j :S 4i. See Fig.3.3. 

(i) For J" with 4;-1 < J" :S 3·4;-1: we have kdi :S 2;-1 = F(4i-l) :S F(j - 1). 

(ii) For J" with 3·4;-1 < j :S 4;: From the assumption, kdj :S 2;-1 + FU - 3·4;-1). 

Define 7U) to be FU - 1) - (2;-1 + F(j - 3.4;-1)). 7U) is nondecreasing in j, and 

7(4; - 1) = o. Hence, kdj :S F(j - 1) for j with 3·4;-1 < j < 4;. The case of j = 4; is 

directly shown" 0 

Lemma 3.3. For 11, J2 ~ 1, F(jt} + F(J2) :S FUl + J2). 
Proof: We can easily see that, for J" ~ 2, 
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Fig.3.3. Proof of Lemma 3.2 

, 
I o 

I 
I I 
I b b I 
I t1 t2~ 

~-------~ 

I 

~i 

Fig.3.4. Proof of Theorem 3.1 

Since 2F(jj2) = F(j), we obtain the lemma. 0 

Now, we shall prove Theorem 3.1. 

Proof of Theorem 3.1: (i) The case of l1 ::; k2 < L2: We have 

53 

If the case (i) does not hold, we can assume without loss of generality that 1 ::; L1 < 
L2 ::; k2. For such L1 and L2, we have only to consider the following two cases owing to the 

structure of the Sierpinski bucket order (see Fig.3.4). 

(ii) The case of L1 ::; 2· 4i- 1 < L2 ::; 4i for some i: We have 

d(bll' b12) ::; max{ d(bll' bHi-t), d(b2.4 i-l +I' b12 )} 
1 . 1 . 1 1 ::; k max{F(2. 4'- -L1 + 1), F{l2 - 2·4'- )} ::; kF {l2 -Lt). 
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(iii) The case of II :<:; 4; < l2 :<:; 2·4; for some i: Let jl = 4; - it + 1, j2 = l2 - 4; and 

j = jl + j2(= l2 -l1 + 1). In this case, we have 

If the maximum is attained by diJ or d12 , we have d(blp b12 ) :<:; max{ djp d12 } :<:; F(j - 1). 

Suppose that the maximum is attained by djl + dJ2. In the case of jl i= 4;1, we have 

dj1 + d12 :<:; FU! - 1) + F(j2) :<:; F(j - 1) from the assumption of the induction. The case of 

)2 i= 4i2 is similar. The remaining case is such that jl = 4;1 and)2 = 4;2. In this case, 

(bl1 , b/2 ) is congruent to (b 1 , bj), and then, from Lemma 3.1, we have d(b/ 1, blJ :<:; F(j). if 

lil - i21 :<:; 1, and d(b/1, b/2 ) :<:; F(j - 1), otherwise. 0 

A. With preprocessing and without tour 

We shall evaluate Mn(a) where the unit square is divided into 2k2 ~ a2n buckets with 

k = 2 Pog2 crVnJ-l/2. Let nj be the number of edges in a matching (or in a tour in the 

analysis with tour) connecting points in two buckets at bucket distance j - 1, that is, two 

buckets the difference ofranks of which in the Sierpinski bucket order is j - 1; in particular, 

nl is the number of pairs within the same bucket. Consider the following linear program 

and its dual: 

and 

~ _ F(j) 
fn(k) = max L -k-nj 

s.t. 

j=1 

Lnj=~ 
j=1 2 

Ljnj :<:; 2k2 
j=2 

n· > 0 J -

n 
Yn(k) == min 2k x + 2ky 

s.t. x? 1 

x + jy ? FU) U = 2, ... ) 

y?O 

From Theorem 3.1 and the well-known linear-programming duality theorem, 

where a = kj Vii. 

(3.4) 

(3.5) 

Lemma 3.4. The vertices of the polytope defined by (3.5) in the dual program are 
1 4; 1 

(1, -), (-'-1' -'-1) (i = 1,2, ... ). 
2 3 . 2'- 3· 2'-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Planar Matching/Tour Heuristics 55 

Proof: Immediate from the fact that, for .i with 2·4;-1 :<:; j :<:; 2·4; and i ~ 1, we have 

_4i_ ._1 __ F( .) 
3 . 2;-1 + J 3 . 2;-1 - J. o 

Lemma 3.5. For k = ayn (a> 0), Yn(a/ri) is given by 

Yn(ay'n) = y'n. min{ 2- + a, ~1 (4; + 2a)(i = I, ... )} 
2a 3·2' 2a 

1 1 
y'n(2a + a) (0 < a :<:; v'z) 

1 4; , 2;-1 2; 
y'n--'-1 (- + 201 ("'2:<:; a:<:; "'2) 3 . 2'- 2a ' V., v., 

{ (i = 1, ... ) 

Proof: The first equality follows from Lemma 3.4. The second follows from the 

following inequalities, where h(i) == ~1 (~~~ + 2a): 
3·2' 2a 

< < 2i 
h(i) - h(i + 1) iff a - "" 

~ ~ v2 
o 

Since k = 2 flog2 "'Vnl-1/2 and k = ayn, we have a :<:; V2a < 2a, and hence 

Then, we have the following theorem. 

Theorem 3.2. With respect to the Loo distance, for the Sierpinski-bucket algorithm, 

for matchings, with preprocessing and without tour, we have 

fio(a) = { 
In a 1 v2(- +-) 

2 2a 

viz 

(0 < Q::; 1) 

(a ~ 1) 

Proof: From Lemma 3.5, we readily see that 

sup Mn(vlza):<:; 
",:<:;.j2a<2a { 

In a 1 
v2(- + --) 

2 20: 

viz 

fio = viz, 

(0 < a :<:; 1) 

(a ~ 1) 

Consider the lower bound of fio(a). In the case of 0 < a :<:; 1, we can easily construct 

a configuration of n(i) points in the unit square with 2k(i)2 buckets such that n(i) = 

r2 . 4; j a 21, k(i) = 2;, n2 = k(iF, n1 = n(i)j2 - k(i)2 and nj = 0 (j i- 1,2). For this set of 

points, the cost of the matching is ~n2 + k1~n1 ~ v'z(~ + 2~)Jn(i). 
In the case of a ~ 1, we can construct a configuration of n(i) points in the unit 

square with 2k(i)2 buckets such that n(i) =: r2. 4;1, k(i) = 2i+a with a = pog2 a1 and 

n2.4a = ¥, nj = 0 (j i- 2· 4a ). For this set of points, the cost of the matching is 
2a+ 1 ~ i+l ~(.) W 2 =2 =V2n~t). 0 
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(a) 

(b) 

Fig.3.5. Proof of Lemma 3.6 

B. Without preprocessing and with tour 

In this case, we have only to evaluate Tn(O:), since Mn(O:) < Tn(O:)/2. Concerning 

Tn(O:), first consider the following lemma. 

Lemma 3.6. For any tour T constructed by the Sierpi6.ski-bucket algorithm, there is 

a tour T' constructed by this algorithm such that 

(i) no edge connects points in buckets bl1 and bl2 with l2 - II + 1 = 2 . 4i or 5· 4i such 

that (b1p bI2 ) is congruent to (b1,bI2-11+l)i 

(ii) (the length of T') ~ (the length of T). 
Proof: Starting from T, for each edge not satisfying (i), we move points in bucket bl2 

to bucket b12 +1 (except the case of Fig.3.5(b)) as depicted in Fig.3.5 until there comes to be 

no such an edge. (There are many cases that must be considered, but only some of them 

are depicted in Fig.3.5.) We can execute this procedure so that it halts in finite steps, and 

each step does not decrease the length of the tour. Hence, we obtain the lemma. 0 

Consider the following linear program and its dual: 

~ _ n1 ~ F(j - 1) 
fn(k) = max k + ~ k ni 

3=2 

s.t. L ni = n 
i=l 

L(j - l)ni ~ 2k2 
i=2 

n· > 0 3 -

(3.6) 
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x 21 

x + iy 2 FU) U = 1,2, ... ) 

y20 

From Theorem 3.1 and Lemma 3.6, we have 

where a = kj Vii, 

57 

(3.7) 

Theorem 3.3. With respect to the Loo distance, for the Sierpinski-bucket algorithm 

for tours, we have 

{ 

J20: 1 
TO(O:) = 2(2" +~) 

2 
TO = 2. 

Proof: From Lemma 3.4, we have 

Yn(av!n) = min{(a + !), _1_. -1 (4; + ~:a) (i = 1,2, ... )}. 
a 3·2'- a 

1 4; 
Letting h(i) == --. -1 (- + 2a), we have 

3·2'- a 

h(i) ; h(i + 1) 
< . 

iff a - 2', 
> 

1 < 
a+ - ~- h(l) 

a~ 

< 
iff a ; 1. 

Hence, we have 

and 

{ 
1 

a+ -
Yn(av!n) = 

a 
1 4; 

-.-(-+2a) 
3·2,-1 a 

sup Tn(J2a) ~ 
",~v'2a<2'" { 

J2(~ +~) 
2 0: 

2 

(0 < a ~ 1) 

(2;-1 ~ a ~ 2;) 

(0 < 0: ~ J2) 

(0: 2 J2) 

The lower bound can be shown similarly as in Theorem 3.2. 0 

Corollary 3.1. With respect to the Loo distance, for the Sierpinski-bucket algorithm, 

for matchings, without preprocessing and with tour, we have 

fio(o:) = { 
In 0: 1 

v 2(- +-) 
4 20: 

1 

(0: ~ v"2) 

(0: 2 v"2) 
fio = 1. 0 
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3.2. Worst-case analysis with respect to the L2 distance 

In this case, from the proof of Theorem 3.1 in Platzman and Bartholdi [12], we can 

obtain the following. 

Lemma 3.7. Cj ::; J2i/k. D 

Using this lemma, we can analyze ILo(a) for the L2 distance by similar techniques as above, 

although, in this case, the linear programs are harder to solve directly, so that we solve it 

by allowing the values of j to be continuous. 

A. With preprocessing and without tour 

and 

As in the Loo case, consider the following linear program and its dual: 

n' > 0 J -

n 
Yn(k) == min 2k x + 2ky 

(3.8) 

s.t. x > v'2 (3.9) 

x + jy ;:::: {ij (j = 2, ... ) 

y;::::O 

In this dual program, replace j by real number z with z ;:::: 2: 

Yn(k) == min 2: x + 2ky 

s.t. x;:::: v'2 
x + zy ;:::: J2z for any z ;:::: 2 

y;::::O 

(3.10) 

We have MnCv'2a) :s; In(k) :s; Yn(k) :s; Yn(k), where k = a..[ii. We can compute Yn(a.Jii} 
directly: 

{ 
In a 1 

v2(- +-) 
2 2a 

v'2 
Hence, we obtain the following. 

(0 < a :s; 1) 

(a ;:::: 1) 
(3.11) 
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Theorem 3.4. With respect to the L2 distance, for the Sierpinski-bucket algorithm, 

for matchings, with preprocessing and without tour, we have 

JLo(a) = { 
a 1 
-+-
2 a 

v2 

(0 < a:::: v2) 

(a ~ v2) 
JLO = v2. 

Proof: The upper bound of JLo(a) is obtained from (3.11). Concerning the lower 

bound, in the case of 0 < a :::: v2, we can construct a configuration of n(i) points in the 

unit square with 2k(i)2 buckets such that n(i) = r2. 4i /a21, k(i) = 2i, n4 = k(i)2 /2 and 

nl = n (i) /2 - k (i) 2 /2. For this set of points, the lengths of the matching is ~n4 + ~nl C::'. 

(~ + ;)In(i). The case of a ~ J2 is easy. 0 

B. Without preprocessing and with tour 

Concerning Tn( J2a) with k = afo, consider the following linear program and its dual: 

and 

s.t. L:nj=n 
j=1 

L:U - l)nj :::: 2k2 

Yn(k) == min IX + 2ky 

n' > 0 J -

s.t. x+u-l)Y~fii U,=1,2, ... ) 

y~O 

In this dual program, replace j by real number z with z ~ 1: 

Yn(afo) == min fo(':: + 2ay) 
a 

s.t. x + (z - l)y ~ ~ for any z ~ 1 

y~O 

(3.12) 

(3.13) 

(3.14) 

Yn(afo) is given by Yn(afo) = 2/1 + 1/(2a2~ifo. Then, applying Lemma 2.1, we have 

the following. 

Theorem 3.5. With respect to the L2 distance, for the Sierpinski-bucket algorithm 

for tours, we have 

'o{a) { 

:::: 2Jl + l/a2 (0 < a :s; 2v2) 

a 4 
(2V2 :::: a :::: 4) , TO = 2. <-+-- 4 a 

=2 (a ~ 4) 
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FigA.1. Proof of Lemma 4.2 

(Note that, for the Sierpifiski-bucket algorithm, for matchings, without preprocess and 

with tour, ILo(a) = To(a)/2.) D 

4. Hilbert-Curve Algorithms 

Let H(n) be the supremum of the costs of paths starting from the initial point, termi­

nating at the last point of the Hilbert curve and connecting arbitrary n points in the unit 

square which are constructed by the Hilbert-curve algorithm. By definition, we have the 

following. 

Lemma 4.1. For the Hilbert-curve algorithm, we have Tn :::: H(n) + 1. D 

In the sequel, we shall evaluate H(n). 

Lemma 4.2. H(n) satisfies the following. 

4 1 4 

H(n) :::: max{ L 2H(ni) I L ni = n, ni ~ 0, integers}. 
;=1 i=1 

(4.1) 

Proof: For any path obtained by the Hilbert-curve algorithm starting from the initial 

point Ps and terminating at the last point Pt. consider a path obtained from that path 

by dropping at each point Pt, P2 , P3 as in FigA.1. Then, the lemma immediately follows 

from the triangle inequality of the distance. D 

4.1. Worst-case analysis with respect to the Loo distance 

H(O), H(l) and H(2) can be easily computed, and then, using (4.1), we have 

H(O) = 1, H(l) = 2, H(2) = 3 and H(3) = 7/2. 

Lemma 4.3. For n with 3 :::: n :::: 16, we have 

70 
H(n) :::: -6-vn. 

(4.2) 

(4.3) 
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Fig.4.2. Hilbert bucket order of 4 X 4 square buckets 

Proof: Since H (3) = 7/2 as obtained in (4.2), we consider n with 4 :::; n :::; 16. In 

order to obtain the lemma, we again adopt the linear-programming approach. Consider the 

partition of the unit square into 4 X 4 square buckets as depicted in Fig.4.2. For any n + 2 

points distributed in this unit square, make a path connecting those points in the Hilbert 

bucket order, where points in the same bucket ,a.re connected arbitrarily. Let h(n + 2) be 

the supremum of lengths of such paths over all possible configurations of n + 2 points. By 

definition, we have H(n) :::; h(n + 2). 

Concerning the set of edges of a path thus obtained, define ni (i = 1, . .. ,6) to be the 

numbers of edges connecting points in two buckets at bucket distance i-I, that is, two 

buckets the difference of ranks of which in the Hilbert bucket order is i-I (for i = 6, 

bucket distance at least 5). For example, nl is the number of edges connecting a pair of 

points in the same bucket. For i = 3 and 5, we separately count the numbers of edges, as 

depicted in Fig.4.3, and denote them by n; and n~, respectively. Define f(n + 2) by 

f(n + 2) == max nl + 2n2 + 2n3 + 3n~ + 3n4 + 3n5 + 4n~ + 4n6 

s.t. nl + n2 + n3 + n~ + n4 + n5 + n~ + n6 = n + 1 

n2 + 2(n3 + n~) + 3n4 + 4(n5 + n~) + 5n6 :::; 15 

n~ + n~ :::; 2 

ni, n~ :::: 0 

(4.4) 

In the above linear program, variables n3 and n5 can be set to be 0 in order to obtain 

the maximum, and then its dual is described as follows: 

g(n + 2) == min (n + l)x + 15y + 2z 
s.t. x :::: 1 

x+y::::2 

x + 2y + z :::: 3 

x + 3y:::: 3 

(4.5) 
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Then, we have 

H. lmai 

Fig.4.3. Edges counted by n~ and n~ 

x + 4y + Z ~ 4 

x + 5y ~ 4 

y,z ~ ° 

1 ~ 1 
H(n) ~ h(n + 2) ~4 f(n + 2) ~ 4y(n + 2). 

Concerning the poly to pe defined by (4.5), its vertices are (1,1,0)' (~,t,t), (2,t,0) and 

(4,0,0)' and hence 

~g(n+2)= { 
1 3 7V3 
-(-n + 10) < - In 4 2 - 6 v'· 

1 7V3 
4(n + 16) ~ -6-v'n 

(4 ~ n ~ 12) 
(4.6) 

(12 ~ n ~ 16) 

Thus, we obtain the lemma. 0 

7V3 
Lemma 4.4. H(n) ~ -6-v'n (n ~ 3). 

Proof: From Lemma 4.3, we have only to consider n ~ 17. Suppose that H(n') ~ 

I:{}H for any n' with 3 ~ n' < nand n ~ 17. For n > 17, if the maximum in 

(4.1) is attained by ni = n, nj = ° (j i= i) for some i, H(n) ~ 3 < ¥y7i. Let ni 
4 

(i = 1,2,3,4) be integers such that L n; = nand ° ~ n; < n. For ni, define s(n;) by 
i=1 

s(n;) = max{3, nil - ni, where s(ni) = 0,1,2 or 3 and 3 ~ ni + s(n;) < n, and let 
4 

s == L s(ni). Since H(l) ~ H(3) - 32"/ for l = 0, 1,2, we have 
;=1 

1 4 1 4 s(n;) 1 4 7V3 V s(ni) 
"2 L H(n;) ~ "2 L(H(ni + s(ni)) - -2-) ~ "2 L( 6 ni + s(n;) - -2-) 

,=1 .=1 .=1 

7V3 s 7V3 s s < -In+s- - < -( In+ -) -­- 6 4 - 6 V Ib 2y7i 4 

< 7V3 In 
- 6 VIb, 
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(a) (b) 

FigAA. Types (a) and (b) offour buckets 

\ 
\ 

(a) 

FigA.5. Location of points for four buckets 

. 7y'3 1 
where the last inequality follows from r,;; - - < 0 for n > 17. 

12yn 4 -
o 

We now consider a lower bound of'ilo. Consider the Hilbert bucket order Hi in the 

unit square with k2 buckets (k = 2t where the buckets are named from bI to bk2 in the 

Hilbert bucket order. For each j = 1, ... , k2 /4, four buckets b4j - 3 , b4j - 2 , b4j - I , b4 j can 

be classified by (a) and (b) as depicted in FigAA. For four buckets of type (a), locate 

three points as in FigA.5(a), and, for four buckets of type (b), locate four points as in 

FigA.5(b). We consider four buckets with j =, 1, k 2 /4 are of type (b). Let n(i) be the 

number of points totally located in the unit square, a(i) and b(i) be the numbers of four 

buckets of type (a) and (b), respectively. Then, we have 

n(i) = 3a(i) + 4b(i), 

a(i) + b(i) = 4;-1. 

Concerning b(i), we can easily see the following: 

b(2j + 1)= 4b(2j) - 4, b(2j + 2) = 4b(2j + 1) - 2, 

b(1) = 1, b(2) = 2. 
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Hence, we have 

. 4+16i 
b(2J + 1) = , 

5 

b(
' ) 6 + 4 . 16i 

2J + 2 = 5 . 

That is, a(i) ~ 4i /5, b(i) ~ 4i- 1 /5, n(i) ~ 4i+1 /5, and the length of a path connecting 

those points in the Hilbert bucket order is !.a(i) + !b(i) - ! ~ ~2i ~ 9VS In(i). Hence, 
2' 2' 2' 5 10 

we have the following theorem. 

Theorem 3.6. With respect to the Loo distance, for the Hilbert-curve algorithm, we 

have 

9VS ~ 7V3 
2.012 ~ 10 ::; 70 ::; -6- ~ 2.U21. D 

4.2. Worst-case analysis with respect to the L2 distance 

In the case of the L2 distance, we can estimate TO in a similar but more hard way. 
.m VS 1 . 

In thIS case, H(O) = 1, H(I) = 1 + viz, We see H(2) = v2 + - + -. For H(n) wIth 
2 2 

3::; n ::; 9, by considering 4 X 4 buckets as in the Loo case, we have H(n) ::; f(n)/4 where 

f (n) =: max v'2nI + V5n2 + Vsna + JiOn~ + v'i3n~ 

s.t. 

+VWns + V20n~ + J17n6 + V20n~ + 5n~ + J32n~1 
2]nj + nj) = n + 1 
i 

LU - l)(nj + nj) ::; 15 
i 

n~ + n~ + n~ + n~ + n~ + nil::; 2 

ni, ni ?: 0 

(4.7) 

n6 ::; 1 in the case of n = 3 

ns + n~ + n~ + nil ::; 0 in the case of n = 3 

na + n~ + n6 ::; 3 in the case of n = 3, 4 

n~ ::; 1 in the case of n = 9 

. VS + 2V20 + Ji7 
Lemma 4.5. For n wIth 2 < n < 9, H(n) < v'3 yn. - - - 4 3 
Proof: The case of n = 2 is directly shown. For n with 3 ::; n ::; 9, an optimum solution 

of fen) for each n is as follows, where we only show the values of nonzero variables. 

n = 3: n2 = 1, n~= 2, n6 = 1; 

n = 5: n2 = 1, na := 3, n~ = 2; 

n = 7: n2 = 5, na := 1, n~ = 2; 

n = 9: n2 = 7, na= 1, n~ = 1, n~ = 1; 

n = 4: n2 = 2, n~ = 2, n6 = 1; 

n = 6: n2 = 3, n3 = 2, n~ = 2; 

n = 8: n2 = 7, n~ = 2; 
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~ VS + 2y'20 + V17 ~ VS + 2y'20 + V17 
/(3) = J3 y'3, and f(n) < J3 .;n for n with 4 ~ n ~ 9, 

and we obtain the lemma. D 

Using these values, we have the following. 

VS + 2\1"20 + V17 
Lemma 4.6. We have H(n) ~ 4y'3 Vn (n 2: 2). 

Proof: From lemma 4.5, we have only to consider n 2: 10. Suppose that the lemma 

holds for n' with 2 ~ n' < n, and consider H(n). For n 2: 10, the maximum in (4.1) 

is not attained by ni = n, nj = 0 (j -::/:- i) for i. Let ni (i = 1,2,3,4) be integers such 
4 

that L ni = nand 0 ~ ni < n. For ni, define s(ni) by s(ni) = max{2, nil - ni, and let 
i=1 
4 

S == L s(n,). Then, we have 
i=1 

VS + 2J20 + V17.;n < r;; n. - 4v 3 
D 

Concerning a lower bound, for the same configuration of n(i) points as in the Loo case, 

the length of a path connecting those points in the Hilbert bucket order is 

and we obtain the following theorem. 

Theorem 4.7. With respect to the L'). distance for the Hilbert-curve algorithm, we 

have 

15 + 12VS ~ VS + 2y'20 + V17 
2.092 ~ 20 ~ TO ~ 4V3 ~ 2.209. D 

5. Concluding Remarks 

We can consider a "Hilbert-bucket algorithm" in a way similar to the case for the 

Sierpinski-bucket algorithm and the Sierpinski-curve algorithm. For this algorithm, we 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



66 H.lmai 

can easily (but a little loosely) evaluate the worst-case performance by means of Lemma 

2.1, since we have analyzed TO for the Hilbert-curve algorithm. 

Concerning the average-case performance of the algorithms considered in this paper, 

computational experiments by Sanae [5J (see also [1]) for uniformly distributed n points in 

the unit square suggest that, concerning matchings, the Sierpinski-bucket algorithm may 

be a little better than the spiral-rack algorithm in [8J. It would be interesting to analyze 

the average-case performance of these algorithm theoretically as in [8]. 
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