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Abstract This analysis explores the periodic property of congestion in the streetcars arriving at a station with 

an equal time interval, assuming the Poisson arrivals of passengers. We obtain a stationary condition and some 

properties of the spectral density about the number of passengers on board and consider the periodicity of the 

congestion in terms of numerical examples which show the: existences of three types of spectral density. 

1. Introduction 

In the essay in 1922, a Japanese physicist Torahiko Terada [11] described 

the congestion phenomenon of the streetcar, which is called chin-chin densha 

in Japan. His argument can be briefly summarized as follows. Streetcars 

arrive at the first station at the regular intervals and leave there for the 

next station as soon as the boarding of passengers is completed. Since the 

number of passengers varies from time to time, the staying time of each 

streetcar fluctuates. This fluctuation generates the periodicity of conges­

tion. For example, when many passengers happen to be waiting at the first 

station, this streetcar must stay there for a long time and arrives at the 

next station with delay. During the prol.onged time interval at the second 

station between the departure of the preceding one and the arrival of this 

streetcar, the number of passengers tends to increase and it needs somewhat 

long time again for boarding. In sequence, the similar phenomenon occures at 

the third and the fourth stations and consequently this streetcar becomes 

congested more and more. Conversely the time interval between the departure 

of this relatively congested streetcar and the arrival of the next one ~s 

shorter than the mean time interval and a few passengers board this succeeding 

streetcar. This makes the interval between two streetcars shorter and shorter. 
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2 T. Nakatsuka 

Thus this succeeding streetcar becomes congested less and less. 

Terada found based on his observation of actual schedule at a certain 

point that the congested one comes after the long interval and that the less 

congested one comes after the short interval. Since he was sick, he used the 

above observation for boarding the streetcar with vacant seats. 

Although Terada's essay is famous in Japan and a member of Logergist [7] 

considered the congestion of cars on the highway by analogy with the conges­

tion of streetcars, the present author has found no published literature which 

rigorously analyzed this phenomenon. The purpose of this paper is to represent 

the above phenomenon at the first station as the spectral density. 

We build the model in the next section and provide a stationary condition 

of the model in section 3. For the study of periodicity in a stationary pro­

cess, the spectral distribution function or the spectral density function is 

useful. For example, if the spectral distribution function of a stationary 

process has the jump on a certain point x in the interval [O,rr], it has peri­

odic element with period 2rr/x. We notice the number of passengers on board 

and discuss the general properties of its spectral density function in sections 

4 and 5. Section 6 gives numerical examples. These examples show the exis­

tence of three types of spectral density. 

2. Model 

We consider the following simple model. Passengers arrive at a station 
e e e 

at the time instants '1' '1 + '2' •••. We assume that this input sequence 

follows the Poisson process with intensity A. The streetcars arrive at the 

station at the time instants a, 2a , 3a , ••• without passengers, where a is a 

constant. Let N be a boarding capacity of the streetcar. Although several 

authors (e.g.[2)[10)) study about the variation of time when passengers need 

to board, we assume for brevity that each passenger's boarding time is con­

stant and we represent it as b. Let Ln be the number of the waiting passengers 

at the arrival epoch of the nth streetcar, and let Sn be the number of passen­

gers boarding the nth streetcar, which represents the congestion of the 

streetcar. If Ln = 0, the streetcar does not stop at this station and Sn = O. 

If Ln ~ N, the streetcar leaves at time na + Nb and Sn = N. When 0 < Ln < N, 

the streetcar stays there till no waiting passengers exist or till the time 

na + Nb. Let rn be the number of passengers remaining at the station when the 

nth streetcar leaves. We assume that Nb ~ a, which means that the streetcar 

starts before the arrival of the next streetcar. Figure 1 illustrates an 

example for N = 6. 
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Arrivals of passengers 

o 
time 

s =2 
1 a s =5 2 a s =0 3 a 

s =6 4 a 

Arrivals of streetcars 

Figure 1. 

3. Stationary Condition 

In our model {Ln , n~l} and {(S , r ), n~l} are Markov chains. Since we 
n Il 

are interested in the Sn' we consider about the sequence {(S , r )}. We call 
n n 

the state {Sn=i, rn=O} as state i and the state {Sn=N, rn=i} as state N+i. 

Let P .. be the transition probability from state i to state j and 
~J i=O 1 ••• 

P = (Pi}j=O:': ... be the transition matrix. Since {(Sn' rn)' n~1} ~s an 

irreducible Markov chain, there is a limit u . for each j such that 

lim p~~) = u.. J 
IJ-><lO ~J J 

Theorem 3.1. There is a stationary distribution of the Markov chain 

{(S , r )} if and only if Aa < N. When \a < N, the mean of Sn in the sta­
n n 

tionary Markov chain {(Sn' rn)} is Aa. 

3 

Proof: Let f be the number of total passengers arriving at a station on 
n 

the time interval (0, na). The numbers of passengers arriving at the time 

interval (ia, U+1)a], i=O,'" ,n-1 are mutually independent so that by the 

strong law of large numbers, 

0.1) w.p.l. 

(Sufficiency) We assume that Aa < N. M1en each state is nonrecurrent, the 

Markov chain will be in each state only finitely often ([1] p.20, Corollary 

of Theorem 3), so 
n-1 

lim ~ s./n = N. 
IJ-><lO i=l ~ 

that lim rn = '" with pl~obabi1ity one. 
n--

This contradicts (3.1). 

Hence lim f /n ~ 
n 
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4 T. Nakatsuka 

When each state is recurrent null, 

streetcar numbers carrying j passengers. 

is the mutually independent positive sequence. Therefore 

lim 
IT­
~ n 

f /j)lp = Ei j ) = 00 w.p.l. 
. 2 J. J. 

J.= (.) 

Let i(j, n) be the integer such that k(j) 
i(j,n) 

< k .J(. ) I' Since lim i(j,n) = 00 w.p.l, 
J. ],n + n-+<» 

Hence 

i(j,n) (j) i(~,n) (j) n-;.oo 
--'-''-!--'--;;: i(j,n)lk.(. ) = i(j,n)1 l. X __ O. 

n J. ],n q=1 q 

n-I 

L s.ln 
i=1 J. 

N-I 
liminf {N(n-l- L i(j,n» + 

j=O 

= N. 

N-I 
L ji(j,n)}/n 

j=O 

This contradicts (3.1). 

When each state is nonnull recurrent, the stationary distribution exists 

by the well known theorem ([I] I §6 and §7). 

(Necessity) We assume that ui > 0 for all i. Let sn be the random variable 

which means the number of elements of the set {i: i ~ n, S. < N}. Then 
J. 

N-l 

n-l 

lim S In = L u. > 0 
n i=O J. 

w.p.l, 

(see [1] p.93, Corollary I) and therefore limsup L s.ln < N with probability 
n-+<>o i=l J. 

one. If we select the sequence n. such that s < N, 
J. n. 

Aa lim f In 
n 

lim f In. ~ liminf 
i-+<» n i J. i-+<» 

J. 

n. 
J. 

L s].lni < N 
j=l 

w.p.l. 

Lastly we will consider the mean ES
n 

of the stationary distribution. 

If Aa < N, there is an infinite sequence n. such that S O. Hence we 
] n. 

obtain J 

ES 
n 

N-I N-l 
L iu. + N(1- 2. u.) 

i=O J. i=O J. 

n .-1 

j-I 

lim L S .lj, 
j-+<» i=l J. 

lim 1 S .In . 
j-+<» i=O J. ] 

lim f In. 
j-+<» nj ] 

Aa. 

w.p.l. 

Q.E.D. 
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Strictly speaking, Sn in Figure 1 is not the stationary process, because 

the initial condition LO is assumed to be zero. In what follows, we assume 

that Aa < N. Since there is the stationary distribution under this assumption, 

we can make the stationary process Sn by giving the stationary distribution 

to the dummy streetcar (SO' rO) or Lo' 

We will show the absolute continuity of the spectral distribution of the 

stationary Sn process. As the preparation, we will 

P and the rate of convergence of each state. Let A 
i=O 1 ••• 

B (S .. ) . 0' l' be the matrices whose components 
~J J= , ,'" 

find the transition matrix 

= (a )i=O,I, ••• and 
ij j=O,I,'" 

are respectively 

a .. 
~J 

jlSn-l = minU, N), r n- 1 = maxU-N, O)} 

pr{Sn = min(j, N), rn = max(j-N, 0) I Ln 

Then P is given as P AB. The a .. is given as 
~J 

a .. 
~J 

{A (a-ib)}j 
j! 

-A(a-ib) 
e 

{A (a_Nb)}j-i+N e-A(a-Nb) 

(j-i+N) ! 

o 

i}. 

i < N 

i ~ N, j ~ i-N 

: i ~ N, j < i-N. 

To obtain S .. , consider the case that N ,= 00 and a = 00. Under the condition 
~J 

that there are i waiting persons just be:Eore the arrival of a streetcar, we 

define p(j,kli) as the probability that not less than j persons board and k 

persons remain just after the j-th person's boarding. That is, 

(4.1) 

p(j,kIO) = {~ j = k = 0 
otherwise 

j+k-i ({'b)n ., l'. ~I\ e-~Abp(j-i,kln) 
n=1 n! 

p(j,kli) = 0 

~ i < j 

j '" i ~ j+k 

: j+k < i. 

Then, returning to the model with finite N and a, the S .. is represented ,by 
~J 
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6 T. Nakatsuka 

I 
p(j,O I i) i ::;; j < N 

Sij P(N,j-Nli) j ;::; N 

0 otherwise. 

Since p(j,kli) is obtained recursively by (4.1), we can obtain Sij and the 

transition matrix. 

Lemma 4.1. 
infinite. 

The radius of convergence of the power series ~ P . . x
j is 

j=O 1.] 

Proof: If s ;::; and t ~ 0, then from (4.1) 

p(t+s,m/ t) 
m+s (tAb)j 
~ ., exp(-tAb)p(s,m/j) 

j=l J. 

so that by the mathematical induction method with respect to s, we obtain 

(t+s)m+s m+ 
p(t+s,mlt)::;; (m+s)! (Ab) sexp{-(t+s)Ab}. 

Hence when 0 ::;; t ::;; N-1 and x is positive, 

N-1 . 
I P (j , 0 It) x J + 

j=t 

00 

I P(N,j-Nlt)x
j 

j=N 

N-1 . t N-l (NAb)j-t . 
::;; I p(j,O\t)xJ+x exp(-NAb+NAbX)- ~ (j-t)J exp(-NAb)X]. 

j=t j=t 

When t ;::; N, 

I P(N,j-Nlt)x
j 

j=t 

t 
x exp(-NAb+NAbx). 

Since, for a positive x, 

r . r r . 
lim I P . . x J = lim I a.· t I St .xJ ::;; 
r+oo j=O 1.J r+oo t=O 1. j=t J 

00 

r . 
lim I a.· t I St .xJ 

r+oo t=O 1. j=t J 

~ P . . x j converges absolutely for any complex number x. 
j=O 1.J 

< 00, 

Q.E.D. 

Lemma 4.2. For each positive integer d there is a constant K . . such 

that Ip~~)-u.1 < K . .lnd (i,j"'O,l,"')' 1.J 
1.] J 1.J 

Proof: Popov ([9] Theorem 2 and 3) showed that this lemma holds if there 

are numbers g~O)=l, g~t);::;O (t=1,2,"',d: j=0,1,2,"') such that for t=l,"',d 
] ] 
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where t C5 
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00 t (5) 
I P . . I t C g. 

j=O ~]5=0 5] 

t! For S!(t-5)! 

(t) 0 j 

gj = 
{ M nj 

j 
t t 

i > 0 

i 0 

t > 0, we will find (t) 
gj 

0, t > 0 

> 0, t > 0 

with the 

where M
t 

and n
t 

are positive numbers. Then (4.2) becomes 

(4.3) 

where M 
o 

P. + 
~o 

i > 0 

i 0 

1. 

form 

When i = 0, (4.3) holds for any M 
. . 5 

and n5 by Lemma 4.1. We consider the 

7 

case i ~ 1. Since P .. 
~J 

(Aa)r~+N -Aa 
= U i+N)! e (i~2N , j'?,i-N) and P . . = 0 (i~2N, j<i-N), 

~J 

P. + 
~o 

P. 
~o 

t-1 . 
+ 1'. t C M 1'. P . • n] + 

5=0 5 5 j =1 ~] 5 

We will show the existence of numbers (1.:)nO<n 1 < ••• <nd satisfying the inequali­

ties 

(4.4) (t=l,"',d) 

and 

00 

(4.5) I P .. n~ < n! 
j=l ~] 

U=l,· .. ,2N-1). 

Then we can obtain M
t 

recursively. That is, for given MO,···,M
t
- 1 the 

inequality (4.3) is satisfied if M
t 

is sufficiently large. 

Since the function x-Nexp(-Aa+Aax) is smaller than 1 on a certain interval 

(1,5 1) of x, it suffices to prove the existence of the value 52 such that 

(4.6) i 
< x (i= 1, ... ,2N- I) 

for any x such as 1 < x < 52' When P. > 0, from Lemma 4.1 the inequalities 
~o 
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8 T. Nakatsuka 

of (4.6) hold in the neighborhood of x = 1. In the case Pia = 0, i.e., the 

case N < i < 2N, the inequalities of (4.6) hold if we get the inequality 

(4.7) 

for 

; jB
tj 

S N~b + t, 
J=l 

d j (a I P .. x ) -1 
x j=l ~J x-

In the case t ~ N, since 

4 a. it (N~+t) 
t=~-N 

~a + i - N < i. 

I (j-t) B
t 

. 
j=t J 

(N~b)j-t I (j-t) (j-t)! exp(-N~b) 
j=t 

(4.7) holds. 

N~b, 

In the case t < N, we will prove first the inequality 

5 5 

(4.8) r Bt' ~ ; Bt+l j+l 
j=t J J=t ' 

for all s. 

Let (na <) xl < x
2 

< ••• be the arrival instants of passengers after the time 

instant na. Let ~(Ln,xl,x2'···) be the state number of (Sn' rn) when the nth 

streetcar leaves the station. Since the arrival instants of passengers follow 

the Poisson process, the probabilistic behavior of {x.} does not depend on the 
~ 

value L • 
n 

5 

Hence r Bt+ '+ (p = 0 or 1) is the probability of the set 
j=t P,J P 

Ap = {(x1'x2 ,···): t + P S ~(t+P,xl,x2'···) S 5 + p}. 

Let the sequence {x.} be given. If the nth streetcar with L = t leaves at 
~ n 

na + cb and if the rn passengers remain there at na + cb, then there are the 

rn + 1 passengers at the platform just before na + cb in the case Ln t + 1. 

This means ~(t+l,xl,x2'···) ~ ~(t,xl,x2'···) + 1 and so Al c= AO' from which 

we obtain (4.8). Hence 

k k 
I (j-t)B . = I (1- I B

t
') S 

j=t tJ k=t j=t J 
I (1- I Bt+l '+1) 

k=t j=t ,J 
I (j-t)B t + 1 '+1' 

j=t ,] 

Repeating this procedure, we obtain 

N~b. Q.E.D. 
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Theorem 4.3. If Aa < N, the spectral distribution F of the stationary 

S process is absolutely continuous and its spectral density function is an 
n 

infinitely differentiable function. 

And 

Proof: The autocovariance Yk is giv,~n as 

Yk E(Sn - ESn ) (Sn+k - ESn +k ) 

N 

I ij[Pr{S =i, S =j} - Pr{S =i}Pr{S =j}). 
i,j=O n n+k n n+k 

pr{Sn=i, sn+k=j} - pr{S =i}pr{S =j} 
n n+k 

(k) 
u

j
) i u. (P .. < N, j < N 

~ ~J 

N-l 
p1~» u. I (Ut i < N, j N 

~t=O 

N-l 
(k) I (u. Ptj )u

t 
i N, j < N 

t=O ] 

N-l N-l (k) 
2: Uh I (p ht 

- U ) i j N 
h=O t=O t 

(k) (k) 
where P = (P .. ) is the k-step transition matrix of (S , r). Hence we 

~J n n 
obtain lim Y

k 
= O. Therefore F is continuous (see [3] p.495 Theorem 7.2 or 

k--
[8] p.246 Theorem 8.4) and it is represen1:ed as 

Y n. 
o ~ s~n sx 

F (x) = - x + 21 im L Y s -----:;rs--
71 n+oo s=1 

(see [3] p.482 or [8] p.36). Since the finiteness of I IYsl is easily 
d Y n. s=O 

derived from Lemma 4.2, -d (~x + 2 I Y s~n sx) converges uniformly as 
x 71 s=1 S 7TS 

-1 n 
n ~ 00. Hence F(X) has a derivative F'(X) = 71 (Y + 21im I Y cos sx) and 

o n-+«> s=1 s 
by the Lebesgue's bounded convergence theorem F is absolutely continuous. 

Similarly the infinitely differentiabi1ity of the spectral density function 

9 

follows from the finiteness of I skl Y I :cor the arbitrary positive integer k. 
s=O s 

Q.E.D. 

By this theorem the spectral density f(x) on [0, 71] is represented as 

f(x) = Yo 
+ ~ I Y

t 
cos tx. 

71 t=1 

Especially f(O) is given by the next theorem. 
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Theorem 4.4. 

f(O) = Aa 
TT 

Proof: By [8] p.274 or [4] p.52, 

f(O) 
1 n 

I im - Var ( Is. ) 
~ nTT i=l ~ 

Hm J....- E (L + f - L 1 - nAa) 2 • 
nTT 0 n+1 n+ 

n-+<oo 

Let x. be the number of passengers coming from (i-1)a to ia. If Var(L ) 
~ 0 

Var(L 1) < "', then (4.9) is n+ 

f(O) 
1 n 2 

lim - E{ I (x. - Aa)} 
~ nTT i=l ~ 

1 = - Var(X.) 
TT ~ 

We will prove the finiteness of Var(Ln ). Let Ln , Sn and in be the 

Ln' Sn and rn respectively in the model of b = O. In this particular case 

r = max(r + X 1 N 0) n+1 n n+ -, . 

This is the well known form of waiting time of the queueing model GI/G/1, so 

that by the Kiefer-Wolfowitz' theorem (see [5] or [6]) r has the finite 
n 

moment for any order. Hence L has also the finite moment for any order, 
n 

because of the relation i r 1 + Xn ' For the L in the model with the n n- n 
positive b, the inequality; Ln ~ Ln holds if LO = LO' Moreover the number 

t. of elements of the set {i : i ~ n, LO = 0, L. = j} satisfies lim t. /n 
In _ ~ ~ In 

pr{Ln = j} and similar argument holds for Ln' Therefore Ln has the finite 

moment for any order. 

Q.E.D. 

5. Case for N = 1 

We now consider the special case N = 1. In this case the exact value of 

u. will be obtained. Each transition probability P .. is easily derived such 
~ ~J 

as 

P 
00 

-Aa 
e 

(j ~ 1) 
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Plo e 
-A (a-b) 

P
lj 

"A
j 

-Aa( j 
= -:--; e a 

J. 
- b

j
), (j ;;; 1) 

and for i ;;; 2, 

0 
P .. { (Aa)j-i+l -"Aa ~] 

(j-i+1) ! e 

". > j+l 

00 

To derive the stationary distribution uj ' we let u(z) L U .zj. Then 
j=O ] 

00 j+l . 
L ( L U.P . . ) z] 

j=O i=O ~ ~] 
U (z) 

L (u P ,+ulPl .)zj + L L U.P . . zj 
j=O 0 OJ J i=2 j=i-l ~ ~] 

{ -"Aa -"A (a+b) (l-z) -\(a+b)+Abz} -"A (a-b) -"Aa+"Abz 
Uo e +e -e + ul{e -e } 

+ z-l e-"Aa+"Aaz{U(z)_u } 
o 

Therefore 

11 

-"Aa -"A (a+b) (l-z) -"A (a+b) +Abz -Aa+"Aaz -"A (a-b) -Aa+"Abz 
uo[z{e +e -e }-e ]+zul[e -e ] 

U (z) 
-Aa+"Aaz z - e 

By L'Hospital's theorem and u(1) = 1, we can derive 

(5.1) 

From u 
o 

(5.2) 

-"Aa (l+"Ab-Abe )u 
o 

L u .P. , 
i=O ~ ~o 

- "Abe-Aa+"Abu = 1 - "Aa. 
1 

(1 - e-"Aa)u -"Aa+"Ab = O. o - e u l 

By solving (5.1) and (5.2), we obtain 

u 
o - "Aa 

(e"Aa-Ab _ e-"Ab) (1 - Aa). 

Hence, although the calculation is cumbersome, the other u.'s are found such 
~ 

as 
i i-k i-l l-k-l 

= -"Ab(l_\){ ~ ("Ab-k"Aa) ,k"Aa_ ~ ("Ab-k"Aa) k"Aa} (.1'=2,3, ••• ). 
u, e I\a L ('-k)1 E_ L ('-k-l)' e , 
~ k= 1 .1. k=O ~ . 

Next we will consider the properties of Sn in the steady state. 
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12 T. Nakatsuka 

Theorem 5.1. In the steady state with N = 1, Var(S ) = Aa(l-Aa) 
. 1 n 

COV(S , S k) n n+ 

Proof: 

(5.3) 

_kAak~l k]- . 
(l-Aa) [-l+Aa+e I -.,- (k-j) (Aa)]], (k=1,2,"')' 

j=O ]. 

2 Pr{S =S =1} - (pr{Sn=l}) n+k n 

1 - 2u + pr{S k=ols =O}u - (Aa)2 
o n+ n 0 

and 

Hence var(Sn) = Aa(l-Aa). We will obtain pr{sn+k=olsn=O} for a positive 

integer k. Let X
k 

. be the probability that j passengers arrive in the inter­
,] 

val (na, na+ka] and that less than k - P passengers arrive in the interval 
-Aa 

(na+pa, na+ka] for p=0,···,k-1. Since X
1

,0 = e and 

1 

~ (Aa)i -Aa 

= Oi~Oi! e ~-1 ,j-i 
Xk,j 

j < k 

j ~ k, 

we find by the mathematical induction method that 

(j < k). 

Hence we obtain theorem by substituting pr{S k=ols =O} n+ n 

k-1 
I X

k 
. into 

j=O ,] 
(5.3) . 

Q.E.D. 

Corollary. The autocovariances Yk = cov(Sn' Sn+k)'s are positive for all 

k and decreasing monotonically. 

Proof: 
_kXk~l k j - 1 . 

We define hk(x)=e L -.-,- (k-j)x]. 
j=O ]. 

Then positivity follows 

from hk(O) = 1 and from 

a 
ax {-l+ x+hk (x)} 

For all k 

k-l 
1 - e-kx L ~ (kx)j > O. 

j=O ]. 

1 
J {h"(x) - h" (x)}ax o k k+l 

1 
= ~ f xk - 1e-kx{kk+1 - (k+l)k+l xe-x}ax 

k! 0 

kk1 1 k+1 k = ~ J y - e -y ay - --, J y e- y dy 
k! 0 k. 0 
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Periodicity of Streetc'If' Congestion 13 

k+1 
{kke-k - J le-YdY} 

k! k 

> 0 

and h~(O) - h~+I(O) = O. Moreover, h~(x) - h~+I(x) is positive if 0 < x < x* 

and negative if x* < x < I, where x* is the unique root on (0,1) of h~(x) 

h~+I(x) = O. Therefore h~(x) - h~+I(x) ;. 0 for all x on (0,1). Hence 

6. Numerical Examples 

Aa 
(I-Aa)! {h~(X) - h~+I(x)}dx 

o 

> O. 

Q.E.D. 

The spectral density functions and autocorrelations of S discussed above 
n 

were calculated for N = 1,2,4 and 20 by the computer. These functions with 

N larger than I depend on the three parameters Aa, Ab and N and these para­

meters must satisfy the relation NAb :£ Ai! < N. In the case N = I it depends 

only on Aa. 

When N is larger than I, it seems difficult to obtain the stationary 

distributions by the analytical method. Here we used the approximate method. 

The 400 x 400 north west corner truncation P of P was substituted for P and 

the stationary distributions were obtained by multiplying the vector (1,0,0, 

••• ) by P repeatedly. Next, the 400 x N left half of pS was computed and 

the autocovariances y 's were derived by the equations in Theorem 4.3. 
s 

Lastly, the spectral density was obtained by the following approximation: 

Yo 2 p 
f(x) = 1T + IT I Ys cos sx, 

s=1 

were p = lOO '" 300. Figure 2 '" 14 show these spectral densities. Fortunately, 

since the values of the mean ES
n 

and f(O) are known, we can check the goodness 

of approximation. The differences between the means of the calculated distri­

butions and the true mean Aa are less than 10- 5 , even if Aa = 0.9N. 

These figures show the existence of three types of the spectral density 

on [0, rr], i.e., the monotone decreasing functions, the monotone increasing 

functions and the functions which decrease till a certain point and increase 

thereafter. In particular, in the case N = I, the relation f(O) > f(rr) holds 

from Corollary of Theorem 5.1. This relation and Figure 2 suggest that there 
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0.2 

0.1 

Aa=0.5 

Aa=O.l 

o 11 x 

Figure 2. Spectral density: N 1. 

0.5 0.5 

0.4 ).a=1.4 0.4 

0.3 0.3 

0.2 0.2 

0.1 0.1 

0 0 
0 11 0 11 

Figure 3. Spectral density: N=2, Ab=O.2. Figure 4. Spectral den'sity: N=2, Ab=O.4. 
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0.5 0.5 

0.4 0.4 

0.3 0.3 

.1.a=1.2 

0.2 .1.a=1.4 0.2 

.1.a=1.6 
.1.a=1.6 

0.1 .1.a=1.8 0.1 >.a=1.8 

0 0 

0 TT 0 TT 

Figure 5. Spectral density: N=2, .1.b=o.6. Figure 6. Spectral density: N:2, Ab=O.8. 

1.0 1.0 

0.9 0.9 

0.8 0.8 

0.7 0.7 

0.6 0.6 

0.5 0.5 

0.4 0.4 

0.3 0.3 

0.2 0.2 

0.1 0.1 

0 0 
0 TT 0 11 

Figure 7. Spectral density: N=4, Ab=O.2. Figure 8. Spectral density: N=4, Ab=O.4 
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Aa=2.4 

1.0 

0.9 

0.8 

0.7 

0.6 

Aa=3.2 
0.5 

0.4 

0.3 Aa=3.6 

0.2 

0.1 

0 
0 11 

Figure 9. Spectral density: N=4, Ab=0.6. 

14 

12 

10 

8 

6 

4 

2 

o 0 

Aa=10 

\ Aa=8 Aa=6 
11 

Figure 11. Spectral density: N=20, Ab=0.2. 
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0.8 

0.7 

0.6 Aa=3.2 
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0.4 
Aa=3.6 

0.3 

0.2 

0.1 

0 

0 11 

Figure 10. Spectral density: N=4, Ab=0.8. 
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30 

20 
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11 

Figure 12. Spectral density: N=20,Ab=0.4. 
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18 

16 
40 

14 

12 
30 

10 

20 8 

6 

10 4 

2 

o 0 
11 

11 

Figure 13. Spectral density: N=20, Ab=0.6. F'igure 14. Spectral dens i ty: N=20, Ab=O. 8. 

is only the first type in this case. 

It is noted that these spectral density functions are not convex on [0, TI], 

which is shown as follows. Since I ISYsl < 00 from Lemma 4.2, the derivative 
5=1 

of f(x) is given by f' (x) = - ~ I sy Sln SX. Hence f' (0) f' (n) 0 and 
TI s=l S 

thus f(x) is not convex except for the uniform function. 

The monotone decreasing spectral den.,ity in these figures, for example 

the case for N = 4 and Aa = 3.6, decrease:, rapidly for small x and eventually 

becomes flat. To understand the stationa:ry process with the spectral density 

of this type, it is useful to partition [(x) into the sum of two spectral 

densities fl (x) and f2 (x), where fl (x) has the mass mostly in the neighborhood 

of x = 0 and f 2 (x) is the uniform function. In the stationary process Yt with 

fl (x) the effect of each variable Yt on other variables is positive and re­

mains for a long time. In the stationary process Zt with f
2

(x) each variable 

Zt is mutually uncorre lated. Since our PJ~oce ss Sn is regarded as Y t + Zt' it 

has no periodic characteristics, the effect of congestion of each streetcar 

on that of others is positive and small effect remains for a long time. The 

last one in these three characteristics is more clearly found in the column 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



18 T. Nakatsuka 

Table 1. Variance and autocorrelations, N=4, Ab=0.4. 

Aa 1.6 2.4 3.6 

variance 2.27635 2.27940 0.87577 

1 -0.18254 -1.1707x10- 2 0.22398 

2 4.0442xlO- z 2.1346xl0- 2 0.15143 

3 -7.8976x10-a B.1240XlO- a 0.11541 

i:: 4 1.7076xlO- a 4.1143xlO- 3 9.3332xl0- z 
0 ...... 

5 -3.3451xl0- It 2.1014xl0- a 7.8170x10- 2 ...... 
C\l ...... 

6 7.2683xl0- s 1.1111xlO- a 6.7019xl0- z <JJ 

'"' '"' 7 -1.4090x10- s 6.0091 x 10-'+ 5.8429xl0- 2 0 
u 
0 

8 3.1085x10-s 3. 3098xlO- 1f 5.1589 x l0- z ...... 
;j 
C\l 

9 
"-< 

-5.9012xl0- 7 1.8499 x l0- 4 4.6004xl0- z 

0 
10 

'"' 
1.3375xl0- 7 1.0465xl0- 4 4.1354xl0- z 

<JJ 
11 -2.4506x10-e 5.9802xlO- s 3 .4048x 10 - 2 "Cl 

'"' 0 
12 5.8063xl0- 9 3.4468xl0- s 3.1127xl0- 2 

13 -1.0034xl0- 9 2.0013xl0- s 2.8574xl0- z 

14 2.5558x10- 10 1.1695 x l0- s 2.6323xl0- z 

15 -4.0067xl0- 11 6.8732xl0- s 2.4326xlO- z 

of Aa 3.6 in Table 1, where the decreasing of the sequence {Y
t

} is very slow 

for t G 5. However, it may be difficult to ascertain these effects from the 

real behavior of Sn' because the variance of Sn is small in the model of this 

type and many of Sn take the value N. In other words, the heap in the neigh­

borhood of x = 0 ln the spectral density function means that the overflowed 

customers cause the congestion of the subsequent streetcars. 

When the parameter Aa is near NAb, the spectral density function increases 

monotonically. In this case, the streetcar following the crowded (vacant) one 

is comparatively vacant (crowded). This is clearly shown in the column of 

Aa = 1.6 in Table 1, where the sign of autocorrelation coefficients varies 

alternately. This case is what Terada pointed out. 

Interesting enough, there is the third type of the spectral density 

function (e.g. the case Aa = 2.4 in Figure 8 or Table 1). The function of 

this type changes smoothly. Particularly, if Ab is not large, we can select 

Aa with which the spectral density function is like the uniform function on 

[0, n]. This suggests that if we suitably select the interarrival time of 

the streetcars, we can eliminate both the periodical congestion made by the 
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boarding time and the successive congest:~on made by the capacity of the 

streetcar. 

19 

To state the other property, these figures show that the spectral density 

function is monotonically increasing with respect to Ab for fixed Aa. From 

this fact, when Ab becomes large, the var'iance of S is increasing. Moreover, 
n 

in the spectral density of the first typE the weight of the factor Zt stated 

above becomes large and in the second type the periodical property becomes 

more remarkable. 
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