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Abstract Systems of linear constraints are examined from a qualitative point of view. A property is said to be 

qualitative if it holds for all possible parameter values of certain prefixed sign patterns. In economics, such an 

approach has been traditionally taken within the perspective of comparative static analysis. However, the results 

obtained in this area appear somewhat limited in practical applicability. 

This paper extends qualitative approach to the system of linear constraints in general, and presents necessary 

and sufficient conditions for qualitative feasibility/infeasibility, qualitative boundedness/unboundedness offeasible 

regions, and qualitative boundedness/unboundedness of objective functions. Duality theorem for linear program­

ming problems is reconsidered from the qualitative point of view. Possible application areas of such an approach 

are also discussed. 

1. Introduction 

Systems of linear constraints are fairly common in many areas of sciences, 

including mathematics, operations research, economics and engineering, just to 

mention a few. Theory of linear algebra provides a strong background for 

theoretical analysis of such a system, and recent rapid progress of computer 

technology makes it possible to treat bigger problems numerically. However, 

there are many problems, especially in the area of economics and social 

sciences, which can at best be formulated vaguely in qualitative terms. 

Indeed, theoretical models in economics are often described in terms of the 

structure, with no or only limited amount of information being given. 

A question that may arise in such a situation is to ask whether there 

exist properties that always hold irresp'=ctive to the specific realization of 

parameter values. Such a qualitative approach seems to have its root in com­

parative static analysis [17] of economi,:s, where the central issue is to 
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find the direction of changes ~n endogenous variables induced by a small 

changes in exogenous variables. Stated mathematically, this problem reduces 

to the following question: Given a system of linear equation 

(1) A x + b = 0 

with (A,b) being an mx(n+l) sign matrix, ~s it possible to determine the signs 

of each component of the 11 dimentional solution vector x uniquely? Here, a 

matrix (vector, resp.) is said to be a sign matrix (vector) [7], or alterna­

tively a qualitative matrix (vector) [1], [9], if each entry of that matrix 

(vector) is specified only up to its sign, i.e., +, -, or O. 

For the limited case of m = n with non-vanishing det(A), it is known 

that (1) is sign-solvable, i.e., the sign of x is uniquely determined from 

those of (A,b), if and only if (A,b) is of the following standard form [7] 

= r-
+ + + 

~l 
+ + 

(2) (A,b) 

0 + 

or its slight modifications. (See also [3], [6], [8], [12]) Since such a 

specific pattern of signs seldom occurs in practical applications, the above 

result is of limited significance in practice. 1) 

Another topic of qualitative nature is the problem of qualitative sta­

bility [14], [15], where the problem is to find the sign patterns of A that 

guarantees the stability of 

x = A x 

irrespective to the specific values of parameters in A. Although the complete 

characterization of sign stability has been obtained by Jefferies et al. [4], 

the sign pattern that satisfies the required condition is extremely restric­

tive, and most matrices of practical significance do not seem to pass this 

requirement. 

Thus, although the qualitative approach appears quite attractive ~n the 

sense that it requires neither statistical data nor numerical calculations, 

the practical applicability of the results obtained up to date seems rather 

1) An important exception of practical significance is the Leontief substitu­
tion system [10] whose sign pattern is exactly that of (2). In many 1/0-
models of national economy, the Leontief matrices have been observed to be 
(approximately) triangulable, in which case the result will be the Leontief 
substitution system. 
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limited. However, there exist problems 'where qualitative information is 

actually helpful. For example, consider a set of large number of linear 

equations. Such a system might be feasible or infeasible, and the feasible 

region might be bounded or unbounded, depending on the values of parameters 

in the coefficient matrix. Since such a system of linear constraints arises 

rather frequently in operations research as well as in many other areas of 

sciences and engineering, it is hoped that investigating the qualitative 

properties of such a system might provide a new viewpoint and new techniques 

of analyzing these systems. 

Therefore, the purpose of this paper is to investigate qualitative pro­

perties of systems of linear constraints in its most general form, but before 

stating the problem in mathematical term:>, we need to prepare some notations. 

Notation: 
A, B,... (a, b, .• ) sign matrix (vector) 

A, B, ... (;, b, .. ) numerical matrix (vector) of sign pattern A,B, .. 

(a,b, .. ) 

A
T -T 

, b 

sgn (.) 

transpose of A, b 

sign operator; e.g., sgn(ii) = A, sgn(;) = a 

x ;;; (» 0 : each component of x is nonnegative (strictly positive) 

x ~ 0 : x ~ 0 with some components being strictly positive 

n {1,2, ••• ,n} 

Xs = (x.,x., ..• ,x)T for S = {i,j, ... ,r} ~~, x 
~ ] r 

Ilx 11 Euc1idian norm (=Ix;+x;+ •• . +x~) 
R US 
iff 

!! : R, S~!!, RUS =!!, RnS,. Ijl 

if and only if 

2. Description of the Problem 

(3) 

Consider the set of linear constraints of the form 

A x = 0 x ~ 0 S -

where A is an mXn sign matrix and R US = n. Such a system might be redundant, 

feasible, or infeasible, depending on the specific numerical matrix A of sign 

pattern A. (Throughout this paper, the bar attached to a sign matrix (vector) 

should be interpreted to implicitly represent a numerical matrix (vector) of 

the sign pattern of that sign matrix (vec:tor). Thus, A implies sgn(A) = A.) 

However, for some sign matrices, these properties might be true qualita-
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tively, i.e., they may hold for any matrix A. This paper is concerned with 

these qualitative properties, such as qualitative feasibility/infeasibility, 

qualitative boundedness/unboundedness of feasible regions, and qualitative 

boundedness/unboundedness of objective functions, as well as the conditions, 

or the structure of the sign matrix A, under which these qualitative proper­

ties hold. A few remarks should be made concerning the form of (3) before we 

go on to investigate the c:onditions, however. 

Remark 1: Nonnegativeness of x may be replaced by any other sign pattern 

requirement on x. Indeed, if xi ~ 0 is the original requirement, this can be 

transformed to the condition x. ~ 0 by inverting the sign of the i-th column 
~ 

of A. 

Remark 2: Inequality conditions and inhomogeneous equations can be 

treated within the framework of (3). If, for example, the original system is 

A x + b ~ 0, c x + d = 0, x ~ 0 

we can rewrite the above system as 

(4) 

by introducing the slack variable z and a strictly positive scalar variable y. 

Here, E is a diagonal sign matrix, with all of its diagonal elements being 

strictly positive. With R {y} and S = {x,z}, (4) is precisely of form (3). 

Qualitative information concerning linear systems of constraints TIlight 

be helpful in the following areas of applications: 

(i) Some typical linear programming (LP) problems have significant sign 

patterns, although parameter values may change from one problem to 

the other. See, e.g., [2], [11]. 

(ii) In large-scale economic models, the profit maximizing behavior of 

the component economic agents is often mode led in the form of LP. 

Such a LP problem must be solved repeatedly with different set of 

parameter values, since the overall equilibrium solution is usually 

obtained by some iterative algorithms. 

(iii) Some problems in the area of combinatorial mathematics can be 

formulated in the form of integer programming (LP) problems if the 

feasible region associated with the set of linear constraints is 

bounded [5]. 

In all the above situations, if those properties are known to hold 

qualitatively, i.e., irrespective to the specific values of parameters, we are 

freed from the task of ascertaining those properties for each system. 
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3. Qualitative Infeasibility 

T Let A = (a
l

,a
2

, .•. ,a
m

) be a sign matrix. A has a non-positive (non-

negative, resp.) row if a. ~ 0 (~ 0) for some i(l ~ i ~ m). If the i-th row 
~ 

of A is either non-negative or non-positive, the system (3) implies that 

x. _ 0 for all j satisfying a .. # O. This observation motivates us to intro-] ~J 

duce the following canonical form of a sign matrix. 

Canonical Form of a Sign Matrix: 

Sign matrix A can be transformed, by appropriate permutation matrices P 

and Q, into the following canonical form: 

o 
A* [., PAQ 

* 
Here, A

l
, AZ"'" A.

7
-

l 
are (not necessarily square) sign matrices consisting 

either non-positive or non-negative rows only, while A
J 

containes neither of 

these rows. Furthermore, none of A
l

, AZ"'" A
J 

containes zero columns, and 

A
J 

does not contain zero rows. This transformation of a sign matrix into the 

canonical form can be accomplished by rearranging the columns and rows of that 

matrix in such a way as to move the non-positive and non-negative rows to its 

top left corner. 
T T T T 

Correspondingly, x is rearranged into (xl' x
Z
,···, x J) by 

T T T T 
x = Q(x

l
, x

Z
,···, x

J
) 

Let I
J 

denote the set of indices of x
J 

represented in terms of x. That is, 

if x = (x , x , .•• , x )T, I
J 

~ {p,q, ...• s} ~~. Furthermore, let R
J 

~ Rn I
J J P q s 

and SJ ~ snI
J

. Then, (3) clearly implil~s Xl = 0, X
z 

= 0, ... , x
J

-
1 

= 0, and 

(5) 

Thus, the system (3) is reduced to (5). A is said to be irreducible if A = A . 

Put another way, A is irreducible iff there exist neither non-positive nor 

non-negative rows in A. 

J 
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Qualitative Infeasibility: 

The following lelll\la is needed in the proof of the subsequent infeasibility 

theorem. 

Lemma 1. Let A be an irreducible sign matrix. Then, there exist A and x 

such that A ; = 0, x > o. 

Proof: Since the i-th row of A contains at least one + and one - ele­

ments, we can assign l+a
i 

to the + element, -1 to the - element, and +(-)E to 

all other +(-) elements of that row. Let a i be determined by a i = ~iE, where 

~. ~ number of -'s - number of +'s in the i-th row. For sufficiently small 
~ -

E, l+a
i 

> o. A is obtained by doing the same for all rows. Then, clearly A 

and x = (l,l, .. ,l)T satisfy the requirement of this Lemma. Q.E.D. 

Now we can state the following qualitative infeasibility theorem. 

Theorem 1. System (3) is qualitatively infeasible (QIF) iff R 
J 

4>. 

Proof: If R = 4>, by definition we have R c n\I
J

• However, since x. _ 0 
J - - ] 

for j E ~\IJ' x
R 

= 0, which violates the condition x R ~ O. 

Conversely, if R
J 

f ~, the system (3) can be reduced to (5). By Lemma 1, 

there exists A
J 

to which x
J 

(1,1, .. ,1) is a solution. This and xn\I 
- J 

satisfies all requirements of (3). Therefore, (3) is not QIF. 

4. Qualitative Feasibility 

= 0 

Q.E.D. 

Let the sign matrix A be denoted column-wisely as A = (Cl' c 2 '···' cn). 

We introduce sign convex cones associated with each column of A as follows: 

c. ~ {y E R
m sgn(y) cJ 

] ] 

c. ~ {y R
m -T- ;;; 0 for col E y c. some c. E 

] ] ] ] 

0- ~ {y R
m -T-

cJ C. E y C. < 0 for some c. E 
] ] ] ] 

+ 
~ {y R

m -T-
col C. E Y c. ;;: 0 for all c. E 

] ] ] ] 

0+ 
~ {y R

m -T-
C.} C. E Y c. > 0 for all c. E 

] ] ] ] 

Clearly, by definition we have: 

Lemma 2. + m 0- 0+ 11' -
C. = R \C j' C. R \Cj ] ] 

Proof: See Lanchaster [9] . Q.E.D. 

We are now ready to state the qualitative feasibility theorem. 

Theorem 2. System (3) is qualitatively feasible (QF) iff 
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(6 ) 
(UC~) U(UC~) 
jER ] jES ] 

Proof: Note first that, by Tucker's theorem [13], [20], (3) is QF iff 

~Tc j < ° (j £ R), "!/c j ~ ° (j E s) is infeasible for any choice of A = (cl' 

c2"'" en)' The latter condition can be written as 

( n c-.) n ( n e-.) <p 
jER ] jES ~ 

337 

which is equivalent to the condition of this Theorem. Q.E.D. 

Remark 3. This theorem is a slight generalization of the Lanchaster's 

result (Theorem 5.3 of [9]), which gives the same result for the limited ease 

of S = <p. 

Structures of Sign Convex Cones: 

T Consider the following extended si<;;'n vector e = (e 1,e2 , ... ,e
m

) , where 

e. 
~ 

(e=1 ,2, .• ,m) are non-empty subsets of {+,O,-}. Associated with e, we define 

its convex cOIle represeIltation, Co(e), by 

Co(e) ~ {Y E RID I y = (Y 1,Y2 , .• ,Y
ID

), sgn(y
i

) E e
i 

i=I,2, .. ,ID} 

Another way of seeing extended sign vectors is to consider e as the set of 

allowable sign patterns; namely, 

For a sign matrix A = (c 1,c2 ' ••• ,c ) with c. 
+ n t ] 

T 
(a

1 
.,a2 ., ••• ,d .) , WE~ 
]] ID] 

define the extended sign vectors c. and c. by 
] ] 

ct]. ~ (at 1 .,a
2
t ., ... ,a t .) 

]] ID] 

Here, superfixes + and t are both point-to-set mappings from {+,O,-} to itself 

which is defined by 

ffi ~ {+,O}, {O}+ = * = {+,O,-}, {-}+ 8~ {O,-} 

When we consider c~ and c~ as the sets of allowable sign patterns, we can 
] J 

define their substraction. That is, 

0+ + t 
c j ~ c j \C j 

Note that c~ and ~~ a~ proper representation 
]] + 0+ 

any vector of the sign pattern c. (c., resp.) 
] ] 

+ 0+. 
of e. and C., l.n the sense that 

. ]. + ]0+ . 
ll.es l.n e. (C.) and Vl.ce versa. 

] ] 
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Therefore, by TheorelTI 2, qualitative feasibility of (3) can be tested by 
0+ 

first constructing the vectors of sign patterns c~ (j 
] 

and then checking whether all 3m possible sign patterns 

ER) and c. (j E S), 
] 

are included in 

( U c~) U ( U ~~). 
jER ] jES ] 

Example 1. Let 

A (c"c,) "[ : :J S {1} , R {2}. 

+ T 'l' ~' and + T Then, we have cl (EB, * ,Et) , cl = (0,*,0) , c
2 

(8,EB,8) . 

This system is not QF, since, e.g., 

0+ + 
(-,-,+) rt cl U c

2 
• 

For inequality constrained systems, we can obtain more straightforward 

criterion: 

Theorem 3. Let A be an m x n sign matrix. A x <: 0, x ::: ° is QF .iff 

there exists a non-negative column in A. 

Proof: Since sufficiency is obvious, we only need to prove necessity. 

Suppose the above condition is not true. Then, each solumn of A containes at 

least one - element. Assign -1 to such an element, and +(-)E to all other +(-) 

elements. Doing this for all columns defines;. For sufficiently small E, we 

have IT; ~ _IT. 

If the inequality constraint is QF, there exists x such that A x <: 0, 

x ::: 0. This is a contradiction, since 

1 TA; 1 T (A;) .; ° 
UTA); < 0. 

5. Qualitative Boundedness/Unboundedness of Feasible Regions 

Q.E.D. 

In this section, we consider the special case of (3); namely the system 

of the form 

(7) A x + b = 0, x <: ° 
where (A,b) 1S an m x (n+l) sign matrix. Throughout this section, we maintain 

the assumption that (7) is QF. However, the feasible region of (7) may be 

bounded or unbounded, depending on the parameter values of (A,b). If the 

region is always bounded (unbounded, resp.) irrespective to the specific para­

meter values, the system (7) is said to be qualitatively bounded (unbounded), 
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and denoted QB (Qua). 

The homogeneous system 

(8) A x = 0, x ~ 0 

associated with (7) plays an essential role in developing the criteria for QB 

and QUB. Before stating the theorem, however, we consider the numerical 

versions of (7) and (8). Namely, 

(9) Ax+b=O, x<:O 

( 10) A x 0, x ::: 0 

Then, we have the following: 

Lerrrna 3. Suppose that (9) 1.S feasible. Then, the feasible region of (9) 

1.S unbounded iff (10) is feasible. 

Proof: Assume that ( 10) is feasible. Then, there exists x such that: 
- -

0, 
- O. Also, since (9) is feasible, exists x such that A x x ~ there 

O. = (e > 0). we have A x + b = 0, x <: Let xe x + ex Then, 

A Xo + b 0, Xe ~ 0, lI;e ll + '" (e -+- ",) 

Thus, {xe }e=1,2, ..• is an unbounded sequence of feasible solutions to (9). 

Conversely, suppose that (10) is infeasible. If the feasible region of 

(9) is unbounded, there exists a sequence Xl' x
2

' ••• , such that 

Let ek = Ilxkll, and ;k = ;k/ek' Then, w'e have A ;k + b/ek 
11 zk 11 = 1, and e k -+- '" (k -+- "'). 

Let z* be an accumulating point of {zk} (which does exist, since this 

sequence is bounded on a compact set {z E R
m 

1 z <: 0, 11 Z 11 = 1}), and let k -+- "'. 

Then, we obtain A z* = 0, z* ~ O. This contradict the assumption that (10) is 

infeasible. Therefore, the feasible region of (9) is bounded. 

Now we are ready to state the qualitative boundednessjunboundedness 

theorem. 

Theorem 4. Assume that (7) is QF. Then, (7) is: 

(i) QB iff (8) is QIF, and (ii) QUB iff (8) is QF. 

Q.E.D. 

Proof: (i) Assume that (8) is not QIF. Then, there exists A such that 

(10) is feasible. Since (7) is QF, for an arbitrary b, the feasible region 

of (9) is unbounded, by virtue of Lemma 3. Therefore, (7) is not QB. 

Conversely, if (7) is not QB, there exists (A,b) such that (9) has an 
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unbounded feasible region. By Lemma 3, this implies that (10) is feasible, 

which further implies that (8) is not QIF. 

(ii) Assume that (7) is QUB. Then, for any (A,b) , (9) has an unbounded 

feasible region. By Lemma 3, this implies that (10) 'is feasible for any choice 
-of A. Therefore, (8) is QF. 

Conversely, if (8) is QF, (10) is feasible for any choice of A. By Lemma 

3, this implies that (9) has an unbounded feasible region for any choice of 

(A,b). Thus (7) is QUB. Q.E.D. 

6. Qualitative Boundedness/Unboundedness of Objective Functions 

(11) 

In this section, we consider the qualitative LP problem 

Maximize: Z = cTx 

subject to (p) 

A x :> b, x ~ 0 

where 
[ AcT ba] is an (~1) x (n+l) sign matrix. Throughout this section, 

(11) is assumed to be QF. It is clear that Z is bounded if the feasible 

region of (11) is bounded. However, it mayor may not be bounded if the 

feasible region is unbounded. We call Z qualitatively bounded (unbounded, 
- -

resp.), if for any parameter values of A, b, and c, Z < 00 (Z = 00), and max max 
denote this as Q{Z < oo}(Q{Z = oo}). max max 

Again, before going on, we prepare a lemma for the numerical LP problem 
- -T-

Maximize: Z = c x 

subject to 

(12) A x ,;; b, x ;;; 0 

Associated with this prc!:·lem, we consider the system 

( 13) 
- -
A x " 0, 

-T-
c x > 0 

Then, we have the following well known lemma (See [18] for proof). 

Lemma 4. Assume that (12) is feasible. 

infeasible. 

Then, {Z < oo} iff (13) is max 

We are now in a position to state the following qualitative boundedness/ 

unboundedness theorem of objective functions. 

Theorem 5. Assume (11) is QF. Then, the following three conditions are 

all equivalent: 
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(i) Q{z < oo} 
max 

( ii) A x ~ 0, x 2: 0, e x > ° is Q~[F 

(ill) AT" <: e, " <: ° is QF 

Proof: (i)::' (ii) Obvious from Lemma 4. 
(ii) :t (iii) This is a straightforward consequence of the Slater's theorem 

[13], [19]. Q.E.D. 

Similarly, we have: 

Theorem 6. Assume (11) is QF. Th~n, the following three conditions are 

all equivalent: 

(i) Q{Z = max 
oo} 

(ii) A x ~ 0, 0, 
T 

> ° QF x 2: e x ~s 

(ill) AT" <: e, " ~ ° is QIF 

Proof: (i) "* (ii) Obvious from Lemma 4. + 

(ii) ::. (iii) Also straightforward from Slater's theorem. Q.E.D. 

Qualitative Duality Theorem: 

Combining the above theorems, we can derive a qualitative version of the 

duality theorem for LP problems. To this end, let us consider the dual to 

(p); namely, 

Minimize: W = bT
" 

Subject to (D) 

( 14) 

Then, we havl~: 

Then, 

(i) 

( ii) 

Theorem 7. consider the qualitative LP problem (p) and its dual (D). 

(11) is QF and Q{Z < oo} iff ('14) is QF and Q{W. > _oo} 
max m~n 

Assume (11) is QF. Then, Q{z oo} iff (14) is QIF. 
max 

(ill) Assume (14) is QF. Then, Q{W . 
m~n 

-oo} iff (11) is QIF. 

Proof: Restate Theorems 5 and 6 ,.ith respect to the dual LP problem (D), 

and let the resulting theorems be Theorem 5' and Theorem 6'. 

(i) From Theorem 5, Q{Z < oo} implies that (14) is QF. Then, by Theorem 5'. max 
we obtain Q{w. > _oo}, since (11) is QF. The converse is also true by the 

m~n 

symmetry of (p) and (D). 
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(ii) and (iii) are obvious from Theorem 6 and 6'. Q.E.D. 

Remark 4. Theorem 7 can be readily derived from the duality theorem 

for LP problems [2], [11], but the above alternative derivation serves to 

strengthen the validity oE our earlier results. 
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