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Abstract In this paper, the eigenvalues of the transition rate matrices in a GI/Ek/m queueing system are analyti-

cally obtained for any k and m. First, it is supposed that each channel is distinguishable from others, as a semi

homogeneous queueing system. Here, a transition rate matrix Sm(8) and the eigenvalues of it are easily found by 

the mathematical induction on m, for any fixed k, where 8 is a complex parameter. It can be shown that the matrix 

Sm(8) is similar to a diagonal matrix, and that an eigenvalue of Sm(8) takes the form of a m-sum of d(j)'s, where 

d(j) is the eigenvalue of SI(8). On the other hand, the transition rate matrix Tm(8) in a homogeneous queueing 

system is different from Sm(8) in appearance. But Tm(8) can be made from Sm(8) by using an equivalence rela

tion. Then it can be shown that the matrix Tm(8) is similar to a diagonal matrix, and the matrices Tm(O) and 

Sm(8) have the same eigenvalues except the multiplicity. Finally, to clarify the description, an example (k = 3 and 

m = 3) is shown. 

1. Introduction 

The GI/Ek/m system has arbitrarily distributed inter-arrival times as 

A(t) and an infinite single queue served by m-service channels. The service 

times in each channel have a k-stage Erlangian distribution with mean rate 

~ (homogeneous service system). That is, each service-channel is divided into 

k-phases. The first (or enter) phase is called by 1, the second phase is 

called by 2, __ ., and the last (or exit) phase is called by k. The phase

states in the system are lexicographically arranged in accordance with a 

certain rule which is based on the total number of customers n, so the prob

ability densities Pn;h(t) in the steady state can be put as follows; 

Pn(t) = [Pn;l(t), Pn ;2(t), ..• , Pn;h(t), ... , Pn;M(n)(t)]' (n-=O,1,2, ..•. ) 

where the components of a vector Pn(t) are arranged in the same rule as the 

phase-state order and t denotes an elapsed time since the last arrival time, 
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286 A.Ishikawa 

at this time. 

Here M(n) is correspondingly determined when the each channel is distinguish

able or not (refer to Section 2 and 4). 

(1.1) 

(1 .2) 

and 

Then the balance equations for P (t) are written as 
n 

[~ + ,,(t) + knp]P (t) at n 
kp{G P (t) + H P l(t)} n n n n+ 

P 1 (0) n+ J p (t),,(t)dt 
o n 

or 0 

[~ + ,,(t) + kmp]P (t) = kll{G P (t) + H P 1 (t)} 
dt n m n m n+ 

P 1 (0) = r P (t)" ( t) dt n+ ·0 n 

I P = 1 n 
n 

(n=O,1 ,2, ... ,m-1) 

(n=m,m+l, .... ) 

where the coefficient matrix Gn is of order M(n)xM(n) and Hn is of order 

M(n)xM(n+1), provided that M(n)=M(m) for n~m+l, and 

00 

P = J I P .h(t)dt 
n 0 h n, 

and 
1 d 

,,(t) = 1 _ A(t) dt A(t). 

In accordance with a technique for solving differential difference equa

tions, we seek a solution of the form 

(n=m,m+l .... 

where the complex parameters 8's are independent of nand t, and are concerned 

with the inter-arrival distribution function A(t) (for further details, see 

[3] and [4]). 

In this work, the parameters can be assumed to be known from the beginning 

because we pay attention only to the structure of the eigenvalues, and we 

treat 8 as a fixed parameter. Thus (1.2) is rewritten as 

(1.3) :t ~(t) = kllR(8)~(t) (n=m,m+l, ... ), 

where R(8) G + 8H 
m m 

For any k and m, if all eigenvalues of R(8) are known, we easily find 

~(t) = exp{kJ-lR(8)t}~(0) for n=m, m+1, ... , and work out Pn(t) in (1.1) for 

n=m-l, m-2, ... , 1, O. That is, the matrix R(8) is the key to the balance 

equations. So we discuss the matrix R(8) in the GI/Ek/m system with the 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Eigenvalues of the Transition Matrices 287 

following methods: 

(1) Each channel is distinguishable from others. The queueing system is, so 

to speak, a semi-homogeneous. 

(2) All channels are indistinguishable, as usual. This system is a homo--

geneous. 

In this paper, the matrix R(e) is denoted by Sm(e) in case (1) and by 

Tm(e) in case (2). We take out the connection between S (e) and T (e). Here m m 
the transpose of R(l)/m is usually called a transition rate matrix, so we 

name R(e) the transition rate matrix after R(O/m. The eigenvalues of the 

matrix R(e) are depend on M(n) but in depend of the arrangement in Pn(t), that 

is, the above arrangement rule is not a unique for the eigenvalues of it. 

In the GI/Ek/m queueing system, almost all the researchers in this field 

make use of T (e), yet it is difficult to directly analyse Tm(e). Although 
m 

the structure of S (e) is a simple, it ~s never used directly. So we deduce 
m 

some properties of Tm(e) from Sm(e). Tm(e) plays not only the key to Pn(t), 

but an important role ~n the waiting time distribution (see [4]). 

In regard to the matrix T (e), Shapiro[7] has presented first the eigen
m 

values of T (1) in case 
m 

of k=2(m=2,3, ... ). After that, the characteristic 

polynomial of T (1) has been discussed in case of individual k and m: Mayhugh 
m 

& McCormik[S] have treated it in case of k=3(m=3). Heffer[2] has shown the 

eigenvalues in case of k=2(m=2,3, ... ), k=3(m=2,3,4,S), k=4(m=2,3) and k=S,6 

(m=2). Poyntz & Jackson[6] have dealt it in case of k=3(m=3). On the other 

hand, Yu[8] has considered a heterogeneous GI/E~m) /m system and has discussed 

the matrix S2(1) in case of k=3(m=2). 

Our result in this paper does not contradict the above results, also 

includes them. 

2. Semi-homogeneous System 

In Section 2 and 3, suppose a semi-homogeneous queueing system where each 

channel is distinguishable from others. Namely, each channel is numbered as 

1,2, ... , or m. For n~m+l, let (n;[h 1,h2 , ... ,h
m

]) denote a system-state, where 

n indicates a total number of customers in the system, the notation [h 1,h2 , .. , 

hm] means a phase-state, and then each h
j 

indicates an occupied phase-position 

in the j-th channel (h
j
=1,2, ... ,k and j=1,2, ... ,m). The phase-state [h 1,h2 , 

... ,h
m

] is abbreviated to a phase-state -:lotation Eh' Assuming Eh'S are ar

ranged in the above rule and Eh is also called the h-th phase-state (see Sec

tion 5 as a concrete example). Since ea,::h Eh has one to one corresponding to 
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a repeated arrangement, there are K = km different arrangements of size m with 

replacement from k objects (that is, h=1,2, .. . ,K). Then M(n)= K(n~m) and 

M(n)=(m)kn (O~n~m-l). 
n 

5eeing that 5 (1)/m is formed as a transition rate matrix, the element 
m 

in the g-th row and h-th column of 5 (e) means the situation of the one-stage 
m 

transition from a state Eh to a state Eg . Here, let {Eh (i)} denote the desti-

nations of one-stage transition from Eh' Then the elements of 5m(e) are given 

by 

where 

[S (6)] h m g, 

E 
g 

8 

o 

(Eg=Eh(i) and hifk) 

(Eg=Eh(i) and hi=k) 

(otherwise) , 

[h
1
,h2 , ... ,I, ... ,h ](if h.=k), for g and h = 1,2, ... ,K, and i = 1,2, ... ,m. 

m :L 

2.1. Essential eigenvalues 
In the especial case of m=l, for any fixed k, we have Eh=[h] (h=I,2, ... , 

k). The destination of one-stage transition from Eh is shown as Eh (I)=[h+l] 

(h=I,2, ... ,k-1) or Ek (1)=[1]. The matrix 5
1

(e) forms 

0 0 e 
1 0 0 
0 1 0 

51 (e) 0 0 0 

0 0 0 

The characteristic equation of 51 (e) is given by IdI(1)-5 1 (8) I rf-e 0 

where 1(1) is the identity matrix of order k. 

Let d
j 

denote the j-th eigenvalue of 5
1

(8) and let a(j) denote the associated 

eigenvector of d., then d. and a(j) are given as 
J J 

(2. 1) d. = 
J 

nl; 

(2.2) a(j) 

where nk = e, sk 

conjugate of n. 

k-j 

[d~-1 , N 
J 

(j=1,2, ... ,k), 

k-2 1] , d. , ... , d. , 
J J 

1 (normalization condition) and n is a 

Because d l ,d2 , ... ,d
k 

are distinct, the matrix 51(8) 1S similar to a 

diagonal matrix D (so-called semisimple), as follows; 
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Sl(8) = ADA- 1 

where A = [a(1),a(2), ... ,a(k)] and D = diag {d
1
,d

2
, ... ,d

k
}. 

The above eigenvalues d.'s have an essential role in this work, the details 
J 

will be described later on. 

2.2. The connection between Sm(a) and Sm+1(a) 

289 

denote 

In case of a (m+1)-channel syster~ GI/Ek /m+1, let G
g
=[gl,g2, •.• ,gm,gm+1 1 

m+1 the g-th phase-state for nf:m+2 (g=1,2, ..• ,k ), as well as the m-

channel system. Then, for any G , a certain Eh exists such that h.=g. (j=l ,2, 
g J J 

... ,m) and G =[Eh,g 1]' The destinations of one-stage transition from G are g ~ g 
shown as {[Eh (i),gm+1]}' and [Eh ,(gm+1+'I)] (if gm+1#k) or [Eh ,l] (if gm+1=k). 

Using the notations of the Kronecker product and the Kronecker sum (see 

Appendix), we have 

(m=1,2, ... ), 

where I(n) is the identity matrix of order k
n 

(n=1,2, ... ). 

Namely, the matrix Sl (a)@I(m) implies Cl change of phase in the only (m+1)-th 

channel, one hand I(1)®Sm(a) implies a change of phase in some other channel 

when the (m+l)-th channel is invariant. 

(2.3) 

From the mathematical induction on m, S (a) is given by 
m 

S (8) = 0 Sl (a) m m (m=2,3, ... ) . 

Although S (a) has the multiple eigenvalues in case of mf;2, S (a) always 
m m 

becomes semisimple. 

Theorem 2.1. The matrix S (a) 1S similar to a diagonal matrix as 
m 

S (8) = UXU- 1 
m 

where U = 0 A and X = e D. 
m m 

Proof: It is clear that X=@ D becomes a diagonal matrix, because D is a 
m 

diagonal. 

Next, we proceed with induction on m. We know S (a)=uxu- 1 when m=l. 
m 

From (A.3), (A.4), (2.3) and the inductive hypothesis, we have 

Sm+1 (a) = Sl (a) (8) I(m) + 1(1) @ Sm(a) 

-1 -1 -1 -1 
(ADA ) (8) (UI(m)U ) + (AI(1)A ) (8) (UXU ) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



290 A.Ishikawa 

-1 r::-, -1 
(A 0) If) (D 0) I (m) + I (1) 0) X) (A 0J If ) 

-1 
(0)m+1 A)(8)m+l)(0)m+1 A ). 

This completes the induction proof. 

Therefore, let x(h) denote the h-th eigenvalue of Srn (9) and let u(h) 

denote associated eigenvector of x(h), that is, X=diag{x(l), x(2), ... , x(K)}, 

and U = [u(l), u(2), ... , u(k»), then we obtain 

(2.4) (h=1,2, ... ,K), 
u(h) = a(h ) 0)a(h 1) 0) ... 0)a(h l ) m m-

3. Classification of Phase-states 

For any fixed m and k, a phase-state Eh has one to one correspondence to 

an arrangement of size m, so we shall regard a phase-state as an arrangement. 

Hence, we define the following equivalence relation R. 

Definition 3.1. Two phase-state Eh=[h l ,h2 ,···,hm] and Eg=[gl,g2, ... ,gm] 

are said to be in the relation R, if there exists a permutation mapping cr such 

that cr(Eh)=cr( [h 1 ' h2 , ... ,hm])= [g l' g2' ... ,gm] =Eg • 

It is trivial that the relation R is an equivalence relation. Therefore, 

a set of {Eh} is classified into equivalence classes Cl ,C
2

, ••• ,CL by the rela

tion R. If Eh and Eg are ~n the relation R, then Eh and Eg belong to the same 

class Ca' and then Eh and Eg are congruent in the sense of the repeated combi

nation. From (2.4) and the commutative law of addition, we have the following 

result. 

Theorem 3.1. If Eh and Eg are in the relation R, then the h-th eigenvalue 

and the g-th eigenvalue have the same value, that is, if a(Eh)=Eg then x(h) = 

x(g). But the converse is not true. 

For a phase-state Er = [r 1,r2 , ... ,rm] E Ca' if r 1 ~ r 2 ~ ... ~ rm' then 

we shall call Er the representative state of Ca' And the representative state 

E is also expressed as the notation e, Since a representative state 
r a 

e (=E ) has one to one corresponding to a certain repeated combination, there 
a r k+m-l . ... . 

are L = ( ) dlfferent repeated comb~natlons of SIze m from k objects, 
m 

If Eh and Eg belong to Ca' then for any Eh(i)EC
S

' a certain Eg(j) which be-

longs to CS' exists. Here Eg(j) is a destination of one-stage transition 
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from Eg (j=I,2, ..• ,k). In short, if a(E'h)=E
g

, then for any i, a certain j 

exists such that a(Eh(i»=Eg(j). So we have the following result. 

291 

Theorem 3.2. If Eh and Eg belong to the same class, then each destina-

tion of one-stage transition from Eh consists with a certain destination of 

one-stage transition from E . 
g 

B 

C 

Now, using the relation R, we define the matrices Band C: 

where 

where 

for h=1 ,2, ••• ,K 

b h = 1 (EhEC ) or a , a 
c = 1 (E =e ) 
h,a h a 

and a= 1,2, ... , L. 

b 
a,h 

o (otherwise); 

o (otherwise); 

These matrices can be expressed by the fundamental vectors as follows: 

B 

where 

(3.1) 

And C 

where 

(3.2) 

Here cp(a) 

b = Ha) 
h 

B ' a I f'(r). 

Cs 
c' h 

is 

EEC 
r a 

f(g) 

cp' (a) 

0' 

the a-th 

[C;,C2""'C~]' 

(e
S 

E ) 
g 

(Eh e ) c, 

(otherwise) . 

fundamental vector in the L-dimensional vector space 

(a=1 ,2, ... ,L), f(g) is the g-th fundamental vector in the K-dimensional v.~ctor 

space (g=1,2, .•• ,K) and 0 is the zero vector in the L-dimensional vector space. 

From (3.1) and (3.2), the element of BC becomes 

B' c 
a S 

I f (r)f(g) 
EEC 

r a 

I <5 
EEC rg 

r a 

(where 

E ) 
g 

i) is the Kronecker delta). 
rg 

If a=S, then E ECQ=C and [BC] Q 
g ~ a a,~ 

I, else (afS) E \!i.C and [BC] Q 
g a a,~ 

That is, [BC],:x,S = caS' we have 

(3.3) (the identity matrix of order L). 

O. 
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(3.4) 

Here 

On the other hand, let Z 

c 
Cl 

= f(g) 

A.Ishikawa 

[Zl'Z2, •.• ,ZK] denote CB, then 

E ). 
g 

where e(i) is the i-th fundamental vector in the k-dimensional vector space 

(i=1,2, ... ,k), and the g-th phase-state Eg is described as [gl,g2, ... ,gm]' 

So we have the following Theorem 3.3, 3.4 and 3.5 concerning with the 

matrix B. 

Theorem 3.3. If Eh and Eg are in the relation R; O(Eh)=Eg , then Bu(h) 

Bu(g). 

The proof is led from the next lemma, because any permutation mapping ° 

can be made of the product of the interchange (transposition) mappings 0i's; 

° = °1·°2·····°5· 

Lemma. Let a interchange mapping 01 define (i,j). If 0l(E
h

) 

Bu(h) = Bu(r). 

Er' then 

Proof of lemma: Let Eh denote [hl,h2, ... hi, ... ,hj, ... ,hm]' By the 

assumptions, we have Er = °1 (Eh) = [hl,h2,···,hj •.. ,hi,···,hm]' 

From (3.1), the 8-th component of Bu(h) becomes 

[BU(h)]8 = BSu(h) = L f'(p)u(h) 
EEC 

p 8 

From (2.4) and (3.5), we have 

(8=1,2, ... ,L). 

f' (p)u(h) (e(p )@e(p l)@ ... @e(Pl))'(a(h )@a(h 1)@ ... @a(h 1)) m m- m m-
m 
IT a (p ,h) 

1 v v 
v= 

a(Pl,h 1)·a(P2,h2)"·a(p.,h')'''a(p.,h')'''a(p ,h ) 
1 1 J J m m 

and f'(p)u(r) = a(Pl,h 1)·a(P2,h2)·"a(p.,h')"'a(p.,h')"'a(p ,h ) 
1 J J 1 m m 

where a(x,y) = e' (x)a(y) = [A] . 
x,y 
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Here, let C
S

(l) = C
S
(l;i,j) and C

S
(2) = C

S
(2;i,j) denote disjoint subsets of 

Cs depend on the i-th channel and j-th channel, as follows; 

and 

where 

{E lE ECo , p. 
P P OJ 1. 

p.} 
J 

E = [P1,P2""'P"""P"""P ]. p 1. J m 

So if EptCS
(l), then f'(p)u(h) = f' (p)u(r). If EpEC

S
(2), then Eq exists such 

that Eq=[P1,P2" .. ,Pj"",Pi"",Pm]=ol(Ep )ECS(2), and then we have 

fl(p)u(h) = f'(q)u(r) and f' (q)u(h) = f' (p)u(r). 

As a result, we see that 

[Bu(h) - Bu(r)]S = L f' (p){u(h)-u(r)} 
EpECS 

I f'(p){u(h)-u(r)} + 
EpEC

S
(1) 

I {fl (p)+f' (q)}{u(h)-u(r)} 
E ,E ECo (2) 

p q OJ 

o (S=1,2, ••• ,L), 

which proves this lemma. 

Theorem 3.4. If a(E
h

) 

column vector of S (8). 
m 

Eg , then Bs(h) Bs(g), where s(h) is the h-th 

Proof: From (3.1), the S-th component of Bs(h) becomes 

(S=1,2, ••. ,L). 

Thus the S-th component of Bs(h) means the situation of the one-stage transi

tions from a state Eh to a class CS. Similarly, the S-th component of Bs(g) 

means the situation of the one-stage transitions from Eg to Cs ( =1,2, ... ,L). 

Since Eh and Eg belong to the same class, it is clear that the situation 

of the transitions from Eh and from Eg agree with each other, by the use of 

Theorem 3.2. Thus we get Bs(h) = Bs(g). 

0.6) 

0.7) 

Theorem 3.5. 

BUZ = BU 

BS (8)Z 
m 

BS (8) 
m 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



294 A. Ishikawa 

Proof: From (3.4), the h-th column vector of BUZ becomes 

[BUZ]h BUzh 

BUf(g) 

Bu(g) 

(EhEC
N 

and E =e EC ) 
~ g Cl a 

Namely, we have [BUZ]h = Bu(g) = Bu(h) = [BU]h by using Theorem 3.3, where 

EhEC and C 3e =E. Therefore, (3.6) is led. a a a g 
By the use of Theorem 3.4, the similar proof holds for (3.7). 

4. Homogeneous System 

In this section, we assume the usual homogeneous queueing system where 

all channels are indistinguishable. In this case, we have M(n)= L(n~m) and 

M(n)=(n+~-l) (O~n~m-1). Any phase-state Eh which belongs to Ca is regarded as 

the representative state ea' Thus the element in the a-th row and S-th column 

of the transition rate matrix Tm(6) is given by the sum of one-stage transi

tions from a representative state eS(=EgEC
S

) to a class Ca' after the manner 

of 5 (6). That is, 
m 

[T (6)] Q 

m a,1-' I [5 (6)]h 
EEC m ,g 

h a 

(a and S 1,2, ... ,L). 

Then we have the following Theorem 4.1. 

Theorem 4.1. T (6) = B5 (6)C. 
m m 

Proof: From (3.1) and (3.2), the element ~n the a-th row and S-th column 

of B5 (6)C becomes 
m 

[B5 (6)C] Q = B~5 (6)c Q m a,1-' I-' m I-' 

I [5 (6)]h 
EEC m ,g 

h a 

(a and S 1,2, ... ,L), 

which proves our assertion. 

Let the matrices Y and V denote BXC and BUC respectively, then we obtain 

the following Theorem 4.2. 

Theorem 4.2. 

(4.1) Y = diag{y(l) , y(2), "', y(L)} 
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and 

(4.3) T ( e) = VYV - 1 • 
m 

Eigenvalues of the Transition Matrices 

Proof: We shall prove in order. The element of Y becomes 

L [X] 
EEC h,g 

h et 

as well as BS (e)c. In the same manner as BC = I L , we have [Y] D = x(h) 
m et,~ 

295 

(if a=B and e =Eh ) and [Y] Q = 0 (otherwise), so (4.1) holds. From (3.3) and 
_lcx et, ~ 

(3.6), V(BU C) becomes 

which proves (4.2). From (3.7) and S (8)U 
m 

UX, we have 

T (8)V 
m 

(BS (8)C)(BUC) = (BS (8)Z)UC (BS (8»UC = B(S (8)U)C m m m m 

B(UX)C = (BU)XC = BUZXC = (BUC)(BXC) = VY. 

-1 
Therefore, Tm(8) = VYV holds. 

In other words, (2.4), (4.1) and (4.3) can be rewritten as follows: 

Theorem 4.3. An arbitrary rn-sum of d(j)'s, say d(j )+d(j l)+ ... +d(jl)' 
m m-

is an eigenvalue of S (8) and also T (8). m m 

Theorem 4.4. The matrices S (8) and T (8) have the same eigenvalues 
m m 

except the multiplicity. Furthermore, the matrix T (8) is similar to a 
m 

diagonal matrix, even if it has multiple eigenvalues. 

Theorem 4.5. Let f (A) and F (A) denote the characteristic polynomial of 
m m 

T (8) and of S (8), respectively. Then the polynomials are given by 
m m 

f (A) 
rn 

L 
IT (A - y (a» 

a=l 
and F (A) 

m 

L Ya 
IT (A - yea»~ 

et=l 

where Yl+Y2+" .+yL=K and Ya is the cardinal number of a class Ca (the number 

of elements of a class C :tn a wider sense), a=1,2, ..• ,L. 
a 

On the other hand, any eigenvalue y(= d(jrn)+d(jrn_l)+ ... +d(jl» of Tm(8) 
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always becomes an eigenvalue of T k(8) and also S k(8). Because y+d(l)+ m+ m+ 
d(2)+ ... +d(k) is formed as a (m+k)-sum of d(j)'s and d(1)+d(2)+ ... +d(k) 

2 k-l n(l+s+s + ... +s ) = O. As an immediate consequence of the above results, 

we have the following Theorem. 

Theorem 4.6. In a Gl/Ek /(m+k) queueing system, the characteristic poly

nomial fm+k(A) of Tm+k (8) is divisible by fm(A), and the characteristic poly

nomial Fm+k(A) of Sm+k(8) is divisible by Fm(A). That is, 

where the polynomial gk k(A) is of degree (m+2k-l) 
,m+ m+k 

m+k m and Gk k(A) is of degree k - k . ,m+ 

5. Example 

(m+k-l) 
m 

To clarify the description, we shall discuss the case of k=3 and m=3, as 

an example. First, Sl(8), dj and a(j) are set as, 

S, (,) [~g g 1 ", n", "2 = n<, "3 n, 

.(1) - N [ ~) l' .(2) = +' ,:1 .(3) = N [n ' 
Then the matrices S2(8), S3(8), B, C, ~nn T3 (8) are obtained as follows: 

82 (8) 81 (8)01(1)+1(1)°8 1 (8) 

[S, (') 0 9I~,) I 
= 1( 1) SI (8) 

0 1(1) 8
1

(8) 

o 0 8 000 8 0 0 
1 0 0 0 0 0 0 8 0 
o 1 000 0 0 0 8 
1 0 0 0 0 8 000 
010 1 000 0 0 
o 0 0 1 0 0 0 0 
000 100 0 0 e 
o 0 0 0 1 0 100 
o 0 0 0 0 1 0 0 

8
1 
(8)08

1 
(8) 
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e 

e 

o 

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
010 1 000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 1 000 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
o 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 000 0 0 0 0 0 0 0 0 
o 0 0 0 0 1 0 100 0 1 000 100 0 1 0 1 000 0 0 
o 0 0 0 000 0 1 000 0 0 0 0 0 0 0 0 100 0 100 
000 0 0 0 0 0 0 0 000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 000 0 0 0 0 0 0 0 0 0 1 Q 1 0 0 000 1 0 0 0 0 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 000 0 1 0 1 0 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 

1 0 0 0 0 0 0 0 0 0 
o 1 0 0 0 0 0 0 0 0 
o 0 1 0 0 0 0 0 0 0 
000 0 0 0 0 0 0 0 
000 1 0 0 0 000 
o 0 0 0 1 000 0 0 
o 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 0 
o 0 000 1 0 0 0 0 
o 0 0 0 0 0 0 0 0 0 
000 0 0 0 0 000 
o 0 0 0 0 0 0 000 
o 0 000 0 0 0 0 0 
o 0 0 0 0 0 100 0 T

3
(O) - BS

3
(6)C : 

o 0 0 0 0 0 0 100 
o 0 0 0 0 0 0 000 
o 0 0 0 0 0 0 0 0 0 
00000 000 1 0 
o 0 0 0 0 000 0 0 
o 0 0 0 0 0 0 0 0 0 
000 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 000 
o 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 0 
000 0 0 0 0 000 
o 0 0 0 0 0 0 001 

e 

6 
6 

6 

6 

0 0 6 0 
3 0 0 0 
0 1 0 0 
0 2 0 0 
0 0 2 2 
0 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

297 

e 
e 

e 
6 

6 

6 

6 e 

6 

6 

0 0 0 0 0 0 
6 0 0 0 0 0 
0 26 0 0 0 0 
0 0 0 6 0 0 
0 0 0 0 28 0 
1 0 0 0 0 36 
0 0 0 0 0 0 
1 0 3 0 0 0 
0 1 0 2 0 0 
0 0 0 0 0 
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Here, Eh' Ca' ea' x(h) and u(h) are shown by 

Eh rh
1 ,hZ,h

3
] C e x(h) u(h) 

a a 

1 [ 1 , 1 , 1] 1 1 d(I)+d(I)+d(1)=3n~2 a(1)@a(l)@a(1) 
Z [Z, 1 , 1 ] Z Z d( 1)+d( 1)+d(Z)=lldZ ~+1 } a( 1 )@a(l)@a(Z) 
3 [3,1,1] 3 3 d( 1)+d(1)+d(3)=n{Z ~2+1 } a(1 )@a(I)@a(3) 
4 [1 , Z, 1] Z d ( 1 ) +d ( Z ) +d ( 1) = x (Z ) a( 1)@a(Z)@a(l) 
5 [Z,z,1J 4 4 d(I)+d(Z)+d(Z)=n~{~+Z} a(I)@a(Z)@a(Z) 
6 [3, Z, 1] 5 5 d (1 )+d (Z)+d (3)=0 a( 1)@a(Z)@a(3) 
7 [ 1 ,3,1] 3 d ( 1 ) +d (3) +d ( 1) =x (3) a( 1)@a(3)@a(l) 
8 [Z,3,1] 5 d (1 )+d (3)+d (Z)=x(6) a( 1 )@a(3)@a(Z) 
9 [3,3,1] 6 6 d (1 )+d (3)+d (3)=n{ ~2+Z} a( 1)@a(3)@a(3) 

10 [ 1 , 1 , Z] Z d ( Z) +d ( 1 ) +d ( 1 ) =x (Z ) a(Z)@a(I)@a(l) 
11 [Z, 1 , Z] 4 d(Z)+d(1)+d(Z)=x(5) a(Z)@a(I)@a(Z) 
lZ [3,1, Z] 5 d (Z)+d (1 )+d (3)=x (6) a(Z)@a( 1)@a(3) 
13 [ 1 , Z, Z] 4 d(Z)+d(Z)+d(I)=x(5) a(Z)@a(Z)@a( 1) 
14 [Z,Z,Z] 7 7 d(Z)+d(Z)+d(Z)=3n~ a(Z)@a(Z)@a(Z) 
15 [3, Z, Z] 8 8 d(Z)+d(Z)+d(3)=n{Zs+l} a(Z)@a(Z)@a(3) 
16 [ 1 ,3, Z] 5 d(Z)+d(3)+d(I)=x(6) a(Z)@a(3)@a(l) 
17 [Z,3, Z] 8 d(Z)+d(3)+d(Z)=x(15) a(Z)@a(3)@a(Z) 
18 [3,3,Z] 9 9 d(Z)+d(3)+d(3)=n{s+Z} a(Z)®a(3)@a(3) 
19 [ 1 , 1 ,3] 3 d(3)+d(I)+d(I)=x(3) a(3)@a( 1 )@a(l) 
ZO [Z, 1 ,3] 5 d(3)+d(I)+d(Z)=x(6) a(3)@a(I)@a(Z) 
ZI [3,1,3] 6 d(3)+d(I)+d(3)=x(9) a(3)@a(I)@a(3) 
ZZ [1, z, 3] 5 d(3)+d(Z)+d(I)=x(6) a(3)@a(Z)@a(1) 
Z3 [Z,Z,3] 8 d(3)+d(Z)+d(Z)=x(15) a(3)@a(Z)@a(Z) 
Z4 [3, z, 3] 9 d(3)+d(Z)+d(3)=x(18) a(3)@a(Z)@a(3) 
Z5 [ 1 ,3,3] 6 d(3)+d(3)+d(I)=x(9) a(3)@a(3)@a(l) 
Z6 [Z,3,3] 9 d(3)+d(3)+d(Z)=x(18) a(3)@a(3)@a(Z) 
27 [3,3,3] 10 10 d(3)+d(3)+d(3)=3n a(3)@a(3)@a(3) 

Consequently the characteristic polynomials F
3

(A) and f
3

(A) are given by 

F
3

(A) = A6 (A - 3n)(~ - 3nS)(A - 3nS 2)(A - n[Zs2+s])3(A - n[Zs2+1])3 

(A - n[~2+Z~])3(A - n[s2+Z])3(A - n[Zs+I])3(A - n[s+Z])3 

A6 (A 3 - 278)(A 6 + Z78 2)3 

f
3

(A) A(A - 3n)(A - 3n~)(A - 3ns 2)(A - n[Z~2+s])(A - n[Zs2+1]) 

(A - n[s2+Zs])(A - n[s2+Z])(A - n[Z~+I])(A - n[s+2]) 

A(A 3 - Z78)(A 6 + Z78 2). 
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Appendix 

In this paper, the following terms on the Kronecker product are applied 

(see, for example, Bellman[l] 235-239). 

Definitions: 

(A. 1) 

(A2) 

A@B [a . . B] 
1.J 

A e B = A@I + I @B n m 

(the Kronecker product). 

(the Kronecker sum), 

where A is an mXm matrix and B is an nxn matrix. 

Properties: 

(A.3) 

(A.4) 

(A0B) (C0D) = (AC) @ (BD) (where AC and BD are defined). 

Let (A,x) and ()1,Y) be the eig,envalues and associated eigenvectors 

of A and of B, respectively. Then A@B(x@y) = (A+)1) (x@y). 

Notations: 

(A.5) 0A 
n 

A0A~ ... 0A (the n-time Kronecker product of A to itself). 

(A.6) ~A A@AG) ... eA (the n-time Kronecker sum of A to itself). 
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