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Abstract The multifacility minimax location problem with rectilinear distances is considered. It is reduced 

to a parametric shortest path problem in a network with no negative length arcs. The reduction scheme contributes 

to this location problem and yields an efficient algorithm with time complexity 0 (n max(m log m, n3 )) where n 

and m denote the numbers of the new and existing facilitie,s in the plane, respectively. For a special case the time 

bound is further reducible to 0 (n max(m, n2 ». 

1. Introduction 

There are rn old facilities already located at points (a., b.) for i= 
1. 1. 

1,2, ... ,rn in the plane, and n new facilities are to be located at points 

(x
j

' Y
j

) for j=1,2, ... ,n in the plane. The travel distance between two points 

(Xl' Yl) and (X2 , Y2) in the plane is measured by the rectilinear distance, 

i.e., IX l - x21 + IY l - Y21. In urban situations, rectilinear distances are 

typ ically used. Define the travel cost between an old facility at (a., b.) 
1. 1. 

and a new facility at (x
j

' Y
j

) as 

w .. <la. - x.1 + lb. - y·l) + g .. 
1.J 1. ] 1. ] 1.J 

and the travel cost between a new facility at (x., Y.) and another new facility 
] ] 

at (x
k

' Y
k

) as 

v jk Clx j - xkl + IY j - yki) + h jk · 

The constants w v are considered as nonnegative costs per unit of dis-ij' jk 
tance, while the constants gij' hjk are considered as nonnegative fixed costs. 
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270 T. Jchimori 

The problem of interest, denoted by (P1), is to minimize 

(1.1) 

k=j+1, j+2, ... , n} 

subject to 

la. 
~ 

(1 .2) 

+ lb. 
~ 

d .. for all i and 
~J 

The constraints (1.2) give the upper bounds, d .. ~ ° and c' k ~ 0, on how far 
~J J 

apart facilities may be, (which may be + 00). The distance constraints such as 

(1.2) may be important to facilities of some kind, as mentioned by Schaefer 

and Hurter [12] and Francis et al. [8]. As an example, a fire station may be 

required to be within a specified driving distance of any point that it serves. 

For simplicity, assume that (P1) has a feasible solution that satisfies the 

constraints (1.2) in this paper. 

The minimax location problem such as (P1) may be important to the poor to 

whom the travel costs are the most significant factors, or may be important to 

emergency service facilities such as fire, police, and hospital stations, as 

pointed out by Hakimi [9]. For another application see [13]. 

Special cases of problem (p1) have been studied by some authors. The 

single new facility case, i.e. n = 1, without constraints (1.2) has been 

considered by Francis [5]. And then, Elzinga and Hearn [3] and Francis [6] 

have independently given a closed-form solution to problem (Pl) where n = 1, 

w1j = 1, and glj ~ ° for all j, and constraints (1.2) are deleted. 

Problem (P1) with constraints (1.2) deleted and with g. 0 = 0, hOk = ° for 
~J J 

all i, j, and k, has been studied by Wesolowsky [19], Elzinga and Hearn [4], 

and Morris [17]. Morris [16] has considered problem (P1) with constraints 

(1.2) and gij = 0, hjk ° for all i, j, and k, in the context of linear pro

gramming. Dearing and Frands [2] have solved (P1) with hjk ° for all j and 

k as a parametric shortest path problem. However, their solution procE!dure 

needs a shortest path algorithm which must permit negative length arcs, and it 

cannot solve (P1) if hjk f O. Moreover the time bound of it depends on the 

input data such as costs and upper bounds on travel distances. (The statement 

[2] that their algorithm can run in time O(n 3 log n) is incorrect in this 

sence.) 

The purpose of this paper ~s to develop an algorithm for (Pl) bounded by 
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Multifacility Minimax Location Problem 271 

a polynomial ~n n and m only. This implies that our result obtained covers 

all previous results, considering the computational complexities and capabili

ties of them. To our aim, we also reduce (PI) to a parametric shortest path 

problem ~n a network. However, our network does not contain any negative 

length arc while Dearing and Francis's network contains such arcs. This point 

is critical in constructing an efficient, polynomial algorithm because 

(i) any shortest path algorithm which permits negative length arcs runs nluch 

more slowly than Dijkstra's algorithm (or some variant); 

(ii) lIO algorithm can find a shortest path in a network with negative cycles 

in polynomial time. 

Hence we describe the reduction scheme in detail. After that, we apply the 

parametric approach [15] to the reduced shortest path problem. Then we show 

that this leads to an O(n max(m log m, n 3 » algorithm. Furthermore, we show 

that the computational complexity can further be reduced to O(n max(m, n 2 » 
for a special case. 

A selected bibliography of location literature appears in [7]. For 

location problems involving generalized distances, see, e.g., [18]. 

The organization of this paper is as follows. In Section 2 the reduction 

of (P1) to a parametric shortest path problem is discussed and an efficient 

algorithm for (P1) is presented. In Section 3 a special case of (P1) is men

tioned. Finally a numerical example is -worked out in Section 4. 

2. Reduction of (P1) and Solution Procedure 

In this section we will reduce problem (P1) to a parametric shortest path 

problem in a network in which no negative length arcs exist. 

Lemma 2.1. For two real numbers X and Y, IXI + lyl = max (IX + yl, 
Ix - y I)· 

Proof: Obvious. Q. 

The changes of variables: 

0.. a. + b. for all i 
~ ~ ~ 

13. a. - b. for all i 
~ ~ ~ 

s. x. + Yj 
for all 

] ] 

t. x. - Yj 
for all j 

] ] 

together with Lemma 2.1 yield a problem, to be denoted by (P2), which is 

E. D. 
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272 T. Ichimori 

equivalent to (Pl) . Problem (P2) is to minimize 

max {A .. for all i and j, Bjk for all j and k > j} 
1J 

where 

A .. max (w .. 1 C(. - s·1 + gij' w .. ls. - t .1 + g .. ), 
1J 1J 1 J 1J 1 J 1J 

Bjk max (v·kls. - Ski + hjk' v·klt. - tkl + hjk) 
J J J J 

subject to 

max (la. s·l, Is. tj I) :> d .. for all i and j, 1 J 1 1J 

max (I S . - ski, It. - tkl) :5 c jk for all j and k > j. 
J J 

Since (P2) is separable, it suffices to consider the following two problems 

(P3) and (p4): 

(P3) 

subject to 

min-max (w .. 1 a. 
1J 1 

la. 
1 

d .. 
1J 

SJ.I + g .. 1J 
for all i and j, 

for all j and k > j) 

for all i and j, 

for all j and k > j. 

For simplicity assume a i :: 0 for all i. If the assumption fails, replace 

a i by a i + M for all i and Sj by Sj + M for all j, where M is a suitably large 

positive constant. Note that this replacement makes (P3) remain as it is. 

(p4) 

subject to 

min-max (w .. 1 s. 
1J 1 

Is. t .1 :5. d .. 
1 J 1J 

It. - tk I :0 c jk J 

t·1 + g .. 
J 1J 

for all 

for all 

Similarly, assume Si ::: 0 for all i. 

for all i and j, 

for all j and k > j) 

i and j, 

j and k > j. 

Note that (P3) and (P4) can be considered on a line. Since they are of the 

same type, we concentrate on (P3) only. Problem (P3) can be restated as 

follows: 
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Multifacility Minimax Location Problem 273 

(PS) 

s.t. 

(2.1) 

minimize 

\ a. . 
~ 

S.\ :s. min«A 
] 

g .. )/w ..• d .. ) 
~J 1J ~J 

for all i and j, 

for all j and k > j. 

where we define (A - gij)/wij = 00 and (A - hjk)/vjk 
respectively. 

00 if w .. 
~J 

o and v' k J . 

As a notational convenience. the minimum value of the objective function 

of (PS) will be denoted by A*. Let A = max(g .. for all i and j, h
J
' k for all 

- ~J 

j and k > j). Then it is obvious that A* ~ A. So in the sequel restrict 

A ~ A. Note that all the constraints (2.1) are not satisfied for A < A*. 

Let 

(2.2) 0 .. min(A g .. ) /wij. 
~J 1J 

d .. ) for all i and j 
1J 

(2.3) FOj min (a. . + °i) for all j 
i=1.2 •...• m 

1 

(2.4) F. max (a. - °i) for all j 
] i=1.2 •... ,m 

1 

(2.S) Fjk min(A - hjk)/vjk , c
jk

) for all j and k > j. 

Since F OJ' Fj' and Fjk are functions of A. we may sometimes denote them by 

FO/A) , F . (A), and Fjk(A) , respectively. 
] 

The constraints (2.1) are expressed as (2.6)-(2.8) : 

(2.6) s. ~ So + FOj for all j 
] 

(2.7) s. 
] 

2: F. for all j 
] 

(2.8) IS j - ski $ Fjk for all j and k > j 

O. 

where So = O. From the theory of shortest paths, it follows that linear 

inequalities (2.6) and (2.8) imply the network G with node set {0.1.2, ... ,n} 

and a directed arc from node 0 to node j with length FOj for each inequality 

of (2.6) and an undirected arc between nodes j and k with length Fjk for each 

inequality of (2.8). The network G for n = 3 is illustrated in Fig. 2.1. 
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274 T.lchimori 

F;3 

Fig. 2.1 G for n 3 

It is well known that linear inequalities (2.6) and (2.8) can be satis

fied by the shortest path lengths from node 0 to the other nodes. For any 

A ~ ~, the shortest path lengths can be computed by Dijkstra's shortest path 

algorithm 

a. ~ 0, A 
~ 

o to node 

(P6) . 

(P6) 

s. t. 

[ 1 ] since 

::: gij' and 

j in G for 

minimize 

P .(A) ::: F. 
] ] 

each 

A ~ 

A. 

arc length FOj or Fjk is nonnegative, recalling 

Let P .(A) be the shortest path length from node 
] 

from the above, we have the equivalent problem 

for j = 1,2, ••• , n. 

We will solve (P6) by computing the shortest path lengths from node 0 to 

the other nodes parametrlcally in the parameter A, noting that A* is the 

smallest value of A such that 

P .(A) 2: F. 
] ] 

for all j. 

Obviously, FOj(A) ~s concave and piecewise linear with at most (m + 1) linear 

pieces, F.(A) is convex and piecewise linear with at most (m + 1) linear 
] 

peices, and Fjk(A) is concave and piecewise linear with at most two linear 

pieces. Hence FOj and F. each can be expressed as the form: 
3 

AlA + Bl A ~ A ~ w
1 

(2.9) A2A + B2 w
1 ::: A $. w

2 
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W :5 A < 00 
r 

where A. and B. for j 1, Z, ... , r+l are real numbers, r:5 m, and ~ < w1 < 
J J 

275 

Wz < •••• < wr < 00. It is shown in [15] that the expression entails OCm log m) 

time for each FOj ' Fj' and hence OCnm log m) time for all FOj and Fj for 

j=l ,Z, ••. ,no CThe algorithm due to Megiddo for the minimum of m linear func

tions is different from the "parametric" algorithm due to him.) Each Fjk can 

be also expressed as the form CZ.9) with r :5 1. This takes OCn 2
) time for all 

j and k > j. 

For any fixed value of A, let the feasibility test for problem CP6), i.e., 

whether P .CA) ~ F. for all j are satisfied or not, be denoted by CFT). For 
] ] 

any fixed value of A, the computation time for determining the value of each 

FO .CA) or F. is O(log m) by finding an interval including this A with binary 
] ] 

search, while that for each FjkCA) is O(1). After the computation of FOj ' Fj' 

and Fjk for all j and k > j, which takes OCn log m + n 2
) time in all, PjCA) 

for all j are determinable in OCn 2 ) time by Dijkstra's algorithm. And then, 

the comparisons between P .CA) and F. for j=l ,Z, ... ,n need OCn) time. Hence 
] ] 

the time complexity of CFT) for any fixed value of A is OCn log m + n 2
). 

Since each function FOj or Fj has at most m breaking points and each Fjk 

has at most one breaking point, there are at most 2mn + nCn-l)/2 breaking 

points ~n all. Let the distinct A-coordinates of the breaking points no less 

than A be A = n < n 1 < nZ < .... Because each function P.CA) is strictly - 0 ] 

increasing until its slope becomes zero while each function F.CA) 
] 

is strictly 

decreasing until its slope becomes zero, there exists an interval [n , nr +1] r 
satisfying the following CZ.l0) and CZ. 11) : 

C2.10) P . Cn ) < F. Cn ) ] r ] r for some j 

and 

(2.11) for all j, 

i.e., nr < 1.* ~ nr +1. Such an interval can be found by performing binary 

search over intervals [nO' n 1], [n 1, nz ], [nz, n3], ... , and using feasibility 

test (FT). Then we can obtain the quantities of the form: 

C2.12) F .. (1.) 
~J 

e .. 1. + f.. 
~J ~J 

for each directed or undirected arc (i,j) in G, and of the form: 

CZ.13) F . CA) 
] 

e.A + f. 
J J 

for all nodes j ~n G. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



276 T.lchimori 

To derive the quantities of the form (2.12) or (2.13), it takes time 

0(10g(2mn + n(n - 1)/2»O(n log m + n ) 

o (n2 log (n + m» + 0 (n log m log (n + m» 

o (n log (n + m) max (n, log m». 

At this point all data (i.e. arc lengths) for computing shortest path 

lengths are of the form (2.12) or (2.13). Hence Megiddo's parametric approach 

is applicable to our purpose, see [15] for details. (A good illustration of 

Megiddo's approach is given in [10], although in the context of maximum flow.) 

The parametric computation for the shortest path lengths in G needs 0(n2) 

comparisons since Dijkstra's algorithm does so. The compoarisons each involve 

a feasibility test (FT), which needs 0(n 2
) time since each FO' or F. is now of 

] ] 

the form (2.12) or (2.13) and hence the value of FO .(A) or F .(A) can be deter-
] ] 

mined in 0(1) time for any fixed value of A. Therefore the shortest path 

lengths, P .(A) for all j can be obtained in time 
] 

0(n2) 0(n 2
) = 0(n 4

). 

This is exactly the result given in [15] for this problem. 

After the parametric computation we obtain the following expression for 

P.(A) in terms of certain real numbers e~ and f~: 
] J J 

(2.14) P .(A) = e~A + f~ 
] J J 

L < A ~ U, 

where L satisfies P.(L) 
] 

< F .(L) for some j and U does P.(U) ~ F.(U) for all j. 
] ] ] 

Then, note th~t F .(A) 
] 

e.A + f., L < A ~ U. Denote the set of all j such 
J J 

that P .(L) < F .(L) by J. 
] ] 

Theorem 2.1. Define A. 
J 

(f. - f~)/(e~ - e.) j E J. Then 
J J J J 

max A. 
J 

Proof: Let A* = Ao* Then, for A < A* we have P.(A) < F.(A) for j j* 
J ] ] 

(see Fig. 2.2). On the other hand, for :\ ~ A* we have P .(A) ~ F .0.) for all 
] ] 

j = 1,2, ..• ,no Q.E.D. 
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I 
I 
I 
I 

/! P.iA) 
I J 

I ~ F..(A) 
I I J 
I I 
I I 
I I 

I 
L A* U A 

Fig. 2.2. 

Summarizing what has been discussed above, the algorithm for (P6) follows. 

Algorithm and time complexity 

Sl. Express FD" F" and F 'k for all j and k > j as the form (2.9). 
J J J 

--- D(nm log m + n l
). 

S2. Express F" for all arcs and F, for all nodes in G as the form (2.12) and 

S3. 

S4. 

~J J 
(2.11) , respectively. --- D(n log (n + m) max (n, logm». 

Compute P ,(A) 
J 

Compute 1.* by 

Remark 2.1. 

of the form (2.14) for all 

Theorem 2.1. - D(n). 

The optimal solution to (P3) 

j. - D(n"). 

is given by s~ + p,(A*) 
J J 

j 

2, •.. n. 

Remark 2.2. S3 corresponds to the parametric algorithm due to Megiddo. 

Theorem 2.2. The overall time complexity of the preceding algorithm is 

D(n max(m log m, n 3 ». 

Proof: It is obvious that the time bounds of Steps 1, 3, and 4 are not 

greater than O(n max(m log m, n 3 », Consider the case of Step 2. 

1, 
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278 T. Ichimori 

(i) Let n ? log m, or 2n 
? m. Then 

O(n log (n + m) max(n, log m» ~ OCn 2 log (n + 2n» 

~ 0(n 2 log 22n) = 0 (n 3) <O(n~). 

(ii ) Let n < log m, which yields n < m. Then 

O(n log (n + m) max(n, log m» O(n log (n + m) log m) 

~ O(n log (2m) log m) 

< O(nm log m). 

Hence the theorem follows. Q.E.D. 

Theorem 2.2 states that the preceding algorithm can solve (P6) in time 

O(n max(m log m, n 3 ». Hence it means that the algorithm can solve problem 

(P1) in the same time as well, noting that the time for reducing (P1) to (P6) 

is negligible compared with O(n max(m log m, n 3 ». 

3. Special Case 

In this section consider the case wij = 0 or 1 for all i and j, v jk = 0 

or 1 for all j and k > j, briefly. Of course, the problem of this case can be 

solved by the algorithm presented in the preceding section. However its time 

complexity can be reduced in this case. Step 1 needs O(nm + n 2) time since 

the slope of each FOj or Fjk is 0 or 1 and that of each F
j 

is 0 or -1. With 

respect to Step 2, each (FT) entails O(n + n 2
) = OCn 2

) time and there are at 

most 2n + n(n - 1)/2 breaking points in all. Hence Step 2 needs time 

O(log (2n + n(n - 1)/2» 0(n 2 ) = 0(n 2 log n). 

Step 3 can be performed by Karp and Drlin's algorithm in time D(n 3
) (see [11]), 

noting that each arc length contained in G is of the form 

AA + B 

where A = 0 or 1, B is a real number. Step 4 is O(n). Hence the entire 

algorithm requires O(n max(m, n 2 » time. 

We conclude this section by stating that the reduction of the time bound 

lS possible since the slopes of functions of A, FOj and F jk for all j and 

k > j, are restricted to 0 and 1 (hence the slope of each P . CA) is 0, 1, ... , 
] 

n), while this is not true for the case of the preceding section. 

4. Numerical Example 

Consider the following numerical example of problem CP3) with m = n 3: 
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( 

1.2 0:.5 ) 
(w .. ) = 1 1.5 

1J 
1 1.25 

(v jk) = (: ': ~. 5 ) 

From the preceding data we have: 

A = 2, 

= \ 9(5/6)A + 7/6 
FOl ( 

A + 1 

(2/3)A + 7/3 

(1/2)A + 5 

14 

A 

(1/4)A + 25/4 

18 

10 - 2A 

4 - A 

17/6 - (5/6)A 

- 5 

~ 7 - (1/2)A 

( - 4 

~ 25/4 - (1/4)A 

( - 8 

~ (1/10)A - 1/5 

\ A3 - 1 
F 13 ( 

F = \ (2/3)A - 2/3 

23 (10 

2 $. A $. 47/5 

A ~ 47/5 

2 $. A$.4 

4 $. A $. 16 

16 $. A $. 18 

A 2: 18 

2 $. A $. 25/3 

25 :;; A :;; 47 

A 2: 47 

2 $. A :;; 6 

6 :5 A :5 7 

7 :5 A :5 47/5 

A ~ 47/5 

2 $. A $. 22 

A 2: 22 

2 $. A $. 57 

A 2: 57 

2 $. A $. 12 

A ~ 12 

2 $. A $. 16 

A ~ 16 

(dij ) - (;~ :: :~) 

('jk) = (: _ ~o) 

279 

The above functions have the distict A-coordinates of the breaking points: 

2,4,6,7,25/3,47/5,12,16,18,22,47,57. 
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since the median is 47/5 (or 12) , we perform (FT) for >- = 47/5 on G, which is 

shown in Fig. 4.1. Here F = - 5, F2 = 2.3, F3 = 3.9, PI 9, P2 = 8.6, P
3 I 

8.6. Since P. ::: F. for j = 1,2,3, we obtain 2 s >-* ~ 47/5. 
] ] 

Since the median of -. L, 4, 6, 7 and 25/3 is 6, (FT) is done for >- = 6 on 

G, which ~s shown in Fig. 4.2. Here Fl = -2, F2 4, F3 19/4, PI 37/6, 

P
2 = 19/3, P

3 = 6. Since P. F. for j = 1,2,3, we havp- 2 s >-* ~ 6. For 
] ] 

). = 4, FI = 2, F2 = 5, F3 = 5.25, PI = 4.5, P2 = 4.7, P
3 

4 (see Fig. 4.3. ) 

Since P 2 < F 2 , we have 4 <: ).* ~ 6. Since there is no breaking point strictly 

between 4 and 6, the functions above are expressed as follows: 

FOl (5/6». + 7/6 

F02 (2/3)>- + 7/3 

F03 >-

FI 10 - 2>-

F2 7 - (1/2)>-

F3 25/4 - (1/4)>-

F12 (1/10)>- - 1/5 

F13 3 

F23 
(2/3)). - 2/3 

4 < ). s 6 . 

Here we have the parametric shortest path problem with additional constraints 

P .().) ~ F.(>-) for j = 1,2,3, which is shown in Fig. 4.4. The result is as 
] ] 

follows: 

4 < ). 

(5/6)>- + 7/6 

(14/15)>- + 29/30 

>-

~ 41/8 

Since P
2

(4) < F
2

(4), P
3

(4) < F
3

(4), we have J = {2, 3}, 

>-2 (7 - 29/30)/(14/15 - ( - 1/2)) = 181/43, 

).3 (25/4 - 0)/(1 -

hence >-* = max {>-2' >-3} = 5. 

s~ = 169/30, s3 = 5. 

( - 1/4)) = 5, 

The optimal solution to (P3) is s* 
1 

16/3, 
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3 3 

Fig. 4.1. A=47/5. Fig. 4.2. A = 6. 

5 ). + 7 
"6 "0 

3 

Fig. 4.3. A = 4. Fig. 4.4 
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