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Abstract Elementary congestion models sometimes require analysis of G/G/l systems with hypere.xponentially 

distributed interarrival time and service time distributions. It is shown that for such systems, the ergodic waiting 

time distribution is itself hypere.xponentially distributed. A simple computational procedure is provided to fmd the 

parameters needed. Green's function methods are employed to motivate the factorization required. The relevance 

of these results to the delay in the overflow process of M/M/S is discussed. 

1. Introduction. The Lindley Process 

Let HK be the class of hyperexponential variates of order K, i.e. of 

variates which are a mixture of K distinct exponential variates. In an HK~L/l 

queue, a sequence of cust~mers C
K 

arrive at a single-server queue at epochs 

'k' The interarrival times ~k = 'k+l - 'k are i.i.d. with p.d.f. f~(x) = 
K -A .x 
I a.A.e ] (A <A <····<A). The service times TK also form an i.i.d. sequence 

j=l ] ] 1 2 K 
L -1-I.X 

with p.d.f. fT(x) = L b.1-I.e ~ (1-I 1<1-I2<····<1-IL). If Xk is the time that the 
i=l ~ ~ 

k-th customer must wait in queue for service, then X
k

+1 max [0, Xk+~k+l] 

where ~k+l = Tk-~k' The process x
k 

is called the Lindley waiting time process 

[6]. In this paper, the ergodic Lindley waiting time distribution is shown to 

be itself hyperexponential in density of order L apart from the mass point at 

the origin. To establish this result, Green's function methods are employed 

[2]. The hyperexponential structure is then obtained by complex plane argu­

ments. Comparable results have been exhibited for M/HL/l systems previously 

[4]. The extension to H
K

/H L /l, however, is non-trivial and suggests that the 
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exponential spectra obtained for HK/HL/l might carry over for other system 

variates of interest such as the busy period. 

It is known that for an M/M/S queue with finite storage, the overflow 

process has intervals between departures which are independent and of hyper­

exponential distribution [7]. For a switching system in which the overflO1. 

stream is routed to a single server with hyperexponentially distributed 

service, the results exhibited may have practical value. The results may also 

be of interest elsewhere in congestion theory. 

2. The Green I s Function for the Underlyiing Homogeneous Process 

It is assumed that the reader is familiar with Green's function methods 

and the idea of compensation. A simple short presentation may be found in [1] 

where other references are given. Other details may be found in (2]. 

It is shown in [3] that the ergodic Lindley waiting time distribution has 

a generalized density function foo(x) which may be expressed in terms of th': 

ergodic Green density goo(x) of the underl.ying spatially homogeneous random 

walk and the compensation density coo(x) representing the influence of the 

boundary at x=O. The ergodic Green density is given by 

8(x) + I ain ) (x) 
n=l k 

(2.1) g (x) 
00 

where 8(x) is the delta function for unit mass at 0 and a€~)(x) is the n-fold 

convolution of the p.d.f. of ~k' The generalized compensation density coo(x) 

has a delta function component of positive mass cooO at x=O and a negative 

density distributed on (-oo, 0) with mass equal to -cooO so that the total com-

pensation mass is zero. One then has as stated 

(2.2) f 00 (x) = Joo c co (x') g co (x-x' ) dx' • 
-00 

The structure of goo(x) will be studied in this section through its Laplace 

transform 

(2.3) 

-5~k 
where a~ (5) = E[e ]. 

k 

I a~ (5) 
n=O k 

l/(l-a~ (5» 
k 

Hereafter we write ~ instead of ~k for simplicity. From the definition 

of ~, since ~ ,= Tk -f',k' one has 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



244 J. Keilson and F. Machihara 

(2.4) 
K A. L ]Ji 

( La. ~) ( Lb. --). 
j=1 J I\j-S i=1 ~ ]Ji+ s 

A . ]J . A .]J . 1 1 
Since J ~ J ~ ( __ + __ ) 

A .-s jJ.+s = A .+jJ. A .-s ]J.+s' 
] ~ J ~ J ~ 

E[e-s~] can be written as 

(2.5) 

where 

(2.6) 1, p., q.>O for all j=l, 2, ... , K and 
J ~ 

=1, 2, ••. , L. 

From (2.3), (2.5) and (2.6) one then finds 

(2.7) L {goo (x) } 
K A. L ]Ji K p. L qi 

1- \' p. _J __ L q. s[ L _J_+ L ]J .+~;] '" J A -s ]J.+s S-A. 
j=1 j i=1 ~ ~ j=1 J i=1 ~ 

Let 

(2.8) x(S) 

Then 

K Pj 
- L (S-A.)2 
j=1 ] 

L qi 
L (]J.+s)2 < 0 for all real values of S which are 

.i=1 ~ 

not poles. 

It follows that x(s) has one simple zero between adjacent poles. If the 

ergodity condition E[lI
k

]'-E[T
k

]>O is satisfied, one has from (2.8) 

(2.9) 

Equation (2.9) shows that x(s) has one zero between the first negative 

pole and zero (See Figure 2.1). Hence, the number of negative zeros is equal 

to L and the number of positive zeros is equal to K-l. 
(N) (N) 

positive zeros respectively be denoted by -SI ,-s2 ' 

••• < -siN) < -s;N)) and s~P), siP), ... , s;~~ 

Let the negative 
(N) 

.... , -sL 

(r(p) < rep) <: 
"1 "2 

With this notation, (2.7) can be recast into the form 

and 
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(2.10) 

where 

(2.11) 1jJ(S) 

and 

(2.12) X (s) 

Hyperexponentilll Waiting Time Structure 

L K 
IT (s+P.) IT (s-A.) 

i=l ~ j=l ) 
L K-1 

s IT (s+~~N» IT (s-~~P» 
i=l ~ j=l ] 

(N) 
L ~. L S+ll . 

IT -~-)( IT (~» 
i=l lli i=l s+~ . 

~ 

K-1 

L ~~N) s IT ( s- ~ ~p ) ) 
( IT -~ ) 

j=l ] 

i=l lli K 
IT (s-A.) 

j=l ] 

1jJ(s) 
= X (s) 

It should be noted that the following inequality is satisfied: 

(2.13) 

< •••• < 

x(s) 

A I 
21 

I 
1 

Figure 2.1 Zeros of x(s) forH
3

/H 2/1 queue 
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3. The Ergodic Waiting Time Distribution 

The following factorization theorem for Green's function goo(x) may be 

employed: 

Theorem. Let i;=T-!::., where T and!::. are independent non-lattice random 

variables with finite first moments and E(T)-E(L'I)<O. Let R={s:Res::;:O} and 

L={s:Res~O}. Then {l_E[e-s i;]}-l may be written uniquely as a ratio 

for which 

a) ~oo(s) is regular inside R, and uniformly bounded and non-vanishing on 

R; 

b) Xoo(s) is regular inside L and non-vanishing in the interior of L with 

a simple zero at s=O; 

c) ~ (0+ )=1. 
00 

Proof: This theorem is a variant of similar factorization theorems for 

Hilbert problems [8]. The non-vanishing of ~oo(s) is discussed in [5] in the 

context of the Spitzer identity. The non-vanishing of Xoo(s) arises from the 

structure of the compensation measure and is equivalent to the statement that 
-sx for any non-positive, non-lattice variate x, X(s)=E[e ] has the value 1 on 

L only at s=O. The uniqueness is as usual obtained from Liouville's Theorem. 

Thus if we had distinct function pairs ~1 (s), Xl (s) and ~2 (s), X
2 

(s) with the 

properties stated, we would have {~1(s)/~2(s)}={Xl(s)/X2(s)} on the imaginary 

axis. Each expression in eurly brackets is regular and uniformly bounded in 

its half-plane, etc. Note that E[T]<E[!::.] assures that X1(s) and X2 (s) have a 

simple zero at s=O so that the ratio X1(s)/X2 (s) is bounded near s=O. Each 

expression must then be constant and the uniqueness follows. 

By examination of (2.10) we verify that ~(s) and x(s) given by (2.11) and 

(2.12) have the desired properties. Therefore, ~(s) is the Laplace transform 

of the ergodic Lindley waiting time density function foo(x). ~(s) can be 

written as 

L (N) 
L r,~N) r,. 

(3.2) ~(s) IT -~-)(1 + LW. ] ) 

i=l 
]J. . 

j=l ] s+r,\N) ~ 

] 
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where 

and 

W. 
] 

HyperexponentiJJI Waiting Time Structure 

It is clear from (2.13) that 10'1 >0. From -r;; ~N) +ll <0 and -r;; ~N) +r;; (N) <0 for 
] k ] k 

j-1 j-1 
k=l, 2, .•. , j-1, one has IT (-r;;~N)+ll )/ IT (_r;;~N)+r;;(N»>o. Noting that 

k=l ] k k=l ] k 

_ (N) > _ . _ (N) (N) 
r;;j +llk 0 k-), ••• , Land r;;j +r;;k >0, k=j+1, ••• , L, one has wj>O. 

The inverse transform of (3.2) gives 

(3.3) 

where f = co() 

L r;;~N) 
IT -~­

i=l lli 
From (3.3) we have 

for the survival function F (x) = p[x >x] of the ergodic waiting time 
00 00 

(3.4) F (x) 
00 

L (N) L fco()",.exp(-r;;. x), 
j=l ] ] 

x>O. 

247 

To obtain foo(x) and F (x) numerically WE! only need the zeros r;;~N). These are 
00 ] 

easily obtained to great accuracy from (2.13) by standard bisection methods. 

It follows that foo(x) and Foo(X) are hyperexponential functions of order L 

apart from the mass point at the origin. 

4. Structure of the Green's Function and Compensation Density 

From (2.10) one then obtains the following explicit form for goo(x) away 

from the origin, at which point goo(x) has a delta function representing its 

mass point. One has 
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L (N) I p.exp(-~. x), x>O 
i=1 ~ ~ 

(4.1) 
'I K-l (p) 

~-E(T ) - .I 8.exp(~. x) , 
k k J=1 J J 

x<O , 

where as may be seen from (2.7) 

and 

-8. 
J 

L 
IT (_~(N)+)J ) 

k=1 1 k 

L 
IT (_r(N)H(N)) 

"I'k 
k=2 

j = 2, 3, ... , L 

j (p) K 
IT (~. -Ak ) IT «P)-A) 

k=1 J k=j+l ~j k 

j = 2, 3, ... , K-l. 

From (2.13) one can easily find p .>0 for j=l, 2, ... , Land 8.>0 for j=l, 2, 
J J 

••• , K-l. 

From (2.2), (4.1) and properties of the compensation density, 

0+ 
f (x) = f C (x')g (x-x')dx' 

00 00 00 
-00 

(4.2) 

L (N) 0- (N) I p.exp(-~. x)[/ C (x')exp(~. x')dx'+cooQ]' x>O. 
i=1 ~ ~ -00 00 ~ 
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o-
Noting that f C (x')dx'+c 

'" "'0 
0, c(x')SO for all x'<O and exp(t~N)x')<l for 

~ 

all x'<O, one has 

o-
f c (x')exp(t~N)x')dX'+c > 0 

"'. ~ "'0' 

It then follows that f",(x) is a hyperexponential function of order L on (0, co). 

This assures the result of Sec. 3. The hyperexponentiality of {E[~]}-l_g (x) 
00. 

of order K-1 on (-co, 0) is obtained in the same way. 

The compensation density cco(x) for negative x can be written as [2, 

pp. 104-108] . 

(4.3) -fcoas(x-y)fco(y)dY, 
o 

x<O . 

From (2.5) and (3.3), one has 

c (x) co 
co K L () () -J { I p.A.exp(A.(X-X'»}{ I fcoOw.t.N exp(-t.N 

x')dx'} 
o j= 1 ] ] ] i= 1 ~ ~ ~ 

(4.4) 

x<O . 
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