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Abstract We will consider a sequential stochastic assignment problem where the number of jobs is not known 

beforehand. Unlike the well known sequential stochastic assignment problem, since the number of jobs is unknown, 

a policy of the decision-maker depends not only on the size of each job, but also on information about the number 

of remaining jobs. The optimal policy and the total expected reward under this policy are determined by a system 

of recursive equations which are obtained in the main theor'~m. In the last section, we will consider a case OVClr an 

infinite horizon. 

1. Introduction 

In relation to sequential stochastie assignment problems discussed 

by Derman, Lieberman and Ross [2], Nakai [4] etc., we consider a sequential 

decision problem with an unknown number of jobs. In the sequential 

stochastic assignment problem, jobs arrive in sequential order, Le., first 

job 1 appears, followed by job 2, etc. Here we treat a case where the 

number of jobs is not known in advance to the decision-maker. 

We consider the following situation. There are N jobs under consider­

ation, where N is a random variable which represents the number of remaining 

jobs for decisions. We assume that the ":>robability distribution of N is 

given beforehand. The arrival time of each job is an independently and 

identically distributed random variable 'Nith a known mean. Information 

about the number of remaining jobs is updated in a Bayesian manner as the 

successive jobs are observed. 

Under the above situation, a sequential stochastic assignment problem 

treated here is characterized by following four things. 1). The planning 
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180 T. Nakai 

time period T at the last: job offer, 2) The passage time t since the 

last job offer, Le., the remaining time period in this situation is T - t 

units of time. 3) Information q about the number of remaining jobs, which 

is improved at the last job offer. All information is summarized by a 

probability distribution on the set of possible numbers of jobs. Here we 

assume that P { N ;;: M I et } I for a given positive M. 4) The set of 

available actions PI'.' .'P
n

}. Similarly to the problem considered in 

[2], it is assumed that n = M without loss of generality. Under the above 

conditions, we consider the (PI' ... 'P
n

; T,t,q) as the state variable. 

Whenever a job arrives, a decision based on (PI' ... 'P
n

; T,t,q) is made by 

the decision-maker, and, therefore, we treat this problem by choosing these 

points of time, so as to exploit the lack of memory of the exponential 

distribution. 

A sequential stochastic assignment problem treated here is played in 

the following manner. Whenever a job arrives at time t since the last job 

offer, Le., the time t .is an interarrival time of this job, the decision­

maker updates information about the number of remaining jobs. After 

observing a realized value x of the random variable X associated with this 

job, he takes one of n available actions, where X is a size of each job 

and i.i.d. random variable. If the i-th action p. is taken, an immediate 
'l-

reward of p.x is obtained and this action is unavailable for future 
'l-

decisions. Therefore, we then face a problem equivalent to one that starts 

in (Pl' ... 'Pi-l'Pi+l' ... 'Pn ; T-t,O,q), where q is posterior information 

about the number of remaining jobs and is obtained in Section 2. Since 

information about the number of remaining jobs is obtained through the 

interarrival times of jobs, when t = 0, we consider that the problem is in 

the initial condition. 'Whenever the set of available actions is empty or 

T = 0, this problem stops and an immediate reward of ° is obtained. The 

objective of this problem is to maximize the total expected reward. 

There are several related problems. A sequential stochastic assignment 

problem in homogeneous Poisson arrival case is considered in Sakaguchi [5]. 

Sakaguchi and Tamaki concern an optimal stopping problem in a non-homogeneous 

Poisson arrival case in [7]. Moreover in [8], Stewart considers an optimal 

stopping problem in a non-homogeneous Poisson arrival case with an unknown 

number of options. He treats an optimal stopping problem for the relative 

rank. Here we consider a sequential stochastic assignment problem in a 

non-homogeneous Poisson arrival case with an unknown number of jobs. 

Sakaguchi treats a similar problem in [6]. 
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Optimal Assignment for a Random Sequence 

In the following sections, we fOl~u1ate the above problem by dynamic 

programming and state the main results in Section 3, where a system of 

recursive equations is obtained, and a simple example will be shown. In 

the final section we consider a problem over an infinite horizon. 

2. Formulation of the problem 

A sequential stochastic assignment problem with an unknown number of 

jobs in state (Pl, ... ,Pn; T,t,q) is formulated as follows. 

There are N jobs remaining, and N is a random variable whose distri­

bution is given by q beforehand. Regarding the number of remaining jobs, 

all information is summarized by a probability distribution on the set of 

possible numbers of jobs as q = (qO,ql, ... ,qn). In this paper, we assume 

that M = n as described in the precedi.ng section. 

Consider that N jobs are labelled 1,2, •.. ,N. Let Z. be an arrival 
J 

time of the job labelled j, and it is assumed that Zl, •.. ,ZN are i.i.d. 

exponential random variables with a known mean 1/", i. e., 

P { Z. ;;; t } = 1 - exp ( - At) . (j = 1, 2 , ... , N ) 
J 
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Therefore the first arrival time of the job is distributed as min { Zl' ... ' 

Z }, i.e., exponential with a mean l/(N,,). 
n 

Let X., j = 1,2, ... ,N, be a size of the job labelled j. The X's are 
J 

i.i.d. non-negative random variables with a common c.d.f. F(x) which is 

assumed to be known and ~ = E(X.) < 00. 

J 
In regard to actions p'S, a valuE' P of an action is considered as an 

ability of this action. This means that if the action P is chosen and 

assigned to any job with a realized value x, an immediate reward is given 

by px. That is; if p = 1, by using this action, the decision-maker gets 

the complete value x, and if p < 1, he gets the less value than in the 

case p = 1. It is assumed that 1 ~ PI ~ P2 ~ .•. ~ Pn ~ 0 for any set of 

available actions. Similarly to the case [2], the assumption P ;;; 1 is 

not essential. The objective of this problem is to find the optimal policy 

which maximizes the total expected reward. 

Let Pn(Pl, ... ,Pn; T,t,q) be the problem in state (Pl' ... 'Pn ; T,t,q) 

and the total expected reward obtainable under the optimal policy be 

Vn (P 1, ... ,Pn ; T,t,q). Whenever a job arrives at time t since the last job 

offer, i.e., the interarriva1 time of this job is t, the posterior 

probability distribution q of N is derived from this observed inter arrival 

time and prior information q about the number of remaining jobs, where er 
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is obtained by Equation (2). After observing a realized value X of the 

random variable X associated with this job, one of the available actions 

is chosen. If the i-th action Pi is chosen and assigned to this job, an 

immediated reward of Pix is obtained. The selected action Pi is unavailable 

for future decisions. We then face a problem equivalent to one that starts 

in (P 1"",Pi - 1,Pi+l""'Pn; T-t,O,q). These steps are repeated again and 

again, and this problem stops whenever the set of available actions is 

empty or T = t. 

Since the arrival time of each job is i.i.d. exponential random 

variable with known mean 1/\, the first arrival time of the job is 

distributed as min { Zl, ... ,Zn }, i.e., exponential with mean l/(N\). 

From the memoryless property of exponential distribution, we find that 

the first arrival time Y is distributed as 

(1) p { Y ~ tiN = k} 1 - [ exp(-\t) ]k (k = 1,2, ... ,n ). 

By a simple application of the Bayes' theorem, ( see for example DeGroot 

[1] ), offered information q about the number of remaining jobs is given 

by 

(2) qk = eqk+l(k+l)exp(-k\t) 

where k = O,l, ... ,n-l, qk = P { k jobs remain 

constant to ensure that: 
\' n-l-
L k=oqk+l = 1 

for all t. 

q } and e is a normalizing 

Since information about the number of remaining jobs is obtained 

through the interarrival times of jobs, here we consider no offered 

information q* concerning the case where there is no job for the past t 

units of time since the last job offer. Analogously in above considerations, 

no offered information q* about the number of remaining jobs is given by 

(3) q~ = dqkexp(-k\t) 

and q5 = dqo where q~ = P 

constant to ensure that: 

2 ~=oq~ = 1 

k 1,2, ... ,n) 

{ k jobs remain I q* } and d is a normalizing 

for all t. Finally we point out the fact that offered information q and 

no offered information q* are functions of t. 

3. Main theorem 

Here we formulate thi.s problem by dynamic programming in the following 

manner. In this problem, the number of jobs decreases one by one as the 
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jobs arrive, and the rate of an arrival time is independent of time t 

between two successive jobs. For the problem Pn<PI, ... ,Pn; T,t,q), under 

the conditions that N = k and initial information about the number of 
k 

remaining jobs is q, let Vn(PI, ... ,Pn ; T,t,q) be the total conditional 

expected reward as 
k 

(4) vn(P I ,··· ,Pn ; T,t ,q) = E v n (p I ' ... ,P n; T, t ,q) I N = k and q l. 
Therefore we have by taking expectation with respect to no offered 

information q* at time t since the last job offer, 
N 

(5) vn(PI, ... ,Pn ; T,t,q) = E vn(PI, ... ,Pn ; T,t,q) 

'\ n k 
L k=1 qt?n(PI,·,·,Pn ; T,t,q). 

Since information about the number of remaining jobs is updated as the 
k 

successive jobs are observed, the conditional reward Vn(PI, ... ,Pn ; T,t,q) 

is also dependent on q. 

Now we consider three cases what happen in some small time ~t when 

N = k. The first case is that, with probability kA~t + o(~t), a job 

arrives in ~t:. When a job arrives with some observed value x, the optimal 

policy will be considered. The second case is that, with probability 

I - kA~t + o(~t), no job arrives in ~t. The last case is that more than 

one job arrive in ~t, and the probability of this event is o(~t). 

Therefore, we have, when N = k, 

(6) k foo V (PI, ... ,p ; T,t,q) = kA~t maxI<.~ { p.x n n Q _~~n ~ 

N-I 
+ E [V I(PI, ... ,p· I'P.+I"",P ; T-t-H,Q,q) 1 } M(.1:) n- ~- ~ n 

k + ( I - kAH )Vn(PI, ... ,Pn ; T,t+H,q) + o(H), 

since, whenever a job arrives at time t since the last job offer with a 

realized value x, a decision based on (PI, ... ,Pn ; T-t,Q,q) is made by the 

decision-maker. The first term of the right hand side of Equation (6) is 

the first case, and the second term corresponds to the second case. 

Since 
N-l 

E [ vn- 1 (PI'··· ,Pi-I ,Pi+I"" ,pn ; T-t,Q,q) 1 

= Vn-1(PI'.'.'Pi-l'Pi+I' ... 'Pn ; T-t,O,q) 

by Equation (5), rearranging terms and taking ~t ~ 0, yield 

(7) ~t V~(Pl'··· ,pn ; T, t ,q) = - kA J: maxbi~n { P i X 

+ V 1(P1,""p· 1,P.+l' .. "P ; n- ~- ~ n T-t,Q,q) } dF(x) 

+ kA 
k 

v (PI' .. "P ; T,t,q), n n 
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with the boundary condition that 
k 

Vn(Pl, ... ,Pn ; T,t,q) = O. 

Here we note the following thing. Since we formulate this problem 

by dynamic programming in Equation (6) and information about the number 

of remaining jobs is obtained through the interarrival times of successive 

jobs, we use the parameter t as an element of the state variable. On the 

other hand, the decision-maker can take one of available actions whenever 

a job arrives, and, therefore, the optimal policy is considered only at 

these points of time. Although information about the number of remaining 

jobs is also obtained through the fact that there is no job for the past 

t units of time since the last job offer, this informations is updated 

only at a point of time when a job arrives. Therefore, information q is 

independent of time t between two successive jobs. 

The optimal policy and the total expected reward obtainable under 

this policy, which are determined by a system of recursive equations, are 

embodied in the following theorem. 

Theorem 1. There exists a sequence of non-negative functions of T 

and t ( T, t ~ 0 ), 

(8) h7(T,t,q) ~ h~(T,t,q) 

such that the following properties are true for the problem in state 

(Pl""'Pn ; T,t,q). 
1) Whenever a job arrives at time t since the last job offer with a 

realized value x, the optimal decision is as follows. 
" n-l ( - n-l ( -If hi T-t,O,q) ~ x < hi _1 T-t,O,q) then choose the i-th action Pi 

and assign to it" 
. n-l - n-l-where ~ = 1,2, ... ,n, hO (T-t,O,q) = 00 and h

n 
(T-t,O,q) = o. 

2) h~(T,t,q) satisfies the following system of recursive equations. 
~ 

(9) h~(T,t,q) = L ~=l qk g~'k(T,t,q), 
where 

(10) 

and 

(11) 

with 

g~,k(T,t,q) = k\exp(k\t) fT ~(T,t,q)exp(-k\t)dt 
~ t ~ 

f
h. 1 

~(T,t,q) = ~- ,'l:'dF(x) 
~ h. 

h. 
~ 

~ 

n-l -h. (T-t,O,q) 
~ 

+ h. l( 1 - F(h. 1) ) + h.F(h.), 
~- ~- ~ ~ 

for i = 1,2, ... ,n, and we define that 0'00 = O. 

3) The value V (P1, ... ,p ; T,t,q) satisfies n n 
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Vn(P1""'Pn; T,t,q) = 2 j=l Pjhj(T,t,q). 

Proof: We employ the induction priciple on n. When n 1, 

Equation (7) is 

(12) ~t Vi(P1; T,t,q) = - A J: P1XdF(.1:) + AVi(P1; T,t,q). 

The first term of the right hand side of Equation (12) is equal to P
1 

A].J, 

and combining the boundary condition that 
1 

v 1(P1; T,T,q) = 0, 

we have 
1 

v1 (Pl; ~".t,q) = Pl].J( 1 - exp[-A(T-·t)] ) 

and 

Assume that the all parts of this theorem are true for all m ~ n-1. 

The first term of the right hand side of Equation (7) is 

(13) - kA J
oo

max1<.< {~.(x) } dF(x) , ° ~1.-~n 1.-

where 

(14) ~i(x) = Pix + vn_1 (P1"" ,Pi-1 'P,:+l"" ,Pn ; T-t,O,q) 

\' i-1 hn-1 - \' n hn-1 -
I. j=lPj j (T-t,O,q) + P,:x + I. j=i+lPj j-1 (T-t,O,q). 

Equation (14) is derived from the induetion assumption 3). The inequality 

hn-l -
(8) of the functions j (T-t,O,q) and the well known Hardy's lemma ( [2] 

and [3], etc ) yield 

max1~i~n{ ~i(X) } = ~i(x) if h~-l(T-t,O,q) ~ 
where i = 1,2, ... , . Therefore Equation (13) is 

J
h. 1 

(15) - kA I J=l J- ~j(x)dF(X) 
h. 

x < 
n-l -h
i

_1(T-t,0,q) , 

n-l J_ 
where h. = h. (T-t,O,q) n-l -j = 1,2, ... ,n ) and h (T-t,O,q) = 0. 

n J ,J 
Substituting Equation (14) into Equation (15) and rearranging the terms 

yield 

(16) - kA 2 j=lPjtj(T,t,q). 
The solution of the differential equation (7) of this case is expressed 

as Equation (10), i.e., 
k 

v (Pl""'P ; T,t,q) = 2 n n 
Therefore, from Equation (5), 

n n,N 
j=lPjgj (T,t,q). 
we have 

N 
v (P1""'P ; T,t,q) = E [ v (P1""'P ; T,t,q) ] n n n n 

2 J=lpijc!',t,q). 
On the other hand, the inductive hypothesis, 
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n-1 - n-1 - n-1-h1 (T-t,O,q) ~ h2 (T-t,O,q) ~ ... ~ hn_1 (T-t,O,q) , 

yields 

(17) i;(T,t,q);; i;.(T,t,q) ~ ... ~ t:z(T,t,q). 

This inequality is obtained from a simple calculation. Inequality (17) 

and the fact that g~,k(T,t;,q) ~ yet) is the solution of the differential 
1.-

equation 
d at yet) - kAy(t) = - kA~(T,t,q), 

1.-

yield g~,k(T,t,q) ~ g~~~(T,t,q) ~ 0. 

have 

i, k 1,2 •...• n) Therefore we 

h~(T,t.q) ~ h~_l (T,t,q). (i=1.2 •... ,n 

This completes the proof of this theorem 

Concerning Theorem 1, here we note that h~(T.t.q) and g~.k(T,t.q) 
( i. k = 1,2 •...• n ) are increasing in t and decreasing in T. These 

things are derived from Equations (9) and (10). 

The result of Theorem 1 is. in form. similar to one of Sakaguchi [5J 

because of the similar situation that the number of jobs is unknown. 

The problem in [5] is a Poisson arrival case and the problem of this paper 

is a generalization to a non-homogeneous Poisson arrival case. The 

difference comes from the fact that this problem has only a limited number 

of jobs. contrary to the problem with an unlimited number of jobs in [5]. 

Concerning the problem in [5], the arrival rate of jobs is the same under 

any situations. However. the problem considered in this paper concerns 

the case that the value of the problem depends not only on information q 

for the number of remaining jobs, but also on the interarrival time of 

jobs. Since the number of jobs is not known in advance, the decision-

maker obtains information for the number of remaining jobs from interarrival 

times of jobs. In this problem. the precise number of jobs becomes known 

later to the decision-maker. The difficulty of this problem arises from 

these facts. Concerning the similar situation, an optimal stopping problem 

for the relative rank is considered in Stewart [8]. 

Concerning the total expected reward V (P1' .•• 'P ; T.t.q), here we n n 
consider the condition that a job arrives at time t since the last job 

offer. Under this condition. the conditional value of this problem is 

L J=lPj!j(T.t.q), 
which is obtained in Equation (16) of Theorem 1. Moreover. we note the 

fact that r,(T. t,q) = r,cr-t,O,q) by Equation (11). On the other hand, 
J J 

the value v (P1' ...• P ; T.t.q) represents the total expected reward under 
n n 
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the optimal policy of the problem in (Pl' ... 'Pn ; T,t,q), i.e., 

\ n * kAt ~ \ n ~ -kAt 
l. k=l qkk Ae J

t 
( l. j=IPjJ/T,t,q))e dt, 

where q* is no offered information about the number of remaining jobs at 

the point of time t since the last job offer when no job arrives for the 

past t units of time and at time t. Moreover, when t = 0, the value 

v (P1' ... 'P ; T,O,q) is 
n n T 

L ~=lqkkA J
o 

( L J=lPjtj(T,t,q) )e-kAtdt. 

In relation to the problem considered here, next we observe a simple 

example in the following manner. 

Example 1. We assume that the random variable X which represents a 

size of each job, is uniform on [ 0,1 ], i.e., 

p(x) = x o ~ x ~ 1 ). 

First we consider the case with n 1. Since fi(T,t,q) = E [ X ] 

1/2, 

hi(T,t,q) = q!gi,I(T,t,q) 

and 

1,1 A At JT -At A(T t) gl (T,t,q) = 2 e e dt = ( 1 - e- - )/2. 
t 

Here we note that hi(T,t,q) is decreasing in t, increasing in T and 
1 h1(T,T,q) = O. 

Next we consider the case with n 2. In this case, Theorem 1 yields 

(i=1,2) 

(19) 2 k kAt JT 2 -kAt g.' (T,t,q) = kA e J;(T,t,q)e dt 
~ t ~ 

( k 1,2 ) 

and 

~(T,t,q) 

1 

J
h1 1 Joo 

h1dP(x) + 1 xdP(x) 
o hI 

1 

J
hl Joo 1 xdP(x) + 1 h1dP(x) = 1/2 -
o hl 

ti(T,t,q) 

1 1 - Joo where hI = h1(T-t,0,q) and Tp(a) = a (x-a)dP(x). The function Tp(a) is 

a well known function in the decision analysis ( see DeGroot [1] ), and 

in this case 

Tp(a) 
1 2 

=2 1 - a ) . 

Since 
-

( 2cq2e 
-At ) where c q = cql' 
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Therefore. whenever a job arrives with a realized value x at time t since 

the last job offer. 

" assign p if 
1 

when the problem is 

the optimal decision is to 

h I < d' . f 1 ~ x. an ass~gn P2 ~ x 

in (P 1.P2; T.t.q). 

In order to obtain the value V 2(P 1.P2; T.t.q) for the case with 

n = 2. we need to calculate the value of 

f
T 1 - -iAt 

TF(h1 (T-t.O.q»e dt (i = 1.2 
t 

in the following manner. 

and 

where 

J 
1 - -At 

TF(h 1 (T-t.O.q»e dt 

{ -At 
e + (~(T)/q2)log(a(t» 

f 
1 - -2At 

TF(h1(T-t.O.q»e dt 

-2At -At = - { q2e + 2a(T)e + ( a(T) (a(T)-2q1)/2q2 )log(a(t» 

-At 
aCt) = q1 + 2q2e 

+ qIa(T)2/2q2a(t) }/16q2A• 

In order to obtain the optimal policy for the case with n = 3. we 

consider a special case with t = O. Therefore from Equation (9). we get 

the values in the following manner. i.e .• 
2 \ 2 2.k 

hi(T.O.q) L k=lqkgi (T.O.q) 

\ 2 IT ~ - -kAt 
L k=l kAqk 01i(T-t.O.q)e dt 

f
T 2 - 2 -kAt 
o fi(T-t.O.q) L k=1 kAqke dt. i 1.2 ) 

First we get from the above calculations. 

where 

J
T 1 - -At 2At 

~(T.q) = 0 TF(h1(T-t.O.q» (Aq l e + 2Aq2e- )dt 

J
T 1 -At -AT -At 2 -At -At o I (1 - q2(e - e )/(q1+2q2e » Ae (q1+2q2e )dt 

-ZAT -AT a2e + ale + aO + a_ 1log(a(O)/a(T». 

a2 -5q/8. 

a1 (4q2-3q1)/8. 

aO (q2+3q1)/8. 
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2 
a_I = a(T) /16q2· 

Therefore we have 

21fT -At -2At h2(T,0,q) = - (Aq e + 2Aq2e )dt - ~(T,q) 
2 ° 1 
1 -AT -2AT 

= 2" ( q 1 + q 2 - q 1 e - q 2e ) - ~ (T ,q) , 

2 fT -At AT At hI (T,O,q) = ° q2(e - e- )Ae- dt + ~(T,q) 

-2AT -AT 
=q2(1/2+e /2-e )+i;(T,q), 

-AT -At -2At -At -AT -At 
-e ) (ql Ae +2qz"e )=q2(e -e )Ae . 

The value V 2(P 1,P2; T,O,q) of the problem P2(P 1,P 2; T,O,q) is given by 

2 2 T,O,q) = P1h1(T,0,q) + P2h2(T,0,q). 

Values for other cases with n = 2, are obtained similarly. 

On the other hand, when the problem is in (Pl'P2'P3; T,t,q), if a job 

arrives with a realized value x at time t since the last job offer, the 

optimal decision is to; 

;;; 2 ( -

E: } { 
,:t: hI T-t,O,q) 

assign if hi(T-t,O,q) > ,:t: ;;; h;(T-t,O,q) 

h;(T-t,O,q) > ,:t: ;;; 0. 

Treating for n ;;; 3, it is extremely complicated, and we omit it here. 

Moreover if we consider a special case where ql = q2 = 1/2, this example 

is equivalent to an example treated in [6]. 

4. Infinite horizon case 

In this section we consider a problem in the infinite horizon case, 

i.e., the period T of the problem is not restricted. Concerning this 

case, we assume a discount factor S ;;; 0. In this section we use, for the 

state, the notation (P
1

, ••• ,P
n

; t,q) instead of (P 1, ... ,P
n

; T,t,q) used 

in the preceding sections. From an argument similar to one used in the 

last section, we have the following diff,arential equation 
N (20) V (P

1
,· •• ,p ; t,q) = E [ V (Pl' ... 'P ; t,q) ], n n n n 

(21) ~t V n
k (Pl'··· ,pn ; t ,q) = - kA foo maxI· {1jJ • (x) } dF(x) 

o ° ~'l-~n 'l-

k + ( kA + S )v (P
1

, ••• ,p ; t,q), n n 
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where 1jJ.(x) = p.x + V J(P1 ,···,p· 1'P.+1, ... ,p ; O,q). 
1- 1- n- . 1-- 1- n 

Therefore we have the following theorem, and the proof of this theorem 

is obtained through a method similar to one used in Theorem 1. If B = 0, 

the differential equation (21) is equivalent to Equation (7). 

Theorem 2. For any t and q, there exists a sequence of non-negative 

functions of t ( ~ ° ), 
(22) n7(t,q) ~ n~(t,q) ~ ~ n~(t,q) ~ 0, 

such that the following three facts are true for the problem 

Pn(P1 •••• ,Pn ; t,q). 

1) When the decision-maker observes a job with a realized value x at time 

t since the last job offer, the optimal decision is to 

" choose the i-th action Pi if nn-l -i (O,q) ~ x < 

. '7:n-l -where 1- = 1,2, .•• ,n, nn (O,q) nn-l (0 q-) = 0. 
n ' and 

2) n~(t,q) satisfies 
1-

'7:n \ n ~,k 
"i (t ,q) = L k=1 q~g.i (t ,q) , 

-n k J'" -ffl (23) g.' (t,q) = kAexp[(kA+B)t] 1~(t,q)exp[-(kA+B)t]dt, 
1- t 1-

J
h. 1 

t;(t,q) = 1-- xdF(x) + h. 1 (1-F(h. 1)) + h.F(h.), 
1- h. 1-- 1-- 1- 1-

1-

-n-1 -
where h. = h. (O,q) (i = 1,2, ••• ,n), and we define that 0·'" 0. 

1- 1-

3) We have 

Concerning the infinite horizon case, here we point out the following 

relation to the problem where the number of jobs is known to the decision­

maker previously. In the problem [7], if we consider the infinite horizon 

case, the result of this work is the same to one in the optimal stopping 

problem where the number of jobs is a known and fixed constant. This comes 

from the fact that every job will certainly arrive and the decision-maker 

is able to set his hope on remaining jobs, i.e., this problem is equivalent 

to one considered in Derman, Lieberman and Ross [2]. However, in our 

problem considered here, the decision-maker only knows the prior probability 

distribution about the number of remaining jobs, and does not know the 

precise number of jobs. The decision-maker always guesses the number of 

remaining jobs, i.e., information about the number of remaining jobs is 

updated as the interarrival times of successive jobs are observed. The 
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difficulty of this problem arises from this fact. Moreover, since the 

number of jobs is less than or equal to the number of available actions 

by our assumption, there might be several actions which are not assigned 

to any job. 

Finally we shall reconsider Exampl,c 1 for the problem of this section. 

Example 2. Under the same conditions of Example 1, we consider the 

case with n = 1, then we have 

gi,l(t,q) (A/2(A+6) )e-6t 

and 

Next we consider the case with n = 2. Similarly to Example 1, we have 
-2 \' 2 -2 k 
hi(t,q) Lk=lq~gi' (t,q), (i=1,2) 

where 

g~,k(t,q) = kAe(kA+6)t J'" i(t,q)e-(kA+6)tdt 
~ t ~ 

( k 1,2 ) 

and 

~1 ~1 - -At 
n 1 = n 1(0,q) = cq2e X(A/(A+6)) ( c 

Therefore, whenever a job arrives 'N"ith a realized value x at time t 

since the last job offer, the optimal decision is to 

". . f h-1 < d· 1" f -hI " ass1gn PIlI ~ x, an ass1gn P2 1 > x 

when the problem is in (Pl'P2; t,q). 

get 

and 

First we consider the case with 6 = 0. Similarly to Example 

the values of n:(O,q)'s in the following manner. We have 
~ 

J
'" 1 -At -2At t;(q) = T

F
(n1(0,q)) (Aq l e + 2A<72e )dt 

. ° 
2 

= (q2+3ql)/8 + «ql) /( 16q2)) log«ql+2q2)/ql)' 
Therefore we have 

2 n1(0,q) = q2/2 + t;(q) 

-2 
h2(0,q) = (ql + q2)/2 - t;(q). 

1, we 

Especially, -2 -2 
when ql = 1 and q2 = 0, h1(O,q) = 1/2 and h2(0,q) = 0; when 

ql = ° and q2 = 
-2 h1(O,q) = 1/2 + 

-2 -2 
1, hI (O,q) = 5/8 and h2(0,q) = 3/8; and when ql = q2 = 1/2, 

-2 
( log 3 )/32 and h2(0,q) = 1/4 - ( log 3 )/32. Hence, 

from Theorem 2, the value V 2(P 1,P2; O,q) is given by 

-2 -2 
V 2(P 1,P2; O,q) P1h1(O,q) + P2h2(O,q) 
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Next we consider the case with S = A > 0. Similarly to the above 
,-Z 

case, we get the values hi(O,q)'s as follows. Since 

~1 - -At 
n 1(O,q) cqze /Z, 

we have 

fro ~1 - -At -ZAt 
n(q) ° TF(n1(0,q) (Aq 1e +ZAqze )dt 

Z Z 3 Z 
(lZ(qZ) +15q 1qZ+(q1) )/( 64qZ) - «q1) /(lZ8(qZ) »10g«q1+ZqZ)/q1) 

and 

Therefore we have 
Z n
1

(0,q) 

Z nZ(O,q) 

qZ/6 + n(q), 

(3q1+4qZ)/lZ - n(q). 

By a simple calculation, we get the inequality 

n~(O,q) ~ n;(o,q) 

for any q = (qO,q1,qZ). Especially, when q1 = 1 and qz = 0, ni(O,q) 

and n;(O,q) 0; when q1 = ° and qz = 1, n~(o,q) = 17/48 and n;(o,q) 

Z ~Z and when q1 qz = l/Z, h1(0,q) = Z9/96 - ( log 3 )/Z56 and nZ(O,q) 

1/4 

7/48; 

= 7/96 + ( log 3 )/Z56. 

and n~(o,q) + n;(o,q) 

Here we treat a problem with a discount factor, 

We have 
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