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A fast algorithm for the Voronoi diagram is proposed along with the performance evaluation by 

extensive computational experiments. It is shown that the proposed algorithm runs in linear time on the average. 

The algorithm is of incremental type, which modifies the diagram step by step by adding points (generators) one by 

one. What is new is a special preprocessing procedure for determining the order in which the generators are to be 

added, where we make use of a quaternary tree combined with an elaborate technique of "bucketing". 

1. Introduction 

For a set of n points Pi (i=l, ... ,n) in the Euclidean plane K2, the 

polygonal region defined by 

C.l) v (P.) 
n ~ 

n {PcR
2

1 d(P,P
i

) < d(P,P].)} 
jh 

is called the Voronoi ~ion (or polygon), where d(.,.) denotes the Euclidean 

distance. The planar skeleton V formed by the boundaries of V (P.) 
n n ~ 

(i=l, ... ,n) is called the Voronoi diagram (sometimes called also the Dirichlet 

tessellation or the Thiessen tessellation), which plays a fundamental role in 

computational geometry [16] and finds applications in various fields such as 

geography, urban planning, ecology, physics and numerical analysis [7], [8], 

[IS]. Vertices (edges) of the Voronoi diagram are called Voronoi points 

(Voronoi edges). We shall call p. (i=l, ... ,n) the generators (or generating 
~ 

points) of the diagram. Two generators Pi and P
j 

are called contiguous in 
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Voronoi Diagram Algorithms 307 

v if their Voronoi regions V (P.) and V (P.) have a boundary edge in common. 
n n ~ n ] 

In spite of its importance in practical applications. the Voronoi diagram 

had long been considered to be difficult to construct. especially when the 

number of generators is large. until the advent of computational geometry [15]. 

The divide-and-conquer algorithm. stated in [16]. constructs the Voronoi 

diagram in O(n log n) time. which is knOlm to be optimal (in the sense of the 

order of magnitude) with respect to the \~orst-case performance. This paper 

gives a complete description. as well as performance evaluation. of the qua­

ternary incremental algorithm. which is one of the practical algorithms 

proposed and evaluated in [11]. [12]. [13]. [14]. It is a variant of the 

seemingly primitive incremental method [2] which modifies the diagram step by 

step by adding generators one by one. W11at is new is a special preprocessing 

procedure for determining the order in which the generators are to be added. 

where we make use of an elaborate technique of "bucketing". Qur use of buckets 

is only for ordering the generators in the incremental process. and is basical­

ly different from the use of buckets in [1]. Systematic experiments show that 

the proposed algorithm constructs the Vor-onoi diagram in O(n) time on the 

average when n generators are distributed uniformly in the unit square. and 

that it is robust against the nonuniformity of t/le distribution of the 

generators. 

2. Incremental Method 

The basic idea [2] of the incremental method is given in this section. 

Though this algorithm has obviously the worst-case complexity o(n 2
). it runs 

in about O(n3/2) time [2]. Furthermore. it can be polished up to run in O(n) 

time in the sense of the average-case performance. which is the main objective 

of the present paper. 

Suppose that n generators are ordered in some way or other from PI through 

Pn • and let Vm denote the Voronoi diagram for the first m generators Plo ...• 

Pm' Starting from a trivial diagram. say V
3

• the incremental method constructs 

Vn through repeated modification of V 1 to V (m$n). i.e .• by adding a new 
m- m 

generator Pm to the current diagram Vm_
l

. The m-th stage. i.e .• the modifi-

cation of Vrn-l to Vm by adding Pm to V
m

_
l

• consists of the following two phases. 

Phase 1 (Nearest neighbor search): Among the generators PI' ...• Pm-I of 

the diagram Vm_l • find the nearest. say PN(m)' to Pm' 
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308 Takao Ohya, Masao Iri.and Kazuo Murota 

Phase 2 (Local modification): Starting with the perpendicular bisector 

of line segment PmPN(m) , find the point of intersection of the bisector 

with a boundary edge of V l(P ( » and determine the neighboring region m- N m 
Vm-l(PN1(~» which lies on the other side of the edge; then draw the 

perpendicu1.ar 

boundary edge 

bisector of P P () and 
m NI m 

of V l(P (» together 
01- NI m 

find its intersection with a 

with the neighboring region 

Vm-l(PN (m) ); ... ; repeating around in this way, create the region of 
2 

Pm to obtain v m' as illus tra ted in Fig 1. (See also [2].) 

Fig. 1. Local modification of the 
Voronoi diagram in Phase 2 
of the incremental method 
(PN(m) is the nearest neigh-

bor of P .) 
m 

Note that some of the Voronoi edges of Vm-l do not remain in V
m

, as is 

observed in Fig. 1. 

Our task is to order the generators in such a way that, at each stage, 

Phase 2 may be done in constant time on the average and that it may be possible 

to find the nearest neighbor in Phase 1 in constant time on the average, too. 

Phase 1 is equivalent to finding such N(m) (1 S N(m) S m-l) that V l(P ( » 
01- N m 

contains P • 
m 

This problem is a kind of "point location" problem, but existing 

algorithms [8], [10], [16] for the point location problem cannot be directly 

applied, since the diagram varies from stage to stage. The following simple 

algorithm will be advantageous from the practical point of view. 

(2.1) 

Al gorithm L: 

Start with an initial guess Pi (0) (1 si (0) S m-1) and set i :=i (0). If 

d(P ,P.) S d(P ,P.) 
m ~ m ] 

for each P
j 

contiguous to Pi in V
m

_1 , then finish with N(m) =i (in this 

case, it is proved without difficulty that Pi is the nearest to Pm [8]); 
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Otherwise set i:=j for any j such that (2.1) fails and repeat this 

process. 

309 

Though this algorithm is of-worst-case complexity O(m), the initial guess, 

not specified above, is of crucial importance to its actual running time, and 

if the search area is restricted to a sufficiently small neighborhood of P , 
m 

this algorithm can be expected to run in constant time, irrespectively of the 

number m-l of the candidate generators. 

As for Phase 2, the situation is rather subtle. Since the number of 

Voronoi edges meeting at a Voronoi pOint is not less than three, it follows 

from Euler's formula that the Lotal number of Voronoi points of V is bounded 
m 

by 2m and that of Voronoi edges of Vm by 3m. (In case the generators are 

distributed randomly, these upper bounds are asymptotically tight.) As a 

consequence, the average number of edges of a Voronoi polygon is approximately 

equal to six. This alone does not guarantee, however, that the new region 

Vm(P
m

) created at the m-th stage with respect to a particular ordering of genera­

tors has a bounded number of edges independentlY of m, nor does it guarantee 

that Phase 2 can be performed in constant time. (See the experimental results 

for the consecutive cell algorithms described in the next section.) Neverthe­

less, it would intuitively be obvious and will not be very difficult to prove 

in more mathematical languages that, if the generators PI' ... , Pm-
l 

are 

distributed approximately uniformly around Pm' the number of edges of V m (Pm) 

is nearly constant around six, so that the modification of the diagram in 

Phase 2 at each stage can be performed in constant time on the average. S'2e 

Appendix 1. 

3. Orderings of Generators 

From now on, the generators are assumed to lie in the unit square 

s:::{(x,y)IO<x<l,O<y<l}. We partition S into k
2 

square cells (or buckets) by 

dividing each side of the unit square into k equal parts, where k=O(n l/2 ). 

Each generator belongs ta one of those k? cells, and to}Vhich it belongs may 

be determined by multiplying its coordinates by k and then truncating the 

fractional parts off. 

3.1. Consecutive cell algorithms 
The first class of algorithms we have considered [14] is based on a 

consecutive cell order technique, which is similar to the one used in [5], 

[6] for the minimum-weight Euclidean matching problem. The value of the 
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parameter a = kn- 1/2 for the cell size is to be determined later. The cells 

are given a prescribed order, e.g., the "serpentine cell order" in Fig. 2(i), 

the "outward spiral cell order" in Fig. 2(ii), or the "inward spiral cell 

order". The n generators are ordered to form a sequence P
l

, ••• , Pn' which is 

consistent with the cell order, i.e., the generators belonging to one and the 

same cell may be ordered arbitrarily among themselves. Then the incremental 

method above is applied to the generators in this order; in Phase 1 at the 

m-th stage, we take the preceding generator P
m

-
l 

as the initial guess for the 

nearest neighbor of Pm' that is, we set i(O)=m-l in Algorithm L. 

Regrettably, as the experiments show, this class of algorithms even with 

the tuned parameter value of a, runs in time slightly longer than O(n) on the 

average. (This is, however, considerably better than the divide-and-conquer 

type algorithm; see Section 4 for detail.) Closer investigation revealed that 

the computation needed in Phase 1 as well as that in Phase 2 required nonlinear 

time. In fact, in Phase 1, the number of generators which must be visited 

before the nearest neighbor of Pm is found increases with m, and, in Phase 2, 

the number of edges of Vm(P
m

) grows unboundedly, though very slowly, with m. 

(This does not contradict the fact that the number of Voronoi edges of the 

final diagram Vn is bounded by 3n, since part of the Voronoi edges of Vm(Pm) 

do not remain in the final diagram but disappear in the course of subsequent 

computation. ) 

~ ~ H ~ ~ I-< , k 

~ 

4 ~ 4 

4 ~ ~ 

2 2 

HI ~ ~ ~ H ~ 

2 

(i) Serpentine cell order (ii) Outward spiral cell order 

Fig. 2. Typical cell orders 
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3.2. Quaternary incremental algorithm 
The second improved algorithm, named the quaternary incremental algorithm, 

is as follows. 

We take k=2M, where M=max( Llog
4 

( Cl 2n ) J, 1) with parameter Cl to be properly 
1/2 1/2 

chosen (see below), where we have Cl n :; k < 2Cln • 

M 
by means of a quaternary tree T of depth M; T has 4 

The generators are ordered 

(=k2) leaves corresponding 
2 

to the k cells, and a node at depth h represents a -h square of side 2 In 

particular, the root, i.e., the node at depth 0, represents the entire unit 

square. 

We number the leaves of T from 0 to 4M_l in the natural manner from 1.eft 

to right; four consecutive nodes grouped in fours from an end at the same 

depth has a common father. Each cell is given a two-dimensional address 

(I,J) (O:$I:$k-l, O:$J:$k-l) in the natural way. The leaf r is identified 

with the cell (I(r), J(r)) under the correspondence defined by the following 

procedure, of which the computational complexity is O(n): 

C:= L2M /3J i 

1(O):=Ci J(O):=Ci 
M+l u:=(-l) i m:=li r:=Oi s:=2C+Ui 

for t:=l to M do 

for p:=l to m do 

r:=r+li 

I (r) :=s-1 (r'-m) 

J(r):=J(r-m); 

m:=2mi 

for p:=l to m do 

r:=r+l; 

I (r) :=1 (r-rn) i 

J (r) :=s-J (r-m) 

m:=2m; 

u:=-2u; 

s :=s+u . 

2 
An example of this cell order is shown in Fig. 3 for M=4 (k =256). 

As is easily seen intuitively from Fig. 3 and is confirmed from the 

procedure shown above, the numbering starts from a cell located approximately 

at a point of the unit square with coordinates (1/3. 1/3). and is extended to 

the whole square by repeated reflections with respect to a vertical and a 

horizontal line. alternately. 
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312 Takao Ohya, Masao Iri and Kazuo Murota 

15 191 190 186 187 171 170 174 175 239 238 234 235 251 250 254 255 

14 189 188 184 IB5 169 168 172 173 237 236 232 233 249 248 252 253 

13 181 180 176 177 161 160 164 165 229 228 224 225 241 240 244 245 

12 183 182 178 179 163 162 166 167 231 230 226 227 243 242 246 247 

11 151 150 146 147 131 130 134 135 199 198 194 195 211 210 214 215 

10 149 148 144 145 129 128 132 133 197 196 192 193 209 208 212 213 

9 157 15G 152 153 137 136 140 141 205 204 200 201 217 216 220 221 

8 159 158 154 155 139 138 142 143 207 206 202 203 219 218 222 223 

7 31 30 26 27 11 10 14 15 79 78 74 75 91 90 94 95 

6 29 28 24 25 9 8 12 13 77 76 72 73 89 88 92 93 

5 21 20 16 17 1 0 4 5 69 68 64 65 81 80 84 85 

4 23 22 18 19 3 2 6 7 71 70 66 67 83 82 86 87 

3 55 54 50 51 35 34 38 39 103 102 98 99 115 114 118 119 

2 53 52 48 49 33 32 36 37 101 100 96 97 113 112 116 117 

1 61 60 56 57 41 40 44 45 109 108 104 105 121 120 124 125 

0 63 62 58 59 43 42 46 47 III 110 106 107 123 122 126 127 

Yr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Fig. 3. Numbering of cells of the quaternary incremental algorithm (M=4) 

[47] [46] [42] [43] [59] [58] [62] [63] 
7 24 59 60 25 61 14 37 

[ 45] [44] [40] [41] [57] [56] [60] [61] 
6 64 16 57 52 15 5 

[37] [36] [32] [33] [49] [48] [52] [53] 
5 23 17 18 7 33 8 ~9 9 36 32 53 51 

[39] [38] [34] [35] [51] [50] [54] [55] 
4 22 13 19 31 54 50 49 

[7] [ 6 ] [ 2 ] [ 3] [19] [18] [22] [23] 
3 45 30 27 2 63 62 20 4 

_4l....1 
[ 5 ] [ 4] [ 0 ] [ 1 ] [17] [16] [20] [21] 

2 46 11 10 55 58 28 48 

[13] [12] [ 8] [ 9] [25] [24] [28] [29] 
1 6 26 44 38 21 12 39 35 65 

[15 ] [14] [10] [11 ] [27] [26] [30] [31] 
0 47 34 66 42 41 56 40 

X 0 1 2 3 4 5 6 7 

Fig. I .. An example of distribution of 66 generators in 64 cells (M=3, k=8) 
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The leaves of T, now being identified with the cells, have the generators 

in the respective cells, whereas the other nodes of T are still empty. Then, 
2 M scanning the leaves from left!£ right, i.e., from r=O to r=k -1=4 -1, we pick 

up a single generator, if any, contained in a leaf and put it in all the empty 

ancestor nodes of the leaf. Thus we obtain a quaternary tree, whose nodes, 

except for leaves, are filled with at most one generator. (A leaf may have 

more than one generator.) Note that a nonempty node has a nonempty father. 

The following example will illustrate the construction of the quaternary 

tree T, where we set a=l. Suppose that n=66 generators are given as in Fig. 4, 

where the generators are indicated simply by their numbers and the cell numbers 

of the 64 cells are shown in brackets [ ). Then, the corresponding quaternary 

tree T of Fig. 5 is of depth M=3, having 4
M

=64 leaves, each of which is identi­

fied with one of the 64 cells. The first (left-most) leaf, leaf 0, 

corresponding to the cell (I,J)=(2,2), contains a generator P
ll

, which is put 

in all the ancestor nodes up to the root. For the generator PlO contained in 

the next leaf, leaf 1, nothing is done, since its father node is already filled 

with Pll . Going on towards the right in this way, we may hit upon an empty 

leaf like leaf 4. Then we do nothing. After scanning all the 64 leaves, we 

have the quaternary tree ~r of Fig. 5. Note that an intermediate node, Le., 

the father of leaves 56 to 59, is still empty, since none of its descendent 

leaves contain a generator. 

The ordering of the generators in the incremental process is determined 

as follows. The tree T is traversed from the root in the breadth-first manner, 

from right to left at the same depth. Every time ~e encounter a node with a 

"new" generator, we add it. Since the father of that node must contain a 

generator which has already been processed, that generator is adopted as the 

initial guess Pi(O) of the nearest neighbor search in Phase 1. When a leaf 

contains more than one generator left unadded, they are added in an arbitrary 

order among themselves, where the generator in the same cell which was added 

previously may be adopted as the initial guess Pi(O) in Phase 1. 

In the tree T of Fig. 5, the circles indicate the "new" generators to be 

added to the Voronoi diagram during the traversal of T. In the present case, 

the generators are added in the following order: Pll , P
29

, P
17

, P
5S

; P
15

, P
36

, 

... , P26 , P44 , P46 ; P37 , P61 , P14 , PS' ... , P
9

, PI' ... , P47 , ... , P
30

, P
27

, 

PlO' As for the initial guess of the nearest neighbor, we use, e.g., P
29 

for 

PIS and P36 ; P
ll 

for P26 , P44 and P46 ; PIS for P
37 

and P61 ; P61 for P14 ; P
29 

for P9 ; and P
9 

for PI' 
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4. Experimental Results 

4.1. Performance of several algorithms for uniformly distributed generators 

Throughout the experiments, we made use of the following "full" data 

structure for representing generators and Voronoi diagrams, where n is th.~ 

total number of generators given: 

(i) coordinates of generators (2n words); 

(ii) coordinates of Voronoi points (4n words); 

(iii) Voronoi points incident to Voronoi edges (6n words); 

(iv) generators defining Voronoi edges (6n words); 

(v) incidence list of Voronoi edges to Voronoi points and to Voronoi 

regions (15n words). 

Recall that the total number of Voronoi points is bounded by 2n and that of 

Voronoi edges by 3n. Our data structure requires 33n words in total for n 

generators. The "compact" data structure,of which the idea is found in [3], 

requires l4nwords, consisting of (i), (iv) and part of (v), Le., 

(v') the edges which are clockwise adjacent to each edge at its both ends 

(6n words). 

(The latter is more efficient in space, but the computational performance is 

less efficient in time, Le., the computation time needed for the latter i.s 

about 2.5 times as much as that for the former, according to our computati.onal 

experience.) The experimental computations were made on HITAC M-280H (VOS31 

JSS4, Optimizing FORTRAN77, OPT=2) at the Computer Centre of the University of 

Tokyo with double precision arithmetic with mantissa of 14 hexadecimal digits. 

The CPU times needed for constructing the Voronoi diagram by several 

algorithms were measured mainly in the case where generators are distributed 

uniformly in t.he unit square. The results are shown by the scale of "CPU 

time In" (the time per generator!), for the average of 10 independent instances, 

for n from 27 (=128) to 213 (=8192) or to 215 (=32768). 

In the first place, the optimal values of the parameter a of the 

consecutive cell algorithms are determined empirically. Fig. 6 suggests that 

the optimal values lie around 0.25 for any of the three cell orders considered 

here, when the number n of generators is sufficiently large. 

The consecutive cell algorithms with different cell orders are compared 

in Fig. 7. All of them worked fairly well and their performances seem practi­

cally satisfactory. It is surprising to see that the incremental method with 

such a simple preprocessing is very effective compared with the primitive 

incremental method where the generators are added in a random order without 

any particular preprocessing; the latter takes about 0(n3/2 ) time on the 
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(i) Serpentine cell order (ii) Inward spiral cell order 

.. : n=8192 
0.6 l>: n=4096 

.: n=2048 

.: n=1024 
-;;; 0.5 0: n=512 
E 

,.: n=256 
v: c n=128 

2-4 2-3 2-2 2-1 20 21 22 23 

Cl 

(1ii) Outward spiral cell order 

Fig. 6. The experimental search for the optimal value of the 
parameter Cl of the consecutive cell algorithms 
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1.0 

0.8 

"' E, 

0.6 
c: 

" 
Cl> 

E, 

=> 0.4 
c. 
LJ 

0.2 

I I I .. 

number of generators n 

Fig. 7. CPU time per generator for constructing the Voronoi diagram 
of uniformly distributed generators by consecutive cell 
algorithms with different cell orders (a=O.2S) 

.: primitive incremental method 
• incremental method 'with serpentine cell order 
• incremental method 'with inward spiral cell order 
• incremental method 'Nith outward spiral cell order 
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average. In spite of the drastic improvement in performance due to the pre­

processing, the consecutive cell algorithm did not run in O(n) time. 

Next, the optimal value of the parameter a of the quaternary incremental 

algorithm was determined again by experiment. On 'the basis of the observation 

that the average running time of the quaternary incremental algorithm per 

generator is independent of the total number n of generators (see Fig. 9), the 

optimal value of parameter a was determined to be approximately equal to unity 

from the performance for n=8l92 generators shown in Fig. 8. (Since the 
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computation time of the quaternary incremental algorithm is nearly proportional 

to n for n ~ 1024, it suffices to investigate the effect of the value of pa­

rameter a for a single n.) It was also observed that the performance is not 

very sensitive to the variation of the parameter value. With the choice of 

parameter value a=l, the asymptotically constant time of 0.26ms was needed per 

generator, independentlY of the total number n of the generators involved (see 

also Fig. 9). 

Finally, the performance of the several algorithms are compared in Fig. 9 

when the generators are distributed uniformly in the unit square. The program 

we wrote according to the divide-and-conquer algorithm [16] of worst-case 

complexity O(n log n ), with either "full" or "compact" data structure, did not 

run in O(n) time even on the average (see Fig. 9). The code with the "full" 

data structure ran about twice as fast as that with the "compact" structure. 

The consecutive cell algorithm with, say, the outward spiral cell order is 

substantially faster than the divide-and-conquer algorithm. The quaternary 

incremental algorithm was found to be quite efficient. 

We have not tested the variants of incremental algorithms with the compact 

data structure, but the effect of the difference in data structures will be 

the same for the incremental algorithms as for the divide-and-conquer algorithms. 

Cl) 

.§ 

c 
"-

~ ... 
::> 
0-

u 

0.5 

0.4 

0.3 

2-4 2-3 T2 2-1 20 21 22 

a 

Fig. 8. The experimental search for the optimal value of the 
parameter a of the quaternary incremental algorithm 
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1.0 

0.8 

'" E 

c: 0.6 
...... 

Cl> 

E 

..., 
::::> 0.4 
"-
u 

0.2 

mJllber of generators n 

Fig. 9. CPU time per generator for constructing the Voronoi diagram 
of uniformly distributed generators by various algorithms 
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.... : divide-and-conquer algorithm with "compact" data structure 

... : divide-and-conquer algorithm with "full" data structure 

.: primitive incremental method 
• incremental method with outward spiral cell order (a=O.25) 
.: quaternary incremental algorithm (a=l) 

4.2. Robustness of the quaternary incremental method against nonuniformity 
of the distribution of generators 
In this subsection, we will investi.gate the sensitivity of the quaternary 

incremental algorithm to the distributieon of generators, i.e., how the per­

formance of the algorithm changes when the distribution of generators deviates 

from the uniform. As typical nonuniform distributions, we have considered the 

four cases below. 
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[Case 1J Uncorrelated bivariate normal distribution 

The generators are distributed subject to the normal distribution: 

where the generators lying outside the unit square S are ignored. An instance 

of this distribution with n=128 and 0=2-2 is shown in Fig. ll(i). The CPU 

times per generator required by the quaternary incremental algorithm are shown 

in Fig. lOCi). There seems to be no big difference from those for the uniform 

distribution and the total CPU time for n generators is approximately 

proportional to n. 

(/) 0.3 E 

~I a=Z-r:::l c 0.25 
"-
Cl) 

E 0=2-2 ..... 0.2 ... 
:::> 

0... • uni fonn 
distribution 

w 
0.25 

number of generators n 

(i) Case 1: Uncorrelated normal distribution 

(/) 0.3 T : '=2-
8 ~ E 

c 0.25 ~ "-
Cl) • : s=r5 
E 
..... 0.2 6=2-2 ... 
:::> 

0... 

w • uni fonn 
0.15 distribution 

27 28 29 210 211 212 213 
number of generators n 

(ii) Case 2: Distribution concentrated along a line 

Fig. 10. CPU time per generator for constructing the Voronoi diagram 
of nonuniformly distributed generators by the quaternary 
incremental algorithm (to be continued) 
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T : 0=2-6 

• 0=2-5 

• 0=2-4 

... 0=2-3 

• uniform distribution 

, , 

number of generators n 

(iii) Case 3: Mixture of normal distributions 

,~ 0.3 
T : 0=2-12 

c 
-.... 0.25 
<lJ 0=2-8 
E 

-;:0.2 
0=2-4 :::> 

Cl.. 

<...) • uniform 
distribution 

0.15 I I I .. 
27 28 29 210 211 212 213 

number of generators n 

(iv) Case 4: Distribution conceritrated along a circle 
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Fig. 10. CPU time per generator for constructing the Voronoi diagram 
of nonuniformly distributed generators by the quaternary 
incremental algorithm (continued) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



322 Takao Ohya, Masao 1ri and Kazuo Murota 

(i) Case 1: Uncorre1ated normal distributions (0=2-2) 

-5 
(ii) Case 2: Distribution concentrated along a line (S=2 ) 

Fig. 11. Examples of Voronoi diagrams of nonuniformly distributed generators 

(to be continued) 
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(iii) Case 3: Mixture of normal distributions (0=2- 3) 

(iv) Case 4: Distribution concentrated along a circle (0=2-4) 

Fig. 11. Examples of Voronoi diagrams of nonuniformly distributed generators 

(continued) 
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[Case 2J Distribution concentrated along a line. 

The generators are distributed subject to a highly correlated normal 

distribution: 

where the generators outside the unit square are ignored. For S small, the 

generators are clustered along the diagonal line, as is illustrated in Fig. 11 

-" (ii) with n=128 and 8=2~. The CPU times per generator required by the 

quaternary incremental algorithm are shown in Fig. 10(ii). Even in the extreme 
-8 

case of 8=2 , the running time is about 1.2 times as much as that for the 

uniform distribution. 

[Case 3J Mixture of normal distributions 

Among the n generators in the unit square S, n/2 generators are taken from the 

normal distribution: 

and the remaining n/2 from 

As 0 becomes smaller, the generators tend to cluster around the two diagonally 

opposite corners. The CPU times per generator by the quaternary incremental 

algorithm are shown in Fig. 10(iii). Though the performance of the quaternary 

incremental algorithm appears most sensitive to this type of nonuniformity of 

generators, it is still good enough for such distribution as is shown in Fig. 

ll(iii), where n=128 and 0=2-
3

. 

[Case 4J Distribution concentrated along a circle 

Points are randomly gener"ated in such a way that the distances of generators 

from the center (1/2, 1/2) are normally distributed subject to N(1/2-0, 0
2

) 

and their angles around the center are subject to the uniform distribution. 

(Those outside the unit square are ignored.) An example is shown in Fig. 11 
-4 

(iv), where n=l28 and 0=2 . The CPU times per generator required by the 

quaternary incremental algorithm are shown in Fig. lO(iv). No serious deteri­

oration of the performance is observed. It may seem strange that it takes 

less time than in the case of the uniform distribution when both nand 0 are 

small, e.g., n=2 7 
and 0=2-

12
. This phenomenon may be explained as follows. 

If the generators are clustered along a circle, the number of generators lying 
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on the boundary of the convex hull of the generators is significantly larger 

than that in the case of uniform distribution, and consequently the total 

number of Voronoi edges is considerably smaller, especially when n is moderately 

small. 

For comparison, the CPU times of the consecutive cell algorithm with the 

outward spiral cell order (a=0.25) are shown in Fig. 12 when the generators 

are distributed as in Case 3 above. Conparing Fig. 12 with Fig. 10(iii), it 

may be seen that the quaternary incremental algorithm is considerably more 

robust than the consecutive cell algorithms. 

5. Conclusion 

In spite of the worst-case complexJ~ty O(n
2

), the quaternary incremental 

algorithm constructs the Voronoi diagran for n generators in O(n) time on the 

average, much faster than the divide-and-conquer algorithm of worst-case 

complexity o(n log n). It is said that algorithms of divide-and-conquer type 

sometimes fail for large problems, probably because generators are divided 

0.7 ., 0=2-6 

0.6 • 0=r5 

0.5 • 0=r4 

(/) ... 0=2-3 
1= 

0.4 ,= 

---------' .... 

(1) 

E 

~ < .... 0.3 
::> 

CL. 

lJ 

0.2 

number of generators n 

Fig. 12.. CPU time per generator for constructing the Voronoi diagram 
of nonuniformly distributed generators (Case 3: Mixture 
of normal distributions) by the consecutive cell algorithm 
with outward spiral cell order (a=0.25) 
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into so thin strips that Many almost parallel Voronoi edges are created and 

their intersections are to be determined in the course of computation. It is 

noteworthy, on the other hand, that the incremental method is free from this 

type of numerical difficulty. It is also verified by experiments that the 

quaternary incremental algorithm is robust against the nonuniformity of the 

generators. Considering the running time and the ease in coding, the "full" 

data structure is recommended, if space permits, rather than the "compact" 

one. The extension of the ideas presented in this paper for the incremental 

method to the case of more general Voronoi diagrams such as the Voronoi diagram 

of line segments and polygons [9], that in the Laguerre geometry [4], etc., 

should deserve due investigation. 
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Appendix 1. A Theoretical Analysis of the Average-Time Complexity of the 

Quaternary Incremental A1 gori thm 

This appendix affords a theoretical support for the linearity of the 

average-case time complexity of the quaternary incremental algorithm, which 

has been confirmed experimentally in Section 4. For that purpose the following 

properties will play a fundamental role. 

(1) The expected value of the number Y
m 

of the generators to be visited by 

Algorithm L in Phase 1 at stage m is bounded by a constant depending on a: 

(2) The expected value of the number X
mi 

of Voronoi edges of a Voronoi 

polygon Vm(P
i

) of any intermediate diagram Vm is bounded by another 

constant depending on a: 

(AI. 2) 
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From these properties we may expect that the average complexity of Phase 

1 at each stage of the quaternary incremental algorithm is 0(1), since the 

number of the generators Pi to be visited before PN(m) is found is 0(1) by 

(Al.l) and since the amount of computation, for each Pi' needed to find a 

contiguous generator P. that violates (2.1) is of the order of the number of 
] 

edges of Vm_l(P
i
), which is also 0(1) by (Al.2). Note also that (Al.2) 

guarantees, in particular, that the expected number of Voronoi edges created 

in Phase 2 at each stage is 0(1) and therefore we may expect that Phase 2 can 

be done in 0(1) time, since the amount of computation 

from P N . (m) is of the order of the numbe:c of edges of 
~ 

also 0(1) by (Al.2). 

to determine PN (m) 
i+l 

Vm-l(PN.(m»' which is 
~ 

In the following, we will briefly demonstrate how the bounds (ALl) and 

(Al.2) are established, where we assume that P is added at a node of depth h 
-h m 

of the quaternary tree and set c=2 (1 :s h :s M), which represents the size of 

the supercell corresponding to the node. Note that the relation 

(AI. 3) 
2 M 2 

a n/4 < 4 :s a n 

holds in this case. 

Al.l. Inequality (Al.l) 

Let pi(O)' Pi(l)' •••• Pi(y ) =PN(m) be the generators visited in Phase I 
m 

at stage m. Since the distances to Pm from these generators decrease monotone. 

they must be contained in the disk D(Pm,r) of radius r=d(Pm,Pi(O» centered at 

P • 
m Both Pm and pi(O) are contained in a square of side 2c. so that 

(AI. 4) r 5 212 c. 

Obviously. Ym is smaller than the number of generators contained in the disk 

D(Pm.r). which is included in D(Pm.212 c) by (AI.4). 

In case Pm is added at an intermedia.te node (h:S M-I). each supercell of 

side c contains at most one generator already added. and therefore 

(AI. 5) 

since D(Pm.212 c)nS intersects at most (r4121+2)2=49 supercells of side c. 

When Pm is added at a leaf (h=M) , the expected number of generators. among n 

generators. which are contained in D(P
m

, 212 c)ns, gives an upper bound on 

E[Y J: 
m 
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(Al. 6) 
2 2 

E[Y 1 ~ (n-l)n(212 c) ~ 32n/a. . 
m 

From (AI.S) and (AI.6), the bound (AI.I) is obtained with 

(Al. 7) 

Al. 2. 

2 
Cl = max (49, 32n/a. ). 

Geome tri c Lemma 

Consider a Voronoi diagram V for a set of generators including four 

noncollinear points Qi (i='O, ... ,3). The half plane determined by line QOQ
I 

(resp. Q
O

Q
2

) and lying on the opposite side of Q
2 

(resp. QI) is denoted by HI 

(resp. H
2
). Denote by D the circumcircle (including the interior) of the 

triangle Q
O
Q

I
Q

2 
(cf. Fig. AI.I). 

Lemma Al. 1. If Q
O 

and Q
3 

are contiguous in V, then Q
3 

E HI U H2 U D. 

Proof: The assertion follows from the fact that if Q
O 

and Q
3 

are con­

tiguous in V, there exists a circle C such that both Q
O 

and Q
3 

are on its 

circumference and that it contains no generator in its interior. Q.E.D. 

Let r
i 

be the length of line segment QOQi(i=I,2) and 6 the angle QI Q
O

Q
2

. 

Suppose that a point P lies on the circumference of D interior to the angle 

Q
I

QOQ2 and let rO 

Lemma A1.2. 

denote the distance of P from QO' i.e., rO=QOP' 

222 
If n/4 ~6~3n/4, then rO ~2(rl +r

2 
+12 r

l
r

2
). 

Proof: The diameter of D is greater than or equal to rO=QOP: 

(Al. 8) 

For S such that n/4 ~ 6 ~ 37r/4, (Al.8) takes its maximum when 6=3n/4. Q.E.D. 

I 
Fig. Al.l. Admissible region for a generator Q

3 
contiguous to Q

O 
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Al.3. Inequality (Al.2) 

For each Pi' we partition the unit square 5 into 8 parts 5(j) (i <: j S 8), 

which we call sectors, by 8 rays emanating from Pi with the angle of n/4 

between two consecutive ones, as illustrated in Fig. Al.2. If we denote by 

X (j) the number of genera tors in 5 (j) tha t are contiguous to P in V , we 
mi i m 

have 

(Al. 9) X , = I x U ) 
m~ j=l m~ 

(i ::; m) • 

We estimate the expected value of X(~) as follows. For notational 
m~ 

( ') (j) 
simplicity, we write P;=QO' 5 ] =5 and X , =x. 

~ 0 ml. 
Two neighboring sectors 

of 50 are denoted by 51 and 52 (Fig. Al.]) and, for j=0,1,2, 5,(r) designates 
] 

the region in 5, that is within the distance of r from Q
O

. For j=1,2, let ~, 
] ] 

denote the generator Pi(j) (l'5i(j) ::;m), if any, which is the nearest to Q
O 

among the generators contained in 5, and put r ,=QOQ ,. Note that the angle 
] ] ] 

Q
I

Q
O

Q
2 

lies between n/4 and 3n/4. 

From Lemma Al.l and Lemma Al. 2, it follows that if a generator P jE5
0 

(1'5 j ::; m) is contiguous to Q
O 

in V
m

, it must lie in 50 (R), where 

(Al.IO) 

Thus the expected value of X conditional on R=r is bounded by N(r), the 

expected value, conditional on r, of the number of generators of Vm contained 

in 5
0

(r): 

(Al.l!) E[xlr] ::; N(r). 

S(8) 

Fig. Al.2. Partition of S into 8 sectors Fig. Al.3. Neighboring sectors 
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For R defined by (Al.lO), we put 

(Al.12) F(r) = pdR>r}. 

Suppose we have a nonincreasing function G(r) with G(+OO)=O such that 

(Al.13) F(r) ,,; G(r) for r~O, 

as well as a nondecreasing function B(r) such that 

(Al.14) N(r) ,,; B(r) for r2:0, 

and 

(Al.lS) 

with a constant c
2

• Note that (Al.13) implies 

(Al.16 ) fBCr) I dF(r) I <: JB(r) I dG(r) I 

since B(r) is nondecreasing and B(O) ~ O. Then we have 

(Al.l7) E[X] JE[X1r1IdF(r) I 

fNCr)ldF(r)1 
(by (Al. 11) ) 

,,; 

JB(r) IdF(r)1 
(by (Al.14) ) ., 

fB(r)ldG(r) I 
(by (Al.16» 

,,; 

(by (Al. IS) ) 

Combining (AI.9) and (Al.17), we can obtain (Al.2). 

Al.4. Derivation of (Al.15) 

In what follows, we will establish CALlS) under the simplifying 

assumption that the sectors 50' 51 and 52 may be regarded as unbounded regions. 

In other words, the generators are assumed as points of a homogeneous planar 

Poisson process of intensity n and the whole plane is divided into cells of 

side 2-
M

• 

First we consider the bound B(r) of (Al.14). When h ,,; M-I, each supercell 

contains at most one generator of Vm, and therefore N(r) is bounded by the 

number of those supercells of side c which have a nonempty intersection with 

5
0

(r); the latter being bounded by 
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(Al.lS) 

where a
l 

= n/8 and b
l 

= /2 + Z(Z+/2 )1/2. When h=M, N(r) is bounded by the 

expected valu,~, co.nditional on R=r, of the number of generators contained in 

SO(r), which ilo' equal to area (SO(r» multiplied by n, since 

SO(r)n(Sl(r
l

)US
Z

(r
Z
»=0 and the generators are subject to the Poisson point 

process. Thus we have, in view of (AI.3), 

(Al.19) 
Z 2 

N(r) ~ nTrr /8 ~ a
2 
(rlc) • 

where d
Z n/(Za

Z
). From (Al.lS) and (Al.19), we obtain (Al.14) in either 

case by choosing 

(Al. ZO) B(r) 

Next, G(r) in (Al.13) is constructed as follows. From (Al.lO) it follows 

-l/Z that R>r implies max(r
l
,r

Z
»b

2
r, where b

Z 
= (4+2/2 ) ,and therefore 

(Al. 21) 

Since r
j

>b
2

r implies that 

Sj(b2r) includes at least 

Sj(b 2r) contains no 

2 2 a l (b
2
r-2b

l
c) /(2c) 

generator for j=l,Z and since 

supercells of side 2c, we have 

(Al. 22) pr{r j >b
2
r} 5 Pr{Sj(b

2
r) is empty} 

Z 
exp[-na l (bzr-Zblc) 1 

Therefore we have 

(Al. Z3) 

where g( t) 

for h5M. 

(Al. 24) 

(rlc > b
3

; j=l,Z), 

2 2 Z 2 exp[-d 3 (t-b
3

) ], a
3 

d
l

b
2

/D and b
3 

= 2b
l
/b

2
, since nc ~l/D 

Combining (Al.21) and (Al.23) we obtain (Al.13) by setting 

G(r) - \2 
- 2 g(r/c) 

if 0 5 rlc ~ b
3

, 

if b
3 

< r/c. 

For B(r) of (Al. 20) and G(r) of (Al. 24), inequality (Al.15) holds with 

(Al. 25) [ 
1/2 2 

C2 = l6max(a l ,a2) 0 «x/a
3

) +b
l
+b

3
) exp(-x)dx. 

Note that C2 given in (Al.25) is a constant depending only on D. 
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Appendix 2. Sketch of the Proof That the Divide-and-Conquer Algorithm 
Needs O(n log n} Time Even on the Average 

Here we will demonstrate by asymptotic theoretical argument as well as 

by experiment that the divide-and-conquer algorithm takes O(n logn) time 

even on the average. 

Let n be the number of generators and set 

p-th stage of the divide-and-conquer algorithm, 

n = nZ-P (ISp<logzn). At the 
Pp-l 
Z pairs of right and left 

diagrams, each containing n 
p 

generators, are to be merged to p-l 
Z diagrams 

containing Zn generators. Denote by L the total number of Voronoi edges 
p p 

created at the p-th stage, i.e., the total number of line segments contained 

in the Zp-l dividing lines (merge curves) created at the p-th stage. The 

total number LT of Voronoi edges created by the algorithm in the whole process 

is then given by 

(AZ.I) L 
T 

log n 

I L 
p=l P 

In the following, we will show that, if the n generators are distributed 

uniformly in the unit square, the expected value of L is bounded from below 
p 

by (1/6)n, i.e., 

(AZ.Z) 

for p such that 

(AZ.3) 

E[L 1 2: (l/6)n 
p 

(4/6) log n < p < (5/6) log n , 

when n is large enough. 

with p satisfying (AZ.3). 

Note that n tends to infinity if n tends to infinity 
p 

Then it follows from (AZ.I) and (AZ.Z) that 

(AZ.4) E[LTl 2: (1/36)n ~Og n , 

which implies, together with the obvious upper bound L =O(n log n), that 
T 

E[LTl = G(n log n). 

Suppose that n generators are distributed randomly uniformly in the 

unit square and consider a pair of left and right diagrams to be merged, each 

containing n generators. Let {Po li £ L} (resp. {p ·IJ ER}) be the set of 
p ~ ] 

generators forming the left diagram V (resp. right diagr3m V). The width w 
L R L 

and w of the band regions for the respective diagrams (Fig. AZ.I) are random 
R 

variables with asymptotic mean n /n =Z-p and asymptotic variance (l-n /n)n /nZ. 
p p p 
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(It is possible to derive the joint distribution of (w ,w ) from that of the 
L R 

order statistics, but we omit it.) Note that the n generators are distributed 
p 

uniformly in each of the band regions. 

For each Pi (i EL), let us denote by PN(i) (N(i) E L U R) the point 

among the 2n -1 generators in (L U R)\{i} that is nearest to P .. In case N(i) 
p L 

belongs to R, a portion of the perpendicular bisector of PiPN(i) constitutes 

a new Voronoi edge in the merged diagram V L U R· That is, the number of the 

Voronoi edges created in merging the two diagrams is not less than the number 

of left generators Pi such that N(i) E R. 

Let f be the probability that N(i) E R for a fixed i (E L). Evidently, 

it may be assumed that this probability does not depend on index i. Then the 

expected number of the new Voronoi edges created in merging a pair of diagrams 
p-l 

of size n is asymptotically greater tha·:1 fn , and, since we have 2 merging 
p p 

pairs at the p-th stage, we have 

(A2.S) E [L 1 <: 2P-
l 

f n = f n 12. 
T P 

Next, we will estimate the probability f. 
p -2/3 

is of the order 2- < n ,the n generators 
p 

Since the band width w
L 

or w
R 

in L can be regarded as being 

distributed along a line with mean distance lln . 
p 

For p in the range of (A2.3), 

we have 

WL,W
R

« lln 
p 

I-- WL -+ - WR -
• • 

• • 
• 

• 
• • 

• • 
• • 

• 
• • • 

VL VR 

Fig. A2.l. Neighboring band 

regions to be merged 

(p <: (4/6)logn> (1/2)10gn), 

c:: 10 

o 
zs 
L. 
o 
> 

't 5 

o ..., 
o ..., 

number of generators n 

.. 

Fig. A2.2. Total number of Voronoi edges 

created by the divide-and-conquer algorithm 
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which implies that the band width hardly affects the distance from Pi to other 

generators in L U R. In other words, the probability that N(i) belongs to R 

comes close to 1/2 as n gets large with p satisfying (A2.3). To be specific, 

we may claim that 

(A2.6) f ~ 1/3 

for n large. Combining (A2.5) and (A2.6), we obtain (A2.2), and consequently, 

that the expected total number LT of the Voronoi edges created by the divide­

and-conquer algorithm is of the order B(n log n ). 

The total number LT of Voronoi edges created by the divide-and-conquer 

algorithm was observed in our experiment. Note that LT does not depend on a 

particular implementation but only on the algorithm. The average of LT/n of 

10 independent samples against n=2 7 to 2
15 

is plotted in Fig. A2.2, and the 

minimum and the maximum of LT among those of the 10 samples, along with the 

average normalized by n and by n log n, is listed in Table A2.l. As is seen 

from the table, the behavtor of the average of L
T

/(n'10g
2
n) can be accounted 

for by an experimental formula 

quite well. This fact evtdences the theoretical argument that there is a 

substantial component in LT' and hence in the computational time of the 

divide-and-conquer algorithm, which grows as fast as n·logn. 

Table A2.l. Total number LT of Voronoi edges created by the divide-and­

conquer algorithm (n=number of generators; 10 samples for each n) 

,-

Min (LT) Hax(L
T

) Av. (LT) Av. (L ) Formula 
n 

n.IOg;n (A2.7) n 

128 577 608 4.63 0.661 0.661 

256 1299 1338 5.14 0.643 0.640 

512 2857 2898 5.62 0.624 0.624 

1024 6236 6327 6.13 0.613 0.612 

2048 13492 13637 6.63 0.603 0.601 

4096 28689 29230 7.09 0.592 0.592 

8192 61838 62496 7.61 0.586 0.584 

16384 132768 133190 8.12 0.580 0.579 

32768 2800,40 282406 8.60 0.573 0.573 
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