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Abstract This paper proposes an algorithm for solving the minimum cost project scheduling problem with an 

additional linear constraint whose right hand side is a parameter. Instead of putting the additional constraint, we 

add it to the objective function, where it is multiplied by a parameter. First, we get an optimal solution when a 

parameter is zero, and next, increase it to infinity. To do so, we iterate to fmd two dimensional flow on the given 

arrow diagram. The bounds for each arrow flow are determined by the current solution. The first elements are 

related to the costs, and the second to the coefficients in the additional constraint. A lexico-bounded flow is 

defmed as the flow such that each arrow flow is within the bounds in the lexicographical ordering. When a lexico­

bounded flow exists, the parameter is increased. Otherwise, the function of the additional constraint is increased. 

Our algorithm is almost dual to the lexico-shortest route algorithm for the minimum cost flow problem with an 

additional linear constraint. For example, a loop is replaced by a cutset. Our algorithm is also applicable to a pro­

ject scheduling problem with two objectives by combining them with a parameter. 

1. Introduction 

The project scheduling problems with additional linear constraints occur 

when there exist divisible activities or when some activities use a common 

resource, and some algorithms are presented for getting the length of critical 

path [6, 8, 9, 11]. This paper presents an algorithm for solving the minimum 

cost project scheduling problem with an additional linear constraint, whose 

right hand side is a parameter. The author has presented an algorithm for the 

minimum cost flow problem with an additional linear constraint, called the 

lexico-shortest route algorithm [10]. By transforming it in the dual way, 

like replacing a loop by a cutset, we get our algorithm. 
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Constrained Min·CostProject Scheduling 231 

Let 

n(t);;;e 

be the additional constraint, where e is a parameter. Instead of putting it, 

we add $·n(t) to the objective function, where $ is a parameter. First, we get 

an optimal solution for $=0, and next, increase $ to infinity. To do so, we 

iterate to find two dimensional flow on the given arrow diagram. The bounds 

for each arrow flow are determined by the current solution. The first elements 

are related to the eosts, and the second to the coefficients in net). A lexico­

bounded flow is defined as the flow such that each arrow flow is within the 

bounds in the lexicographical ordering. When a lexico-bounded flow exists, $ 

is increased. Otherwise, net) is increased. We prove the validity of our 

algorithm by the complementary slackness conditions. 

2. Problem Formulation 

Let us consider an arrow diagram for a project, with n nodes, numbered 1, 

2, ... , n, where node 1 represents the st.art and node n the termination. Let A 

be the set of jobs (pairs of nodes), and for each job (i,j), the standard time 

h . . , and the shortest time g . . are given, where h .. ;;;g... Furthermore, for 
~J ~J ~J ~J 

(i,j) such that h .. >g . . , the cost for shortening the time 
~J ~J 

by a unit c .. is 
~J 

given. Conveniently, let c .. =0 for (i, 'i) such that h .. =g . . ' 
~J - ~J ~J 

Then, the minimum 

cost project scheduling problem with an additional linear constraint is formu-

lated as follows: 

PO(e): Minimize 

zO(t) L c . . (h .. -t .. ) 
(i,j) ~J ~J ~J 

subject to 

(2.1) g .. ~ t .. ~ h .. «i, j)t;A) " 
~J ~J ~J 

(2.2) v. + t .. ~ v. «i,j)£A)., 
~ ~J ] 

(2.3) v - v
1 = PO' n 

(2.4) L 
b .. t .. ;;; e, 

(i,j) ~J ~J 

where Po (total duration) is a given po:>itive number, and e is a parameter. 

We assume that b . . ;;;0 for any (i,j)£A, and that b . . =0 for (i,j) such that h . . = 
~J ~J ~J 

g . . ' 
~J 
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Now, let 

n(t)= L b .. t .. , 
(i,j) ~J ~J 

T. Kobayashi 

and we shall consider the following parametric programming problem with a para­

meter ~ instead of 8. 

P(~): Minimize 

z(t,~) = zO(t)-~n(t) 
subject to (2.1), (2.2) and (2.3). 

Let 

for (i,j)e;A. 

Then, 

where Co is a constant. 

Hence, p(~) is a normal minimum cost project scheduling problem when ~ is 

fixed. The relations between the solutions of two problems are stated 'by the 

following theorems. 

Theorem 1. Let (~,t) be an optimal solution of P(O). Then it is also 

optimal to P
O

(8) for any 8 such that 8~n(t). 

Theorem 2. Let (~,t) be an optimal solution of P(~) for some positive ~. 

Then it is also optimal to PO(n), when n=n(t). 

It is proved in the same way as theorem 2 of [10J. 

3. Dual problem and Complementary Slackness Conditions 

We consider the dual problem to P(~). 

D(~): Maximize 

w = -PO·q-LhijX: j + LgijX~j+cO 
subject to 

0.1) LX .. -Lx .. 
j ~J j J~ 

+ 
x .. +x .. -X .. 
~J ~J ~J 

+ 
xij ' xij ' x ij 

where Co is a constant. 

(i=1), 

(i=2,3, ... ,n-l), 

(i=n) , 

«i,j)r;A) , 

;;; 0 «i,j)r;A) , 

Note that q is a variable. Now, we add an arrow (n,l) conveniently, and let 

A*=AU{(n,l)}. By replacing q with x
n1

' (3.1) is rewritten as follows. 
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(3.2) 

It means 

(3.3) 

Constrained Min-Cost Project Scheduling 

EX .. -Ex .. =O 
j ~J j J~ 

(i=1 ,2, ... .• n). 

that (x . . ) is a circulation flO1 •• 
~J 

+ 
= max(c1j(~)-Xij'0), x .. 

~J 

x .. = max(x .. -c'!" .(~) ,0), 
~J ~J ~J 

In any optimal solution, 

are satisfied for any (i,j)£A. 

233 

The complementary slackness conditions for P(~) and D(~) are as follows: 

For any (i,j)£A, 

(3.4) 

[

X, .(v .-v .-t . .)=0, 
~J J ~ ~J 

+ x .. (t .. -h .. )=0, 
~J ~J ~J 

x -:- .(t .. -g .. )=0. 
~J ~J ~J 

In any optimal solution, 

(3.5) t .. = min(v.-v.,h . .) 
~J J ~ ~J 

is satisfied. 

Let 

Apl {(i,j) I (i,j)£A, 

Ap2 {(i,j) I (i,j)£A, 

(3.6) 
Ap3 {(i, j) I (i ,j)£A, 

Ap4 {(i,j) I (i,j)£A, 

vFvi>hij } , 

v .-v .=h . . >g . .}, 
J ~ ~J ~J 

hi/Vj-Vi>gi} , 

vj-vi=gi} • 

Then, (3.4) is replaced by the following 0.7). (See [5].) 

x .. =0 for (i,j)£Ap1 ' 
~J 

(3.7) 
O~xiiCij(~) for (i,j)£Ap2 ' 

x .. =c . '!"(~) for (i,j)£Ap3 ' 
~J ~J 

x .. <:c.'!"(~) for (i,j)£Ap4 · 
~J ~J 

Next, we let 

Adl {(i,j) I (i,j)£A, x . . =O), 
~J 

(3.8) 
Ad2 {(i,j) I (i,j)£A, O<x .. <c.'!"(~)}, 

~J ~J 

Ad3 {(i,j)l(i,j)£A, Xij=cij(~)}, 

Ad4 {(i,j) I (i,j)£A, x .. >c '!"(~)}, 
~J 1.J 
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234 T. Kobayashi 

Then, (3.4) can be replaced by the following (3.9) , too. 

v .-v.ii;;h .. for (i,j)£A
d1

, 
] 1. 1.] 

V .-V .=h .. for (i,j)£Ad2 ' (3.9) ] 1. 1.] 

hilVj-Vi~gij for (i, j) £A
d3

, 

vj-vi=gij for (i,j)£Ad4 · 

4. Lexico-bounded Flow 

Suppose that we have an optimal solution of P(~), (v,t). Let us show 

that (v,t) is optimal to P(~) for some ~>~, or that an optimal solution of 

P(~) such that n(t»n(t) exists. 

* We assign two dimentional real ~ .. for each arrow (i,j)£A. Its upper 
1.] 

bound CL • • and lower bound i3 .. are determined by Table 1. 
1.] 1.J 

Table 1. 

(i ,j) CL
ij i3ij 

in Ap1(Vj-vi>hij) (0,0) (0,0) 

* -in A 2 (v .-v .=h . . >g . . ) 
p J 1. 1.J 1.] 

(c .. (~),b . .) 
1.J 1.J 

(0,0) 

in Ap3(hi/Vj-vi>gij) (c ,j(~) ,b .. ) 
1. 1.J 

(cij(~),bij) 

in A 4 (v .-v .=g .. ) 
p ] 1. 1.J 

(00,00) (c .,,:(~) ,b.} 
1.] 1. 

(n, 1) (00,00) (0,0) 

Definition 1. (~ . .) is called a lexico-bounded flow (LB flow) if it 
1.J 

satisfies the following conditions: 

(a) L~ . . -L~ .. =0 
j 1.J j J1. 

(i=1 ,2, ... ,n). 

(b) For each (i,j)£A, ~ .. is not greater than CL • • and is not less than i3 .. in 
1.] 1.] 1.] 

the lexicographical ordering. 

Hereafter, we use the lexicographical ordering. 

and i3~~) (k=1,2) represent the k-th elements of 
1.] 
First, we shall consider the condition for 

Let 

N={l, 2, ... , n}. 

For any subset of N, say NO' let 

(k) (k) 
Furthermore, let ~.. , CL •• 

1.J 1.] 
~ •• , CL • • and i3 .. respectively. 

1.] 1.J 1.] 
existence of an LB flow. 
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+ -
C (NO,NO) 

.-' C-(NO,N
O

) 

Constrained Min-Cost Project Scheduling 

* {U,j)IU,j)EA, iE:NO' JENO}' 

* {(i,j) I (i,j)EA , iE:NO' JENO}' 

C(NO,NO) = (C+(NO,NO)' C-(NO,NO))' 

where NO=N-NO' C(NO,NO)' is called a cutset separating NO and NO (with the 

direction from NO to NO)' 

For a cutset C(NO,NO)' Y(NO,NO) is defined by 

Y(NO,NO) = L Il, . - L 13, ., 
(i,j)EC+ ~J (i,j)cC- ~J 

where C+ and C are abbreviations of C+(NO,N
O

) and C-(NO,N
O

) respectively. 

When a given cutset is obvious, we represent it by y briefly, and let 

Theorem 3. For any cutset C(NO,NO)" y l f:O. 

Proof: E +Il~~) - L 13~~), 
(i,j)EC ~J (i,j)EC ~J 

and there exists (xij ) that satisfies (3.2) and 

1l1~)~Xij~131~) «i,j)EA), 

which is equivalent to (3.7). From the eirculation flow existence theorem 

[2], Y 1 ~o. 

235 

Q.E.D. 

Definition 2. A cutset C(NO,NO) is called a lexico-negative cutset (LN 

cutset) if y«O,O). 

Theorem 4. An LB flow exist if and only if there exists no LN cutset. 

Next, we suppose that there exists an LB flow. 

Definition 3. The LB flow which maximizes ~nl is called the L-max flow. 

Definition 4. The cutset which minimizes y among cutsets such that lENO 

and that nENO is called the L-min cutset" 

Theorem 5. ~nl of the L-max flow is equal to y of the L-min cutset. 

This is the max-flow min-cutset theorem Ln the lexicographical ordering. 

Let 

(4.1) 

We shall show that we can increase ,p when there exists an LB flow, (~,.), 
~J 
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236 T. Kobayashi 

A2 = {(i,j)I(i,j)£A 2UA 4' A~l.)·AY.)<O}, 
p p ~J ~J 

and determine ~~1' ~~2' ~~ as follows: 

(4.2) 

min (1) (2) 
( .. ) A (-s.. IF, .. ), 
~,J £ 1 ~J ~J 

. (1) (2) 
mm (-A .. lA . . ), 

( . .) A ~J ~J 
~,J £ 2 

If ~(k=l or 2) is empty, let ~~k=oo. 

Theorem 6. If there exists an LB flow (F, . . ), for any 0 such that O~O~~~, 
~J 

(;,t) is optimal to P(~+o). 

Proof: Let 

(4.3) «i,j)£A) • 

We shall show that x satisfies (3.7) for ~=~, (v,t)=(;,t). 

Every arrow is in one of four subsets A
pk

(k=1,2,3,4). 

Case 1: (i,j)eAp1 ' 

As F, . . =(0,0), x .. =0. 
~J ~J 

Case 2: (i,j)£Ap2 ' 

(0,0) ~ F, . . ~ (c'!". (~), b . .) = (l •.• 
~J ~J ~J ~J 

(2» > (2) (1» 
If F, .. =0, x .. =0 for any o. If s. . <0, F,.. 0 and x .. ;;;0 for 0 such that 

~J ~J ~J ~J ~J 

o~-F, ~ 1.) IF, ~~). Define u .. by 
~J ~J ~J 

(4.4) u .. (c .,,:(~)+ob .. ) - x ij ' 
~J ~J ~J 

Then, u .. A ~ 1.) + CA ~2.) , 
~J ~J ~J 

and 

Aij (lij-F,ij;;; (0,0). 

If A ~~\O, u .. ;;;0 for any C. If A ~2.\0, A ~1.»0 and U .. GO for 15 such that 
~J ~J ~J ~J ~J 

O~-A ~ 1.) lA ~2.) . 
~J ~J 

Case 3: (i,j)£Ap3 ' 

et .. 
~J 

Hence, x.. c'!" .("$)+cb .. = c'!" .("$+15). 
~J ~J ~J ~J 

Case 4: (i,j)£Ap4 ' 
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~ .. ;;: (c~J' (~), b . .) = S ..• 
~J ~ ~J ~J 

So, A .. :>(0,0). Define u .. by (4.4). 
~J ~J 

If A ~~)~o, u .. ~o for any o. 
~J ~J 

If A ~2.»0, ,\ ~1.)<0, and u .. ~o for 0 such that 
~J ~J ~J 

O:>-A ~ 1.) lA ~~) . 
~J ~J 

We consider four cases together. TI1en, x defined by (4.3) satisfies (3.7) 

for 0 such that o:>o:>~~. 

Q.E.D. 

Next, assume that there exists an LN cutset, C(NO,N
O
). 

Since an1 =(oo,oo), 1ENO or nENO. We shall prove that if 1ENO and nENO' C(NO,NO) 

is also an LN cutset where NO=NO+{n}. Let 

and 

Then, 

and 

Hence, 

Al {(i,n) I (i,n)£A, iENO} 

A2 = {(i,n)1 (i,n)EA, iEN
O

}. 

C+(NO,NO) C+(NO,N
O

) - Al 

Y(NO,NO) = Y(NO,NO) - La . . - ;~ S .. + Snl < (0,0). 
A ~J A ~J 

1 2 

That is, C(NO,NO) is an LN cutset. From no·w, we do not consider LN cutsets 

such that 1ENO and n£NO. 

From theorem 3, y 1=0 and y 2<0. Let 

Cl {U,j)IU,j)EC+(N
o

,No)nAp1 }' 

C2 {U,j)1 U,j)EC+(NO,N
O

) n(Ap2 UAp3)}' 

and 

C
3 

{ U ,j) I U ,j) EC- (NO,NO) n (Ap3 u Ap4)}. 

Define tw by 

~v 

(4.5) 

min{ min (v.-v.-h . . ), 
( . .) C ] ~ ~J 
~,J E 1 

min (v .-v .-g . . ), 
( . .) C ] ~ ~J 
~,J £ 2 

min (h .. -v .+v.)}. 
( . .) C ~J ] ~ 
~,J E 3 

Then, we get the following theorem. 

Theorem 7. If there exists an LN cutset C(NO,N
O
)' for any E such that 

O~E:>~V, there exists an optimal solution of P(~) with 
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238 T. Kobayashi 

Proof: Let x be an optimal solution of D(~). Then, (v,t)=(v,t) satisfies 

(3.9) for ~=~, x=x. Let 

[" if jENO' 
(4.6) v. 

V;-E ] if je;No' 

and 

'ij = ( 

t .. -E if (i,j)e;C2 , 
~J 

(4.7) t .. +t; if (i,j)e;C
3

, 
~J 

t .. otherwise. 
~J 

We show that (v,t) satisfies (3.9) for x=x, too. Since Y1=0, 

(1) 
if 

+ -
x . . =a .. (i,j)e;C (NO,NO) , 
~J ~J 

and 
(1) 

if (i, j) e;C - (NO,NO)' x . . =s .. 
~J ~J 

+ 
Therefore, Ad2 n C and Ad4 n C are empty. That is, there exists neither 

(i,j)e;Ad2 with v.-v.<h .. , nor (i,j)e;Ad4 with v.-v.>g ... Hence, (v,t) defined 
] ~ ~J ] ~ ~J 

by (4.6) and (4.7) satisfies (3.9) for x=x, and it is optimal to P(~). Then, 

net) = net) - E"Y2 = net) + Ely2 1. 

To hold that v 1=0, let 

if je;No' 

if je;NO' 

Q.E.D. 

5. Lexico-bounded Flow Algorithm 

Now, we show our algorithm, called the lexico-bounded flow algorithm (LB 

flow algorithm). It has two phases. The first phase is for getting what 

maximizes n among optimal solutions of P(O), and the second is for increasing 

<I> or n· 

LB flow algorithm 

Phase 1: 

Step 1. 

Step 2. 

Let t . . =h . . for each (i,j)e;A, and obtain the earliest starting node 
~J ~J 

time Vj for each*node j. If vn-v1~PO' stop. 

For each (i,j)e;A , determine a .. and S .. by table 1, where <1>=0 and 
~J ~J 
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v. is the current value of v .. Find the L-max flow. If it does not 
] ] 

exist (~n1 is infinite), stop. 

Step 3. Let C(NO,NO) be the L-min cutset. Determine ~V by (4.5) and let 

E=min(~v,vn~O)' and get the new values of (v,t) by (4.6) and (4.7). 

If Vn=PO(E=Vn-P
O
)' go to phase 2. Otherwise, go back to step 2. 

Phase 2: 

* Step 1. For each (i,j)EA , determine et
i
; and Sij by table. 1. Find an LB flow. 

Step 2. 

Step 3. 

If it exists, go to step 2. Otherwise (if an LN cutset exists), go to 

step 3. 

Let ~ be the LB flow. Determine A .. by (4.1), and M) by (4.2). 
~J 

It ~~=oo, stop. Otherwise, let ~=~+~~, and go back to step 1. 

Let C(NO,NO) .be the LN cutset. Determine ~v by (4.5). Get an ~m­

proved solution by (4.6) (or U.6'» and (4.}) for E=lw. Go back to 

step 1. 

The procedure in·phase 1 corresponds to the critical path method for the 

usual minimum cost project scheduling problem [7]. If we stop ,at step 1 of 

phase 1 (the length of the critical path for the standard times is not greater 

than PO)' (v,t) is optimal to p(O). (Let vn=P
O 

if vn<P
O
') For 6 such that 

6>1l(t)=l:b .. h .. , PO(6) is infeasible (from the assumption that b . . ~O). If we 
~J ~J .' . . ~J 

stop at step 2 of phase 1, P(O) is infeasible. (Therefore, Po (6) is infeasi-

ble, too.) 

The L-max flow at the end of phase 1 is an LB flow at the start of phase 

2. So, in the first iteration of phase 2, we always go to step 2. 

After the first iteration, at step 1, we use a labeling procedure to find 

an LB flow or an LN cutset. Suppose that we always keep (~ . .) which satisfies 
~J 

that l:~ . . -l:~ .. =0 
j ~J j J~ 

U=l ,2, ... ,n). 

When ~ is increased at step 3 of the former iteration, fot; (.i ,j) with posi.tive 

b . . , c'!' .(~) is increased and it is poss ible that ~ .. <13... Assume that ~ts<Sts' 
~J ~J ~J ~J 

Then, we must increase ~ts' We call a path .from node s to ,node t a flow 

augmenting path (FA path) with respect to (~ . .) if s . . <et . . On any forward 
~J ~J ~J 

arrow and t; .. >13 .. on any reverse arrow 
~J ~J 

of the path. If there exists an FA 

path from node s to node t, we can incr,~ase the flow on it and ~ts' For find-

ing an FA path we use a labeling procedure like in usual maximum flow problems 

[1, 2, 3]. If node t is labeled, there exists an FA path. Otherwise, let NO 

be the set of nodes labeled at termination. Then, 

For the 

sENo and tENO' 

cutset C(NO,NO)' 

~ . . ~et .. 
~J ~J 

+ 
if U,j)£C , 
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240 T. Kobayashi 

and 

Sii8ij 

As Sts<Bts ' 

C(NO,NO) 

That is, C(NO,NO) is an LN cutset. Here, note that leNO if and only if neNO 
because an1 >snl>8n1 . 

6. Illustrative Example 

To illustrate our algorithm, consider an arrow diagram shown in Fig. 1. 

We use a labeling procedure with "first labeled first scanned rule". 

Phase 1. 

We set t . . =h . . for each (i,j)eA, and get the earliest starting node times, 
~J ~J 

which are shown in Fig. 2. 

an optimal solution of p(O) 

As vS-v1=26>20=PO' we shorten v
S
-v1 to PO' and get 

in Fig. 3. 

Phase 2. 

Iteration 1. We determine a .. and B . . for (v,t) in Fig. 3. In Fig. 4, for 
~J ~J 

each branch (i,j), (c~., b .. ) and its conditipn (the range of v.-v.) are shown. 
~J ~J ] ~ 

(Refer to Fig. 3 for meanings of branch symbols.) We can know a .. and 8 .. by 
~J ~J 

them. For example, for (1,2), a 12=8 12=(9,2) as h 12>v2-v
1
>g12. For (1,3), 

a 13=(1,4) and 813=(0,0) as v
3
-v

1
=h

13
• 

Since there exists an LB flow, which is the L-max flow at termination of phase 

1, we go to step 2. A1 is empty, A2={(2,3),(2,4)}, and 

~~ = min(-(3-S)/(1-0), -(S-4)/(0-2») = O.S. 

Therefore, ~ is increased to O.S. 

Iteration 2. See Fig. S. There exists an LN cutset. NO={1,2,3,S}, and 

y=(0,-2). Cl is empty, C2={(2,4)} and C3={(4,S)}. Hence, 

and 

~v = min(13-S-6, 10-20+13) = 2, 

v
4 

= 13-2 11, 

t24 = 8-2 = 6, 

n = 79+2x2 = 83. 

The new schedule is shown in Fig. S(b). 

Iteration 3. See Fig. 6. There exist an LB flow. A1 is empty, A2={(2,3)}, 

~~ = -(3.S-S)/(1-0) = 1.S, 

and 
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~ = 0.5+1.5 = 2. 

Iteration 4. See Fig. 7. There exists an LN cutset. NO={1,3,5}, and y=(O,-l). 

Cl is empty, C2={( 1,2)} and C3={ (2,3), (~.,5) L 

Iw = min(5-0-4, 9-12+5, 10-20+11) 1. 

The new schedule is shown in Fig. 7(b). 

Iteration 5. See Fig. 8. There exists an LB flow. A1={(1,3)}, and A2 is 

empty. 

~~ = 1, and ~ = 2+1 = 3. 

Iteration 6. See Fig. 9. There exists an LN cutset. NO={3}, and y=(O,-l). 

Cl is empty, C2={(3,5)}, and C3={(2,3)}. (Note that (1,3) does not belong to 

C3·) 

~v = min(20-12-6, 9-12+4) = 1. 

The new schedule is shown in Fig. 9(b). (As 1 belongs to NO' we use (4.6').) 

Iteration 7. See Fig. 10. There exists an LB flow, but both Al and A2 and 

are empty. Therefore, ~~=co and we terminate our algorithm. 

(6,4) 
(9,2) 

(8,6) 
(5,0) 

Fig. 1. Arrow diagram. 

(10,7) 
(4.2) 

p =20 o 
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6 
8 14 

o 26 

15 

v. v. 
~ 

t .. ] 

CD ~J -0 
Fig. 2. Standard time scheduling. 

12 

--ttll--- h .. >v .-v .>g .. 
~J ] ~ ~J 

Fig. 3. An optimal solution of P(O). 

20 
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Fig_ 4. LB flow of iteration 1(~=O). 
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(a) LN cutset. 
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(b) Schedule. 

Fig. 5. Iteration 2(~=0.s). 
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Fig. 6. LB flow of iteration 3(~=0.5). 
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(b) Schedule. 

Fig. 7. Iteration 4(~=2). 
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Fig. 8. LB flow of interation 5(~=2). 
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Fig. 9. Iteration 6(~=3). 
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(9,2) 
(5,0) 

(6,0) 
(6,1) 

Fig. 10. LB flow of iteration 7(~=3). 

Fig. 11 shows the locus of (~,n). For (~,n) on the locus it, there exists 

an optimal solution of P(~) with n=Ebijt
ij

, which is optimal to PO(n). On a 

horizontal segment, the solution of p(~) does not vary. For a point on a 

vertical segment, we can obtain a solution of PO(n) by linear interpolation of 

two solutions of P(~) corresponding to terminal points of the segment. 

80 

75 

o 2 3 4 

Fig. 11. Locus of (~,n). 
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7. The Case with Negative b's 

When some negative b's exist, we must modify our algorithm. Suppose that 

ck1>0 and bk1<0. Let 

cj>kl = -ck1/bk1 • 

If cj»cj>kl' ck~(cj»<O, and hence tkl is always equal to gkl. «3.5) is not 

necessarily satisfied.) Therefore, we replace hkl with gkl' and (ck1(cj»,bk1 ) 

with (0,0) at cj>=cj>kl. «k,l) stays in Ap1 UAp4 after that.) To stop at cj>=cj>kl' 

in step 3 of phase 2, replace ~cj> in (4.2) by 

where 

When two or more negative b's exist, ~cj>3 is defined by 

i',cj>3 = min (-c,":(~)/b, ,), 
( ' ') A ~J ~J 
~,J E: 3 

wjere 

8. Concluding Remark 

Our algorithm is also applied to a project scheduling problem with two 

objectives. Suppose that we wish to minimize 

and 

z (t) 
C 

LC, ,(h , ,"':t, .) , 
~J ~J ~J 

Zb(t) = Lbij(hij-tij) 

subject to (2.1), (2.2) and (2.3). Le't us combine them as 

Z(t) = zc(t)+cj>ozb(t). 

Then, the problem to be solved is P(cj». 
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