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Abstract This paper proposes an algorithm for solving the minimum cost project scheduling problem with an
additional linear constraint whose right hand side is a parameter. Instead of putting the additional constraint, we
add it to the objective function, where it is multiplied by a parameter. First, we get an optimal solution when a
parameter is zero, and next, increase it to infinity. To do so, we iterate to find two dimensional flow on the given
arrow diagram. The bounds for each arrow flow are determined by the current solution. The first elements are
related to the costs, and the second to the coefficients in the additional constraint. A lexico-bounded flow is
defined as the flow such that each arrow flow is within the bounds in the lexicographical ordering. When a lexico-
bounded flow exists, the parameter is increased. Otherwise, the function of the additional constraint is increased.
Our algorithm is almost dual to the lexico-shortest route algorithm for the minimum cost flow problem with an
additional linear constraint. For example, a loop is replaced by a cutset. Our algorithm is also applicable to a pro-

ject scheduling problem with two objectives by combining them with a parameter.

1. Introduction

The project scheduling problems with additional linear constraints occur
when there exist divisible activities or when some activities use a common
resource, and some algorithms are presented for getting the length of critical
path [6, 8, 9, 11]. This paper presents an algorithm for solving the minimum
cost project scheduling problem with an additional linear constraint, whose
right hand side is a parameter. The author has presented an algorithm for the
minimum cost flow problem with an additional linear constraint, called the
lexico-shortest route algorithm [10]. By transforming it in the dual way,

like replacing a loop by a cutset, we get our algorithm.
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Constrained Min-Cost Project Scheduling 231

Let
n(t)ze

be the additional constraint, where 6 is a parameter. Instead of putting it,
we add ¢+n(t) to the objective function, where ¢ is a parameter. First, we get
an optimal solution for ¢=0, and next, increase ¢ to infinity. To do so, we
iterate to find two dimensional flow on the given arrow diagram. The bounds
for each arrow flow are determined by the current solution. The first elements
are related to the costs, and the second to the coefficients in n(t). A lexico-
bounded flow is defined as the flow such that each arrow flow is within the
bounds in the lexicographical ordering. When a lexico-bounded flow exists, ¢
is increased. Otherwise, n(t) is increased. We prove the validity of our

algorithm by the complementary slackness conditions.

2. Problem Formulation

Let us consider an arrow diagram for a project, with n nodes, numbered 1,
2,..., n, where node 1 represents the start and node n the termination. Let A
be the set of jobs (pairs of nodes), and for each job (i,j), the standard time
hij’ and the shortest time gij are given, where hijggij' Furthermore, for
(i,j) such that hij>gij’ the cost for shortening the time by a unit Cij is
given. Conveniently, let cij=0 for (i,j) such that hij=gij' Then, the minimum
cost project scheduling problem with an additional linear constraint is formu-
lated as follows:

Po(e): Minimize

zO(t) = T c (h )

LL(h, o~
. 1 1 1
(i, J J J

subject to

2.1 955 < tij < hij ((d,7)eA),
(2.2) v, * tij S vs ((i,7)en),
(2.3) v, T Yy = Py

(2.4) z z 0,

L.y b.. ELL
(1,7) 7ij "ij
where Py (total duration) is a given positive number, and 6 is a parameter.
We assume that bijzo for any (i,3j)eA, and that bij=0 for (i,j) such that hij=

gl].
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232 T. Kobayashi

Now, let
n(t)= © b, .t.,,
(i,5) 7
and we shall consider the following parametric programming problem with a para-
meter ¢ instead of 6.
P(¢): Minimize
2(£,0) = 2, (£)-4n(t)
subject to (2.1), (2.2) and (2.3).

Let

c;j(¢) = cij+¢bij for (i,3j)eA.
Then,

z(t,9) = (ifj)c;j(cb) (hij—tij)+c0,

where g is a constant.
Hence, P($) is a normal minimum cost project scheduling problem when ¢ is
fixed. The relations between the solutions of two problems are stated by the

following theorems.

Theorem 1. Let (v,t) be an optimal solution of P(0). Then it is also
optimal to PO(O) for any 6 such that 8sn(t).

Theorem 2. Let (v,£) be an optimal solution of P(¢) for some positive ¢.

Then it is also optimal to Po(ﬁ), when n=n(f).

It is proved in the same way as theorem 2 of [10].

3. Dual problem and Complementary Slackness Conditions

We consider the dual problem to P(¢).
D(¢): Maximize

- - .r— + 1
w = po q Zhijxij + Zgijxij+c0
subject to
g (i=1),
3.1 ;Xij_ngi = {0 (i=2,3,...,n-1),
J J -g (i=n),
- - = * . .
X %X cij(¢) ((i,5)en),
+ - P
xij’ Xij’ Xij z0 ((i,7)en),

where cé is a constant.
Note that g is a variable. Now, we add an arrow (n,1) conveniently, and let

A*=AU{(n,1)}. By replacing g with X1 (3.1) is rewritten as follows.
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Constrained Min-Cost Project Scheduling 233 .

(3.2) ?xij - ;xji =0 (i=1,2,...,n).

It means that (xij) is a circulation flow. In any optimal solution,

xy; = max(c} (9)7x, 0,
(3.3)
X;5 = max(xij—c;j(¢),0),

are satisfied for any (i,j)eA.
The complementary slackness conditions for P(¢) and D(¢) are as follows:

For any (i,j)eA,

xij(vj-vi-tij)=0,

+
xij(tij—gij)=0.

In any optimal solution,

(3.5) tij = mln(vj-vi,hij)

is satisfied.

Let
(&) = LD |G, vimv by ),
Ap2 = {(i’j)[(i,j)eA, Vj~vi=hij>gij},
(3.6) : Ap3 = {(4,5) ], 5)eaA, hij>vj-vi>gij},
[t = (D100 v, .

Then, (3.4) is replaced by the following (3.7). (See [5].)

xij=0 for (i,j)eAp1,
3.7) Oéxijéci;(¢) for (i,j)eApz,
xij=ci;(¢) for (i,j)eAp3,
xijzci§(¢) for (i,j)eAp4.

Next, we let

(A(“ = (G, D], De, x, =0},
AL = {3, )] E,)er, 0<x, <c (9},
Gt.8) o4
Agy = LGN [,)e, x, =c %(8)],
Ay = LED[G,5)eh, x; >e ()],
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234 T. Kobayashi

Then, (3.4) can be replaced by the following (3.9), too.

( vj-vi;hij for (i,j)aAd1,

3.9) { Vj—vi=hij for (i,j)eAdz,
hijzvj-vi;gij for (i,j)eAd3,

vj—vi=gij for (i,j)sAda.

4., Lexico-bounded Flow

Suppose that we have an optimal solution of P($), (v,£). Let us show
that (v,£) is optimal to P(¢) for some ¢>$, or that an optimal solution of
P($) such that n(t)>n(f) exists.

We assign twe dimentional real gij for each arrow (i,j)eA*. Its upper

bound qij and lower bound Bij are determined by Table 1.

Table 1. o.. and B,
13 17

(1,9) @ B
in A (v.-v >h, ) (0,0) (0,0)
in A 20 =V =h, >g, ) (e, ;(®,b, ) 0,0)
in Ap3(hij>vj—vi>gij) (ci§(¢)’bij) (ci;(¢),bij)
in A, (V-v=g, ) (=,) (c,3®),b, )
(n,1) (@,) (0,0)

Definition 1. (Eij) is called a lexico-bounded flow (LB flow) if it
satisfies the following conditions:

(a) ;gij—§5j1=o (i=1,2,...,n).
J J
(b) For each (i,j)eA, gij is not greater than aij and is not less than Bij in

the lexicographical ordering.

Hereafter, we use the lexicographical ordering. Furthermore, let g§§), aig)
k .
and sij) (k=1,2) represent the k-th elements of Eij’ aij and Bij respectively.

First, we shall consider the condition for existence of an LB flow.
Let
N={1, 2, ..., n}.
For any subset of N, say NO’ let
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Constrained Min-Cost Project Scheduling 235

+ .. = J N . o
_C (NO,NO) {(i,5)](d,5)ea", ieNy, JeNO},

-

c (NO,NO)

((i.7 | .. * = . }
(4,7)|(i,7)eA", ieNy, jeNyl,
and

- + - - -
C(NO,NO) = (C (NO,NO), C (NO,NO)),

where ﬁo=N—N0. C(No,ﬁo), is called a cutset separating N

direction from NO to NO).

For a cutset C(NO,NO), Y(NO,NO) is defined by

0 and No (with the

YyN_,N) = T o,. - I S
0’70 (i,ect 7 (i,5)ec”

where C' and ¢~ are abbreviations of C+(N0,ﬁ0) and C_(No,ﬁo) respectively.
When a given cutset is obvious, we represent it by y briefly, and let

Y=(Y1,Y2).

Theorem 3. For any cutset C(No,ﬁo)ﬂ Y120.
(i,5)eC (i,5)ec”

Proof: Y,

and there exists (xij) that satisfies (3.2) and

agt)ix.. B(T)
ij =%ij Pij

which is equivalent to (3.7). From the circulation flow existence theorem

[2], v,z0.

v/

((i,7)eh),

Q.E.D.

Definition 2. A cutset C(No,ﬁo) is called a lexico-negative cutset (LN
cutset) if y<(0,0).

Theorem 4. An LB flow exist if and only if there exists no LN cutset.
Next, we suppose that there exists an LB flow.
Definition 3. The LB flow which maximizes En1 is called the L-max flow.

Definition 4. The cutset which minimizes y among cutsets such that 1eNO

and that neﬁo is called the L-min cutset.
Theorem 5. €n1 of the L-max flow is equal to y of the L-min cutset.
This is the max-flow min-cutset theorem in the lexicographical ordering.

We shall show that we can increase ) when there exists an LB flow, (Eij).

Let
%)) Aij = (ci;(¢), bij) - aij, ((i,j)eApzuApa),
Ay = (G| G,Dea,, €57 <03,
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236 T. Kobayashi

L@

{(lsj)|(1,J)EA P4, ij ij

and determine A¢1, A¢2, Ad as follows:
Adp, = min 1) (2)
Uoaen, iy 55

o, 1) (2)
(4.2) A¢2 = (TIE)EA (- Alj /A ),

Ad min (A¢1,A¢2).

If Ak(k=1 or 2) is empty, let A, ==.

Theorem 6. If there exists an LB flow (Eij),

(v,t) is optimal to P($+5).
Proof: Let

4.3) Xi5 = gi;) + agﬁﬁ) ((1,7)eh).

<0},

for any & such that 0s685A¢,

We shall show that x satisfies (3.7) for ¢=¢, (v,t)=(v,t).

Every arrow 1s in one of four subsets Apk(k=1,2,3,4).

Case 1: (i,7)eA 1"
As E =(0,0), J =0.
Case 2 (i,7)eA

p2’
(0,0) = gi. < (c;.(¢) b,.) =a;.
g§2)>0 x; >0 for any 8. If (2) <0, 5(1)

65—€§1)/£§§). Define uy by
4.4) u; = (ci§(¢)+6bij) ETPr
Then, u,. = X{i) + 6%(%),

17 ij 17
and

A, =0, .. 2 (0,0).

ij ij 7ij

20, u. .20 for any §. If A"
ij 13

(1
i

If >\(2)
i

8-

(1)/X(2)
Case 3: (1,])eAP3.

@ =B (c;5(¢), bij)'

Hence, x..=c* ($)+8b.. = c*_ ($+8).
17 1] 17 17

Case 4: (i,j)sAp4.

>0 and x. ]>0 for 6 such that

>0 and u, 20 for § such that
J 17
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Constrained Min-Cost Project Scheduling 237

E,. 2 (CI](¢)’ bij) = g,

ij ij°
So, Aijé(0,0). Define uij by (4.4).
1f A(Z) (2)>0 \(1)

<0, u,.S0 for any 8. 1If A A..7<0, and u, .0 for § such that
ij ij ij

ij ij o o?
ss-2 {1 2 (2
17 17
We consider four cases together. Then, x defined by (4.3) satisfies (3.7)
for § such that 0s8sA¢.
Q.E.D.
Next, assume that there exists an LN cutset, C(No,ﬁo).

Since an1=(W,w), 1eN, or neN.. We shall prove that if 1eN. and nEﬁo, C(Né,ﬁé)

0 0 0
is also an LN cutset where N6=N0+{n}. Let
A, = {(i,n)|(i,n)eA, ieNO}
and
A, = {(i,n)|(i,n)eA, 1eN0}.
o0 Sy L ot =y
Then, c (N ,NO) =C (NO,NO) A1
and
(N N'Y = N -
c (NO,NO) =C (NO,NO) + A, {(n,1)}.
Nty - N - -7
Hence, Y(NO,NO) = Y(NO,NO) X uij K Bij + Bn1 < (0,0).
1 2

That is, C(Né,ﬁé) is an LN cutset. From now, we do not consider LN cutsets

such that 1€N0 and neNO.

From theorem 3, y1=0 and Y2<0- Let

@]
]

(@G e Mg Fpna L,
C, = (D] G, e Wy, F) na,ua O,
and

¢y = {9 | (i,j)ec‘mo,ﬁo) N (1\p3UAP4)}.

Define Av by

Av = min{ min (;.—;i—h..),

(1,5)eC, H

min (V.-vi—gi.),

4. (i,)ec, 7

min (h..—§.+ai)}.
(i,j)ec3

Then, we get the following theorem.

Theorem 7. 1If there exists an LN cutset C(No,ﬁo), for any e such that

0sefAv, there exists an optimal solution of P($) with
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238 T. Kobayashi

n(e) = n(®+ely,|.

Proof: Let x be an optimal solution of D($). Then, (v,t)=(v,%) satisfies
(3.9) for ¢=¢, x=x. Let

v, if jeN,,
(4.6) v, = 7 0
- if j
V] € 1 ]eNO,
and
tij—s if (1,])3C2,
4.7) tij = tij+a if (1,])803,
t.. otherwise.
17

We show that (v,t) satisfies (3.9) for x=x, too. Since Y1=0,

_ (D . R & =
xij-aij if (i,7)eC (NO,NO),
and
(D) . o =
ij_Bij if (i,37)eC (NO,NO).

Therefore, Adzﬂc+ and Ad4JWC_ are empty. That is, there exists neither

(1,j)eAd2 with Vj_vi<hij’ nor (1,_7)e:Ad4 with vj—vi>gij. Hence, (V,f) defined

by (4.6) and (4.7) satisfies (3.9) for x=x, and it is optimal to P(¢). Then,
n(t) = n(&) - ey, = n(e) + ely,|.

Q.E.D.

If 16&0, v1*51=—s. To hold that V1=0, let
v_+e if jeN

4.6y v,= 47 _
J Vj if jeNO.

O’

5. Lexico-bounded Flow Algorithm

Now, we show our algorithm, called the lexico-bounded flow algorithm (LB
flow algorithm). It has two phases. The first phase is for getting what
maximizes n among optimal solutiomns of P(0), and the second is for increasing

¢ or n.
LB flow algorithm

Phase 1:
Step 1. Let tij=hij for each (i,j7)eA, and obtain the earliest starting node
. . Yy <
time Vj for each node j. 1If v TV,EDgs stop.

* -
Step 2. For each (i,j)eA , determine aij and Bij by table 1, where ¢=0 and
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Constrained Min-Cost Project Scheduling 239

;j is the current value of v Find the L-max flow. If it does not
exist (En1 is infinite), stop.

Step 3. Let C(NO,NO) be the L-min cutset. Determine Av by (4.5) and let
€=min(AV,§n-pO), and get the new values of (v,t) by (4.6) and (4.7).
If Vn=p0(e=vh—p0), go to phase 2. Otherwise, go back to step 2.

Phase 2:

Step 1. TFor each (i,j)eA*, determine aij and B by table 1. Find an LB flow.
If it exists, go to step 2. Otherwise (1f an LN cutset exists), go to
step 3.

Step 2. Let £ be the LB flow. Determine Aij by (4.1), and A¢ by (4.2).
It A¢==, stop. Otherwise, let ¢=¢+A¢, and go back to step 1.

Step 3. Let C(No,ﬁo),be the LN cutset. Determine Av by (4.5). Get an im-
proved solution by (4.6) (or (4.6')) and (4.7) for e=Av.. Go back to

step 1.

The procedure in:-phase 1 corresponds to the critical -path method for the
usual minimum cost project scheduling problem [7]. If we stop at step 1 of
phase 1 (the length of the critical path for the standard times is not greater
than po), (v,t) is optimal to P(0). (Let v n=Po if v <p0.) For 6 such that
9>n(t)=2bijhij, P_(8) is infeasible (from the assumptlon that b .20). If we
stop at step 2 of phase 1, P(0) is 1nfed51b1e (Therefore, Po(e) is rnfeasi—
ble, too.)

The L-max flow at the end of phase 1 is an LB flow at the start of phase
2. So, in the first iteration of phase 2, we always go to step 2.

After the flrst 1terat10n,‘at step 1, we use a 1abe11ng procedure to find

an LB flow or an LN cutset. Suppose that we always keep (gij) which satlsfles

that IE, 7IE (i=1,2,...,n).
J i’
When ¢ is increased at step 3 of the former iteration, for (i,j) with positive
*
1]’ cl .(¢) is increased and it is possible that g j ij' Assume that Ets<8ts'

Then, we must increase Ets' We call a path from node s to.node t a flow
augmenting path (FA path) with respect to (Eij) if Eij<aij on any forward
arrow and E.j>8ij on any reverse arrow of the path. If there exists an FA
path from node s to node t, we can increase the flow on it and Ets' For find-
ing an FA path we use a labeling procedure like in usual maximum flow problems
[t, 2, 3]. 1If node t is labeled, there exists an FA path. Otherwise, let NO
be the set of nodes labeled at termination. Then,

seN0 and teN

0
For the cutset C(No,ﬁo),

N eyt

g, 20;; if (i,7)eC,
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240 T. Kobayashi

and
Eijésij if (i,j)eC .
As Ets<6ts’
CON,,N.) =Za,.-LB..<LE . -3¢&. . =(0,0).
0°°0 C+ ij ¢ iJ C+ ij ¢ I

That 1is, C(No,ﬁo) is an LN cutset. Here, note that 1€N0 if and only if nEN0

because an1>gn1>en1,

6. Illustrative Example

To illustrate our algorithm, consider an arrow diagram shown in Fig. 1.

We use a labeling procedure with “first labeled first scanned rule".

Phase 1.
We set tij=hij for each (i,j)eA, and get the earliest starting node times,

which are shown in Fig. 2. As VS-V1=26>20=p0, we shorten v.-v

5~V to po, and get

an optimal solution of P(0) in Fig. 3.

Phase 2.

Iteration 1. We determine aij and Bij for (v,t) in Fig. 3. 1In Fig. 4, for
each branch (i,7), (cij, bij) and its condition (the range of vj—vi) are shown.
(Refer to Fig. 3 for meanings of branch symbols.) We can know aij and Bij by

them. For example, for (1,2), o =(9,2) as h For (1,3),

127812 127V27V1*912°
a13=(1,4) and 813=(O,0) as v3—v1=h13.
Since there exists an LB flow, which is the L-max flow at termination of phase
1, we go to step 2. A1 is empty, A2={(2,3),(2,A)}, and

A¢ = min(=(3-5)/(1-0), -(5-4)/(0-2)) = 0.5.
Therefore, ¢ is increased to 0.5.
Iteration 2. See Fig. 5. There exists an LN cutset. N0={1,2,355}, and
v=(0,-2). c, is empty, Cz={(2,4)} and C3={(4,5)}. Hence,

Av = min(13-5-6, 10-20+13) = 2,
= 13-2 = 11,

= 8-2 = 6,

Ve,
t4
and

n = 79+2x2 = 83.

The new schedule is shown in Fig. 5(b).

Iteration 3. See Fig. 6. There exist an LB flow. A, is empty, A2={(2,3)},
Ad = -(3.5-5)/(1-0) = 1.5,

and
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¢ = 0.5+1.5 = 2.
Iteration 4. See Fig. 7. There exists an LN cutset. N0={1,3,5}, and y=(0,-1).
C, is empty, CZ={(1,2)} and 03={(2,3),(4-,5)}.
Av = min(5-0-4, 9-12+5, 10-20+11) = 1.
The new schedule is shown in Fig. 7(b).
is

Iteration 5. See Fig. 8. There exists an LB flow. A1={(1,3)}, and A,

empty.
Ap = 1, and ¢ = 2+1 = 3.
Iteration 6. See Fig. 9. There exists an LN cutset. N0={3}, and y=(0,-1).

C, is empty, C2={ (3,5)1}, and C3={ (2,3)}. (Note that (1,3) does not belong to

03.)

Av = min(20-12-6, 9-12+4) = 1.
The new schedule is shown in Fig. 9(b). (As 1 belongs to ﬁo, we use (4.6").)

Iteration 7. See Fig. 10. There exists an LB flow, but both A1 and A2 and

are empty. Therefore, A¢== and we terminate our algorithm.

(8,6)
(5,0)

(12,10)
(1,4)

Fig. 1. Arrow diagram.
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242 T. Kobayashi

Fig. 2. Standard time vscheduling.

12

—O— v _-v.=h,,
J 1 1]

—H—> h, Sv_-v. g,
ij 7 i 74ij

———» V_-V.=g. .
v_7 v, glj

Fig. 3. An optimal solution of P(0).
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Fig. 4. LB flow of iteration 1(¢=0).

: (c;j,bij) :j

(a) LN cutset.

20

n=83

(b) Schedule.

Fig. 5. Iteration 2(¢=0.5).
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(5,2)

25)0)>4

Fig. 6. LB flow of iteration 3(¢=0.5).

Av=1
(a) LN cutset:

12

(b) Schedule.

Fig. 7. TIteration 4(¢=2).
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(a) LN cutset.

4 10
()
2 X —(4
4 10
0 9 20
12 7
3 n=85

13

(b) Schedule.

Fig. 9. Iteration 6(¢=3).
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(9,2)
(10,2)

(0,0) (6,0)
(13,4) (6,0)
Ap=w

Fig. 10. LB flow of iteration 7(¢=3).

Fig. 11 shows the locus of (¢,n).- For. (¢,n) on the locus it, there exists
an optimal solution of P(¢) with n=2bijtij, which is optimal to Po(n). On a
horizontal segment, the solution of P(¢) does not vary. For a point on a
vertical segment, we can obtain a solution of Po(n) by linear interpolation of

two solutions of P(¢) corresponding to terminal points of the segment.

n
3
85—
80 | —
75+
i | 1 | ) | ] | ¢
0 1 2 3 4

Fig. 11. Locus of (4,n).
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7. The Case with Negative b's

When some negative b's exist, we must modify our algorithm. Suppose that

ckl>0 and bk1<0' Let

Oz = “Cx1/Prs-

I ¢>¢, . Ck;(¢)<0, and hence t,,

necessarily satisfied.) Therefore, we replace h

with (0,0) at $=¢, ;- ((k,1) stays in AP1L)AP4

in step 3 of phase 2, replace A¢ in (4.2) by

is always equal to Ip1 ((3.5) is not
1 *
k1 with gkl’ and (Ckl(¢),bkl)

after that.) To stop at ¢=¢kl,

8¢ = min(A¢,, 2¢,, ¢,5),

where
= - *d

By = =cp (0 /By ;.
When two or more negative b's exist, A¢3 is defined by

Ap, = min (-¢,*($)/b..),

3 (i,j)eAB ij ij

wjere

Ay = {G, )]G, 9)eA, bij<0}.

8. Concluding Remark

Qur algorithm is also applied to a project scheduling problem with two

objectives. Suppose that we wish to minimize

z (t) = 1c_(h ),

c..(h, -t .

i3 13 17
and
zb(t) = Zbij(hij—tij)

subject to (2.1), (2.2) and (2.3). Let us combine them as

z(t) = zc(t)+¢°zb(t).

Then, the problem to be solved is P(¢).
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