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Let D be a distributive lattice formed by subsets of a finite set E with 1/>, E E D and let R be the set of 

reals. Also let f be a submodular function from D into R with f(l/» = O. We determine the set of extreme points 

of the base polyhedron 

8(t) = I x I x ERE, x(X) ~ f(X) (X E D), x(E) = feE) I 
and give upper and lower bounds of f which can be obtained in polynomial time in IEI under mild assumptiOl\s. 

1. Introduction 

Let E be a finite set, D be a distributive lattice formed by subsets of 

E with ~, E £ D and R be the set of reals. Also let f be a submodular func

tion from D into R, i.e., 

( 1.1) f(x) + f(y) ~ f(x u y) + f(x n y.) 

for any x, y £ D, and suppose f(~) = O. Let us define a polyhedron B(f) by 

(1. 2) 
E B(f) = {xix £ R , x(x) s f(X) (x £ D), x(E) = feE)}, 

where for X £ D and x = (x(e): e £ E) £ RE 

(1. 3) x(X) = E x(e). 
e£X 

We call the pair (D,f) a submodular system and B(f) the base polyhedron 

associated with the submodular system (D,f). 

We shall determine the set of extreme points of the base polyhedron B(£) 

and give upper and lower bounds of f which can be computed in polynomial time 

in IEI, the cardinality of E, under mild assumptions. Submodular functions 

play fundamental roles in many combinatorial optimization problems related to 

graphs, networks, matroids, polymatroids etc., and the present paper will 

contribute to further understanding of sub:modular functions. 
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2. Representation of Distributive Lattices 

For a finite partially ordered set (poset) P = (P,~) a subset I of P is 

called an ideal of P if for every a £ I and b £ P - I we do not have b ~ a. 

The following representation theorem for distributive lattices is 

classical and may be well known (see [1]). 

Theorem 2.1: For any distributive lattice D formed by subsets of a 

finite set E with ~, E £ D, there exists a unique poset P = (P,~) such that 

(2.1) 

(i) P is a partition {T
1

, T2 , ... , Tk } of E and 

(ii) x £ D if and only if 

X =u{T.IT. £ r} 
1 1 

for some ideal I of P. 

Conversely, for any poset P = (P,~) with P being a partition {T
1

, T2 , 

... , T
k

} of E, the set D of all the subsets X of E which are expressed as 

(2.1) for ideals I of P is a distributive lattice with set union and inter

section as the lattice operations and ~, E £ D. 

Given a distributive lattice D, the poset P = (P,~) in Theorem 2.1 is 

determined as follows. For each e £ E, let D(e) be the unique minimal element 

in D with e £ D(e), i.e., 

(2.2) D(e) n {xle £ X £ D}. 

* * Define a graph G (E,A ) with the vertex set E and the arc set A by 

(2.3) * A 

The decomposition of G into strongly connected components yields a partition 

of the vertex set E and a partial order on the partition in a natural way 

which defines the required poset P = (P,~). 

(2.4) 

Without loss of generality we assume throughout the present paper that 

"each T. e: P of the poset P = (P,~) has cardinality one" 
~ 

and we express P by (E,,) instead of (P,,) with P = {{e}le £ E}. Note that 

without the above assumption the base polyhedron B(f) does not have any 

extreme points. It should also be noted that because of this assumption both 

D(e) and D(e) - {e} belong to D for D(e) (e £ E) defined by (2.2) and that, 

for any integer i such that 0 ~ i ~ IEI, there exists a set X e: D with Ixl = i. 
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3. Extreme Points of the Base Polyhedron 

First, we show the following lemma. 

Lemma 3.1: Let 

(3.1) c S (= E) 
'" n 

be a maximal chain in the distributive lattice D. (Note that by the assump-

tion (2.4) ISi - Si-1 1 = 1 (1 S i S n) and n = IEI.) 

(1 S i S n) by 

Then for a vector x (x(e): e £ E) defined by 

(3.3) x(e .) 
.1 

f(s .) 
~ 

- f( Si_1) ( 1 S i S n) 

we have 

(3.4) x(x) S f(X) (x £ D). 

(3.5) x(E) f(E), 

Le.,x£B(f). 

Also define e. £ E 
~ 

Proof: The inequality (3.4) with X = <P and equation (3.5) are trivial. 

Suppose that (3.4) is valid for any X £ D with Ixl S k for some k such 

that 0 S k < n (= IEI). * For any Y £ D vlith I yl = k+1 let e be an element of 

Y such that 

(3.6) 

and 

(3.7) 

for some i* (1 S i* S n). * Then we have Y - {e } £ D and it follows from 

(3.6) and (3.7) and from the submodularity of f that 

x(Y) * x(e ) + x(Y - * {e }) 

S * x(e ) + f(Y - * {e }) 

f(Si*) * - f(Si*_l) + f(Y - {e }) 

S f(Y). 

The lemma thus follows by induction. Q.E.D 

From Lennna 3.1 we see th1't the base polyhedron B(f) is nonempty for any 

submodular function f, which may be well known. 
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For any weight vector w c RE let us consider the problem: 

(3.8) 
IT : 

w 
Minimize ~ w(e)x(e) 

ecE 

subject to x c B(f). 

Suppose that the distinct values of w(e) (e c E) are given by 

(3.9) ••• < W 
P 

(p ~ n) and define 

(3.10) A. = {ele c E, w(c) ~ w.} (i=1, 2, "', p). 
~ ~ 

Lemma 3.2: Problem ITw has a finite optimal solution if and only if each 

set Ai (i=l, 2, ... , p) defined by (3.10) is an ideal of P = (E,<) which 

represents the distributive lattice D. 

Proof: The "if" part: By the assumption there exists a maximal chain 

(3.11) 

in the distributive lattice D such that Ai (i=l, 2, ... , p) are included in 

(3.11). (Note that such a maximal chain in D exists since Ai (i=l, 2, "', p) 

form a chain in D.) Let x c RE be a vector defined by (3.11), (3.2) and (3.3). 

Then from Lemma 3.1 we have 

(3.12) X c B(f). 

Furthermore, for any vector y c B(f) we have from (3.3), (3.9) and (3.10) 

(3.13) 

where AO 

~ w(e)y(e) - ~ w(e)x(e) 
ecE ecE 

~ ~ ~ w.(y(e) - x(e» -
i=l ~ ecA. ~ 

~ 

p-1 
~ (w'+

l 
- w.) ~ (;(e) - y(e» + ~ w (y(e) - x(e» 

i=l ~ ~ ecA. ecA p 
~ p 

p-1 
~ (w'+ l - w.)(f(A.) - y(A.» 

i= 1 ~ ~ ~ ~ 

~ 0, 

<p (and A 
p 

E). 
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A 

Therefore, x is an optimal solution of IT . 
w 

313 

The "only if" part: Let i be an optimal solution of IT. If for any 
w 

Ak (1 ;;; k ;;; p) Ak is not an ideal of P " (E, .. ), then there is a pair (e
1
,e

2
) 

such that e
1 

.. e
2

, e
1 

£ E - Ak and e2 £ A
k

• Since for every X £ D if e2 s X 

then e
1 

£ x, we have for any d > 0 

(3.14) 

where, for e £ E, Xe £ RE and 

(3.15) X (e') 
e 

(e' e) 

(e'£E-{e}). 

Consequently, 

E w(e)y(e) - E w(e)x(e) 
e£E e£E 

< O. 

This contradicts the optimality of x. 

P = (E,") for each i = 1, 2, .•• , p. 

lberefore, A. must be an ideal of 
~ 

Q.E.D •. 

It should be noted that Ai (i=l, 2, .•• , p) in (3.10) are ideals of 

P (E, .. ) if and only if w: E -+ R is a monotone nondecreasing function from 

P (E,") to (R,;;;)[7]. It should also be noted that Problem IT has a finite 
w 

optimal solution if and only if the weight vector w belongs to the negative 

* of the polar cone C (f) of the recession cone 

(3.16) C(£) = {xix £ RE, x(x) ~ 0 (X£D), x(E) = O} 

of the base polyhedron B(£) (see, for example, [7], [5]). Therefore, Lemma 

* 3.2 can be regarded as a characterization of the polar cone C (f) of the 

recession cone C(f). 

The proof of the "if" part of Lemma 3.2 is a direct adaptation of a proof 

of the validity of the grep.dy algorithm for submodular functions on Boolean 

lattice 2E given in [6]. 

In the proof of Lemma 3.2 we have already shown the following 

Corollary 3.3: For any weight vector w £ RE, if the problem ITw has a 

finite optimal solution, i.e., A. (i=l, 2, ..• , p) defined by (3.10) are 
~ 

ideals of P = (E,"), then an optimal solution i is given by 
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(3.17) f(S.) - f(S. 1) (i=1, 2, ... , n), 
~ ~-

where 

(3.18) (~ =) So c se ... c S (= E) 
'" 1;z! '" n 

is a maximal chain in D with 

(3.19) Si - Si-l (i=l, 2, ... , n) 

and 

(3.20) 

Corollary 3.3 provides an algorithm for solving Problem ITw which is an 

extension of the so-called "greedy algorithm" for (poly-)matroids [3]. 

Theorem 3.4: The extreme points of B(f) are exactly those which are 

given by (3.17) - (3.19), each corresponds to a maximal chain (3.18) chosen 

from D. 

Proof: Because of Corollary 3.3 we have only to show that for any vector 

x given by (3.17) - (3.19) there exists a weight vector W € RE such that ~ is 

a unique optimal solution of Problem ITw' For such a vector x, let us choose 

a weight vector w E: RE such that 

0.21) 

Then x is an optimal solution of ITw for such w due to Corollary 3.3. Moreover, 

x is a unique optimal solution because for any optimal solution y of IT we 
w 

have, similarly as (3.13), 

0.22) 

where S. 
~ 

° = L w(e)y(e) - L w(e)x(e) 

n-l 
L (w(e. 1) - w(e.»(f(S.) - y(S.» 

i=l ~+ ~ ~ ~ 

;;:; 0, 

... , (i=1, 2, . .. , n). From (3.21) and (3.22), 

;(S .) 
~ 

f(s .) 
~ 

y(Si) U=l, 2, •.. , n). 

i.e. , 

~(e) y(e) (e € E). 

This concludes the proof of the theorem. Q.E.D. 

Theorem 3.t. also easily follows from the fact that the rank of the 

coefficient matrix of ;(S.) f(S.) U=l, 2, ... , n) is equal to n = JEJ. 
1. ~ 
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Theorem 3.4 is a generalization of the extreme point theore~ for (poly-)matroid 

polytopes by J. Edmonds [2]. 

4. Upper and Lower Bounds of Submodular Functions 

It was shown in [4] that when f is an integer-valued submodular function 

the minimization of f can be performed by use of the so-called ellipsoid 

method in time polynomially bounded by IEI and log B, with B being an integral 

upper bound of If(X)1 (X £ D), under the assumptions that the following opera-

tions ( 1 ) and (2) are carried out in unit time: 

(1) to evaluate f (x) for each X £ D, 

(2) to discern whether or not there is a set X £ D such that e
1 

£ X 

and e2 i X for each el' e2 £ E 

and that an integral upper bound R is previously known. We show that such 

an integral upper bound B can easily be eomputed. 

We need some lemma to obtain an upper bound of f. 

Lemma 4.1: For a vector a = (a:(e): e £ E) defined by 

(4.1) a(e) = f(D(e» - f(D(e) - {e}) 

we pave 

(4.2) a(X) ~ f(x) 

for any X £ D, where D(e) (e £ E) are defined by (2.2). 

Proof: The inequality (4.2) is trivial for X = 4>. 

Suppose that, for some integer k such that a ;:;; k < I El, (4.2) is valid 

for any X £ D with Ixl ;:;; k. Then for any Y £ D with lyl = k+l let e be a 

maximal element of Y in P = (E,';;). By the assumption and the submodularity 

of f we have 

(i (Y) (i(e) + Ci(y - {e}) 

~ (i(e) + f(Y - {e}) 

f(D(e» - f(D(e) - {e }) + f(Y - {Ed) 

~ f(y) , 

where note that Y - {e} £ D and D(e) C;; Y. 

Therefore, the lemma follows by induction. Q.E.D. 

From Lemma 4.1 we have an upper bound.B of f given by 

(4.3) ~ = E{(i(e) le £ E, a(e) > a}. 
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Furthermore, a lower bound of f is given as follows. 

Let x be an extreme point of B(f), which is obtained as in Corollary 3.3 

Then 

(4.4) ~ = ~{x(e)le E E, ~(e) < O} 

i.s a lower bound of f since 

(4.5) ~ ;;; ~(X) ;;; f(X) 

for any X E D. 

The upper and lower bounds Band B given by (4.3) and (4.4), respectively, 

ean be obtained in polynomial time with respect to IEI if we assume that the 

above-mentioned two operations (1) and (2) are carried out in unit time. It 

should be noted that the Hasse diagram for the poset P = (E,<) can be obtained 

in polynomial time when Operation (2) is carried out in unit time (see Section 

:~) . 

5. An Example 

Consider a distributive lattice 

(5.1) 

where E 

(5.2) 

D = {4>, {1}, {2}, {1,2}, {1,2,3}}, 

{1,2,3}, and a submodular function f given by 

f(4)) = 0, f({l}) = -1, f({2}) = 3, 

f({l,2}) = 1, f({1,2,3}) = 3. 

Observe that the distributive lattice D is the collection of ideals of a 

poset represented by the Hasse diagram .m . 
cD0 

Now, an extreme point i of the base polyhedron B(f) is obtained by 

choosing a maximal chain in D given, for example, by 

(5.3) 4> ; {1} ; {1,2}; {1,2,3} 

and from (3.3) 

;. (1) f({l}) - f(4)) = -1, 

(5.4) ~(2) f({1,2}) - f({l}) = 2, 

~(3) f({1,2,3}) - f({1,2}) = 2. 

Furthermore, D(e) (e E E) defined by (2.2) are given by 

(5.5) D(l) = {1}, D(2) = {2}, D(3) = {1,2,3}. 

Therefore, the vector ~ in Lemma 4.1 becomes 
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H{ll) - f(~) -1, 

f({2}) - f(~) 3, 

f({1,2,3}) - f({1,2}) = 2. 

From (4.3) an upper bound B of f is given by 

(5.7) 5. 

Also from (4.4) and (5.4) we have an lower bound B of f as 

(5.8) B = x(1) = -1. 
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