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Abstract This paper deals with a one-unit system that the system's failure can be detected only by inspection. 

This inspection takes a non-negligible random time. Consequently the system is down during the inspection whether 

it is operable or not. When the system's failure is detected by i-th inspection (i = 1,2, ... , n+l), the system is 

repaired. When the system is operable at the time of the (n+ 1)-st inspection, preventive maintenance is performed. 

It is assumed that a system is as good as new after repair or preventive maintenance is performed and i~ put in 

operation immediately. 

Under this inspection policy, the Laplace transform of the point-wise availability and the stationary avail­

ability of the system are derived by using the method of supplementary variables. 

We discuss the optimum inspection policy maximizing the stationary availability. It is to determine an optimal 

number of times of inspection and optimal inspection peIiods. It is shown that there exists an optimum inspection 

policy under some conditions on the failure distribution and the mean maintenance time. 

1_ Introduction 

We deal with stochastically failing system, in which failure can be 

detected only by actual inspection (required to take non-negligible time)_ 

Barlow, Hunter and Proschan [1,2] studied the optimum checking procedures 

minimizing the total expected value of the cost of the elapsed time between 

system failure and its detection and thE! cost of checking_ It may be quit,= 

difficult to find such an optimal procedure_ To avoid this difficulty, 

Munford and Shahani [7,8] and Tadikamalla [11] suggest a nearly optimal 

checking interval. On the other hand, Keller [5] and Osaki [9] proposed a 

smooth density n(t) where n(t) denotes the number of checks per unit time 

and obtained a sequence of approximate inspection times by the usual methods 

of the calculus of variations. 
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Further, Bosch and Je:nsen [3], Luss and Kander [6], Sengupta [10], 

Wattanapanom and Shaw [12] and Zuckerman [14] considered models which are 

related to Barlow, Hunter and Proschan [1]. 

We are interested in the availability of system. For example, a machine 

produces units continuously. The quality of the output is checked at various 

time to determine whether the machine is functioning satisfactorily. Upon 

detection of malfunction, repair is made, production resumes and inspection 

continues. Coleman and Abrams [4] and Weiss [13] dealed with such models. 

In such situation we further incorporate a policy that preventive mainte­

nance is performed if the system is operable at the time of the (n+l)-st in­

spection. Under this inspE!ction policy, the Laplace transform of the point­

wise availability and the stationary availability of the system are derived 

by using the supplementary variable methods. And it is shown that there exists 

an optimum inspection policy which maximizes the stationary availability under 

suitable conditions. Finally, we shall present numerical example. 

2. Definition of Model and Availabil ity 

We define a model as follows: 

(i) The system's life timl! has an arbitrary distribution F(x) with a finite 

mean A, the differentiabll! density function f(x) and the failure rate A(X) = 
f(x)/F(x), where, in general, for a function K(x), K(x) = 1 - K(x). 

(ft) The system's failure can be detected only by inspection and the proba­

bility of its detection equals one. 

(:Hi) The system is shut down while being inspected. So the system is down 

during inspection whether it is operable or not. 

(jy) Inspection is scheduled to begin after XI units of time from the 

instant at which the syst,~m is renewed by repair or preventive maintenance. 

(See Fig. 1) 

(v) The subsequent inspections are scheduled to X. units of time after the 
'l,. 

conclusion of the (i-l)-st inspection if no repair has taken place (i=2, ... , 

n+l). Where X. (i=1,2, ... ,n+l) is a random variable having a distribution 
'l,. 

function A.(x) with a finite mean and the density function a.(x). We call 
'l,. 'l,. 

this interval the inspection period. (See Fig. 1) 

(u) Each inspection takes Xl units of time, where XI is a random variable 

having a distribution function G(x) with a finite mean ~ and the density 

function g(x). 

(~) When a failure of the system is detected by inspection, the system 
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undergoes repair at once. The repair time has a distribution function H(x) 

with a finite mean r and the density function h(x). 
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('Il:ii) Preventive maintenance on the system is performed when it is operable 

at the conclusion of the (n+l)-st inspeetion. The preventive maintenance time 

has a distribution function H (x) with a finite mean r and the density 
s s 

function h (x). 
s 

(ix) The system is as good as new after repair or preventive maintenance is 

performed and is put in operation immediately. 

____ operate inspection 

.....,..,...,.. undetected failure repair 

E~ preventive maintenance 

Fig. 1 A configulation of the inspection policy. 

The optimization problem we considE~r is to maximize the stationary a­

vailability of the system. Then, we do not wish to check too often from the 

point of view of the availability since each inspection takes a time (i.e., 

it is a down time.). On the other hand, there is a down time between the oc­

currence of a system's failure and its detection. So, our problem is to de­

termine a number of inspection until preventive maintenance is performed and 

a sequence of inspection periods. 

Letting P A (t) be the point-wise availability of the system at time t, 

the Laplace transform p!(s) of PA(t) is explicitly given as follows (See 

Appendix): 

(1) 
n 

L 
i=O 

i n+l g*(s) ~~(s)/[l-g*(s) h*(s)~* (s) 
~ s n+l 
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where 

<Po(s) 

a(i)(x) 

a(l)(x) 

r exp[-sxlF(x)a(i) (x)& 
o 

1, 

Ix (i-1} 
a (x-y)a. (y)dy 

o 1. 

a
1

(x) , 

1J!-Js(s) = r exp[-sx·,F(X)A(i) (x)& 
1. 0 . 

A(i) (x) = f; a(i) (X-y)A
i

+1 (y)dy 

A(O)(x) = A
1

(X) 

and * denotes the Lap1ace transform. 

(i=l, •.. ,n+1) , 

(i=2, ••• ,n+1) , 

(i=O,l, .•• ,n), 

(i=l, ... ,n), 

Consequently, we obtain the stationary availability PA(oo) of the system 

as follows: 

(2) P (00) 
A 

n n 

I 1J!!(0)/[(n+1)~<p~+1(0)+rs<p~+1(0)+ I {(r+(i+1)~) 
i=O i=O 

x (<P-Js(0)-<P*+1 (0) )+4>*(0)' r A ·+l(x)&}]. 
1. . 1. -z. o-z. 

3. Optimum Inspection Policy 

In the preceding section, we have obtained the stationary availability 

under a random inspection period, in which X. is distributed A.(x). Hereafter, 
1, 1. 

we consider only a regular inspection period which could be applied in practi-

cal fields. So, we assume that 

(3) A. (x) 
1. 

Then PA(oo) 

PA(n,T), 

is 

(4) PA(n,T) 

where 

(5) 

0 

1 

a function 

for o ~ x < T. -z. 

for T. < x -z.= 
of (n+1) variables 

(i=l •.•• ,n+1) 

T1 , ••. , Tn+1 . Denoting it by 

(i=O,l, •.. ,n+l). 

We shall discuss the optimum inspection period maximizing eq.(4) i.e .• 

the problem determining the number of inspection n* until preventive mainte­

nance is performed and the inspection period T
1

, T2 ,···. Tn*+l' 

If Ti = 0 for all i = 1 •...• n+1 or T1 + 00. then eq.(4) equals zero. 

Eq. (4) is a continuous function in T
1 
••.•• T

n
+

1 
for fixed n. Consequently, 

we remark that there is at least one set (T l ,T2, ... ,T
n
+1) maximizing eq.(4). 
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Let us suppose that T. = T for all i=l, ... ,n+l (periodic inspection). 
-z.. 

Only for the ease of exponential failure:, periodic inspection procedure is 

optimum over all inspection procedures. This is clear by the memoryless prop­

erty of exponential distribution. Then e:q.(4) is 

(6) PA(n,T) = A{l-exp[-(n+l)T/A]}/[(Ti'~){l-exp[-(n+l)T/A]}/{l-exp[-T/A]l 

+r-(r-r )exp[-(n+1)T/'\]]. 
s 

Eq. (6) is non··decreasing in n for all T > 0 i.e., 

for all T > O. 

Consequently, to perform preventive maintenance is meaningless. From eq.(6), 

it is 

(7) PA(oo,T) = [r/A+(T+~)/A(l-exp[-T/A])]-l. 
To maximizing PA(oo,T) equals to minimizi.ng D(T) = (T+~)/(l-exp[-T/A]). 

Taking the derivative and setting it equal to zero, we obtain 

(8) exp[-T/A] - T/A = 1 + ~/A 
which has a unique solution in T. This coincides with Weiss [13] and Barlow, 

Hunter and Proschan [1]. 

Next it is of interest to consider the optimum sequential inspection 

procedure maximizing eq.(4) for any fixed n. A necessary condition that a set 

(Tl, •.. ,T
n
+

l
) is optimum inspection procedure is that 

(9) 8P
A

(n,T)/8Ti = 0 for all i=l, ... ,n+l. 

Hence, using ~!q. (4) we obtain 

(10) T'+
l 

= rJ(S. l)-J(S.)]/f(S.)- ~ (i=l, ... ,n), -z.. . -z..- -z.. -z.. 
S 

(11) [(r-r )i~(S +l)+J(S )/J(S +l)]J n+1 J(x)dx 
s n n n 0 

n 
= r - (r-r )J(S +1) + L (~+T '+1)J(S.). 

s n i=O -z.. -z.. 

From eq.(lO), T
i

+
l 

(i=l, ... ,n) is evidently expressed as a function of Tl 

only. Let~. (T) denote the right-hand side of eq.(lO) for i = l, ... ,n and 
-z..+l 1 

~l(Tl) = T
l

· Accordingly T
2
,· .. ,T

n
+

l 
are determined recursively once we dE~-

termine Tl by eq. (11). To show that this set is unique, we need the follOlving 

lemmas. 

Lemma 1. If the failure density f(x) is PF 2 and f(x) > 0 for all x > 0, 

then T i +l = ~1:+l(Tl) is non-decreasing in Tl (i=l, ... ,n). 

Proof: vie will prove by the induction. From eq.(lO), T2 = F(Tl)/f(T
1

) 

- ~. By Cor. 3.1 of Barlow, Hunter and Proschan [1], T2 is non-decreasing in 

T
l

. Suppose that T
j

+
l 

is non-decreasing Tl for all j=l, .•. ,i. By Theorem 3 

of Barlow, Hunter and Proschan [1], the following inequality holds. 
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(lZ) [F(x)-F(x-Ll) ] If (x) ~~ [F(x-e:)-F(x-Ll-e:) ]If(x-e:) for all Ll.e: ~ O. 

Also by the assumption there exists Ll '. > 0 such that 
J = 

(13) I; . (Tl+M = I; .(T
l

) + Ll'. ( > I; .(T
l

» 
J J J = J 

for all Ll ~ 0 and j=l •••• ,i+l. Hence we have for all Ll ~ O. 

t;i+Z(Tl+M + ~ 
i i-I i 

[F(.L t;·+l(Tl+Ll»)-F(.L 1;·+l(Tl+Ll»]lf(.L t;·+l(Tl+Ll» 
J=O J J=O J J=O J 

i i-I i 
[F(.L {C+1 (T l)+LI '.+1}) -F(.L {I;J.+1 (T l)+Ll '.+1}) ] I f(.L {t;.+1 (T l)H '.+1} ) 

J=O J J J=O J J=O J J 
i i-I i 

> [F(.L t;j+1 (T 1) )-P(.L I;J'+1 (T l)-Lll+1)] If(.L I;J'+1 (T 1» (by eq. (lZ» 
J=O J=O J=O 

i i-I i 

> [F(.L 1;·+l(Tl»-P(.L 1;·+l(Tl»]/f(.L t;'+l(Tl » 
J=O J J=O J J=O J 

=l;i+Z(Tl)+~· 11 

Hence by the assumption that f(x) is differentiable. we have 

for all i = l ••..• n+l. 

Lemma 2. lim I;Z (T 1) < O. 
Ti+O 

Proof: Since f(x) is PF
Z

' it is unimodal. Let m be the mode of f(x). 

Letting m > O. then f(x) is non-decreasing for all x < m. Since T 1 .... O. 

suppose that Tl is sufficiently small. 

T Z = I;Z(T
l

) = F(Tl)ll(Tl)-~ ;; Tlf(Tl)/f(Tl)-~ < Tl .... 0 as T
l 

.... O. 

When m;; O. f(x) is non-increasing and f(O) is positive. Hence it is trivial. 11 

When TZ is negative. it is meaningless. So we define TZ = max(I;Z(Tl).O). 

We rewrite it I;Z(T
l
). Similarly we define l;i(T

l
) (i = 3 •...• n+l) in turn. 

Consequently. we have 

( i = 1, ... , n). 

To determine a set (T
l 
•...• T

n
+l ) satisfying eq.(lO) and eq.(ll) is 

equivalent to determine Tt maximizing the following equation PA(n.T). 

(16) PA(n.T) = A(n.T)IB(n.T) 

where 
L~ =0 t; .. <-1 (T) _ f ~ ~r F(x)dx ~ 
o 

A(n.T) 

B(n.T) 

and 
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o if i = O. 

Then we have using eq.(lO) and eq.(14), 

n n 
dA(n,T)/d!r = (L S~+1(T»P( L S.+1(T» > 0 

i=O ~ i=O ~ 
for all T > 0, 

n n-l n 
dB(n,T)/d!r ( L S:+l(T» [P( L S·+l(T»+(r-r )I( L S·+l(T»] > 0 

i=O ~ i=O ~ s i=O ~ 
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and 
for all T ,. 0, 

(17) dpA(n,T)/d!r = B'(n,T) [K(n,T)-PA(n,T)]/B(n,T) , 

where 

(18) 
n n-l n 1 

[(r-r )A( L S·+l(T»+P( L S·+l(T»/P( L S·+l(T»]-
s i=O ~ i=O ~ i=O ~ 

K(n,T) 

It is easily verified that the second term of the right-hand side of 

eq. (18) is non-decreasing in T. Hereafter, we assume that r > rs and A (a:) 

is strictly increasing. So, K(n,T) is strictly decreasing. When T + 0 , 

PA(n,T) + 0 and K(n,T) + [l+(r-r
s
)A(o)]-l by eq.(15). Consequently, PA(n,T) 

increases in a neighborhood of the origin. Since there exists at least one 

set (T
l

, ... ,7'n+l) maximizing eq.(4), there exists at least one T* such that 

dpA(n,T)/d!r = O. Hence, PA(n,T) will increase in the interval (O,T*) WherE! 

T* is the first root of the equation 

(19) K(n,T) - PA(n,T) = O. 

Further, at T'I." since K(n,T) is strictly decreasing, K(n,T*+e:) < PA(n,T*+E:) 

for a sufficiently small e: > O. This means that P A (n ,T) is a strictly de-­

creasing function at T*+e: and that T* is a maximal point. Even if T** is an­

other root of eq.(19), PA(n,T) will decrease at T**+e:. Thus T** can not be 

a maximal poin.t. This fact implies the uniqueness of T*. But since T* is a 

function of n, we need to write such as T*(n). 

Thus a set (T!(n), ... ,T~+l(n» is optimal for any fixed n and the 

resulting maxi.mum value of PA (n,T) is given by [(r-r ) A (S*+1 (n»-+P(S*(n»! 
_ -1 s n n 
F(S~+1 (n»] ,where St(171) = T~(171)+ •.. + Tt(171) and T~(::'1) = 0 (i=O,l, ..... 171+1) 

for fixed m ~ o. 

Theorem 1. Assume that (i) r > rs (ii.) a failure density I(x) is PF2 
and differenti.able and I(x) > 0 for all x > 0 (:Hi) the failure rate A(X) is 

strictly increasing. Then the optimum inspection policy is given by (~l' ... 

. ,T
fi

+l ), where: 
- - -1 

fi = {n; max[(r-rs)A(S~+l(n»+F(S~(n»/F(S~+l(n»] }, 

T1 = T!(6) , ... , ~fi+1 = ~*fi+1(n) 
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and 

Tr(n), ... ,T~+l(n) is the unique root of the eq.(10) and eq.(ll). 

Th;n PA (n,T) = [(r-rs)A(!~n+1 (n»+F(Sn(il)IF (Sn+1 (il))]-l , where Si(m) = TO(m) 

+ T1(m) + '" + ~i(m) and TO(m) = 0 (i=0,1, ... ,m+1) for fixed m ~ O. 

Example 1. Suppose that a failure distribution is a gamma distribution 

with parameter 2 and mean A, i.e., 

F(x) = (l+2x/A)exp[-2x/A] , A(X) = 4x/A2(1+2xIA). 

Suppose furthermore that r/A = 0.1 , r lA = 0.01 and ~/A =0.001. Then we have 
s 

Table 1. Then the optimal policy is T1/A = 0.1288 , T2/A = 0.0693 and T3/A 

0.0600 and the stationary availability is 0.9199. Similarly we obtain for 
-4 

~/A = 10 , TI/A = 0.1147 , T2/A = 0.0619, T3/A = 0.0540 and PA(oo) = 0.9287 

and for ~/A = 10-
5

, T1/\ = 0.1132 , T2/A =0.0611 , T3/A = 0.0533 and PA(oo) 

= 0.9296. When the system is always observed and the failure is detected as 

soon as it occurs, the optimum preventive maintenance time is 0.32 and the 

stationary availability is 0.9321 by Barlow and Proschan [2] . It seems that 

PA(oo) approaches 0.9321 when ~ decreases to zero. 

Table 1 For each fixed n, the stationary availability and inspection 

periods when r/A = 0.1 r lA s 
= 0.01 and ~/A 0.001. 

n P A (00) T1/A T/A T/A T/A T5 /A T6 /A T/A 

0 0.9036 0.1794 

1 0.9084 0.1470 0.0803 

2 0.9199 0.1288 0.0693 0.0600 

3 0.9092 0.1182 0.0630 0.0542 0.0496 

4 0.9085 0.1112 0.0589 0.0505 0.0460 0.0429 

5 0.9075 0.1063 0.0561 0.0480 0.0435 0.0405 0.0382 

6 0.9056 0.0893 0.0468 0.0395 0.0354 0.0326 0.0304 0.0286 
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Appendix 

We derive the Laplace transform of the point-wise availability using the 

method of supplementary variables. We define the state of the system as fol­

lows: 

system is operating after it is renewed. State So 

State S. 
1.-

system is operating after the completion of i-th inspection. 

(i=l, •.. ,n) 

State S. 1 
1.-, 

system is under (i+l)-st inspection from state S .. (i=O,l, ... ,n) 
1.-

State S. 2 
1.-, 

system is down from state S'i Le., it is under undetected fail-

ure . (i = 0,1, ... , n ) 

State s. 3 
1.-, 

system is under (i+l)-st inspection from state S. 2. (i=O,l, ... ,n) 
1.-, 

State S. 4 
1.-, 

system is under repair afteoc the completion of (i+l)-st inspec-

t ion. (i = 0, 1, ... , n) 

State Ss system is under preventive maintenance. 

The state transition diagram is sholffi in Fig. 2. We introduce the fol-

lowing notations: 

So,~] 
\ 

, , 
\ 
\ 
, a ,(xl+Z) 
I 
I 
I 

I 
/ 

Fig. 2 

rs (x) 

0: system up 

The state transition diagram. 

D : sy&tem down 

z, sojourn lime in S i,n 
(i=O,I,··· ,n) 

x.(i=l •...• n+l) : system's operating time after the completion (i-l)-st in-
1.-

spection. 

y. = y. 1 + x. (i=l, ... ,n). yo = ° : total operating time after the system is 
7.- 7.-- 7.-

put in operation. 

u*(s) : The Laplace transform of a function u(x). 
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PO(t.x)~ = Pr[ at time t. system is in state So and the operating time lies 

between x and x + ~ ]. 

p.(t.x'+l;Y')~ = Pr[ at time t. system is in state S. and the operating time. 
~ ~ ~ ~ 

measured from the instant at which the system has entered state Si lies 

between xi +
l 

and xi +
l 

+ ~ given the total operating time at which it has 

entered state S. is y. J. (i = l, ... ,n) 
~ ~ 

p. l(t.x;y. 1)6 = Pr[ at time t. system is in state S. 1 and the elapsed in-
~. ~+ ~. 

spection time in state S. 1 lies between x and x+~ given the total oper­
~, 

ating time at which it has entered state Si,l is Yi +l ]. (i=O.l, ...• n) 

Pi,2(t.x;Yi+l)~ = Pr[ at time t. system is in state Si,2 and the elapsed time 

in state S. 2 lies between x and x+~ given the total operating time at 
~. 

which it has entered state Si,2 is Yi+l ]. (i = 0.1 •...• n) 

p. 3(t,x)~ = Pr[ at time t, system is in state S. 3 and the elapsed inspec-
~, ~, 

tion time lies between x and x + ~ J. ( i = O,l •... ,n ) 

p. 4(t.x)~ = Pr[ at time t. system is in state S. 4 and the elapsed repair 
~. ~, 

time lies between x and x + ~ J. i = O,l, ... ,n ) 

p (t,x)~ = Pr[ at time t. system is in state S and the elapsed preventive 
s s 

maintenance time lie,s between x and x+~ J. 
Keeping in view the nature of this system. the following set of partial 

differential equations can be set up easily: 

[3/3t+3/3xl+A(Xl)+al(Xl)]PO(t,Xl) = o. 

[3/3t+3/3xi +l H(x
1
:+l +Yi)+ai+l (xi+l) ]p i (t,xi+l ;Yi ) = 0 (i=l, ...• n) , 

[3/3t+3/3X+ll(X)]p. l(t,x;y.+
l

) = 0 (i= O,l, ... ,n), 
to, ~ 

(AI) [3/3t+3/3x+ai +l (x+xi +l )]Pi,2(t,x;Yi+l) = 0 (i = O,l, ... ,n ), 

[3/3t+3/3X+ll(X) ]P'~.3(t,x) 0 i O,l, ... ,n), 

o [31 3t+31 3x+1'(x) ]p,C, 4 (t ,x) 

[3/3t+3/3x+1' (x)]p (t.x) = O. 
s s 

where 

i O,l .... ,n ), 

a. (x) 
~ 

a • (x) lA . (;c), f.l (x) 
~ ~ 

g(x)IG(x), l'(x) hex) IB(x) and 

l' (x) 
s 

h (x) /B (;c). 
s s 

Equations (Al) are to be solved subject to the following boundary and 

initial conditions: 
n 

PO(t.O) = I ft 
i=O 0 

p. (t,O;y.) = ft 
~ ~ 0 

J' (x)p. 4(t,x)dx + ft l' (x)p (t,x)dx, 
~, 0 s s 

~(x)p. 1 l(t,x;y.)dx 
~- . ~ 

( i = l, ... ,n ), 
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PO,l(t,O;yl ) = al(xl)PO(t,Xl ), 

Pi,l (t,O;Yi+1) = ai+l (xi+l)Pi(t,x~~+l;Yi) 

PO,2(t,O;yl ) = A(xl)PO(t,Xl ), 

i l, ... ,n), 

(i=l, ... ,n), 

115 

( i = O,l, ... ,n ), 
p. 4(t,O) 

1-, 
( i = O,l, ... ,n ), 

P (t,O) 
s 

and 

po(O,O) = 1. 

Taking the Laplace transforms of eqs. (Al), (A2) under the initial con­

dition and solving, then we have after some simplification 

p~(S,x·-'l;Y.) = 
1- 'l-..,- 'l-

i --
a*(s)g*(s) exp[-s(Yi+xi+l)]F(Yi+xi+l)Ai+l (xi + l ) 

i 
xII a.(x.) (i=l, ... ,n), 
j=l J J 

i+l 
P~ l(s,x;y ·+1) 

'l-, 1-

i --
a*(s)g*(s) eXP[-s(X+Yi+l)]F(Yi+l)G(x) II a.(x.) 

j=l J J 

P~ 3(s,x) 
'l-, 

P~ 4(s,x) 
'l-, 

(i=O,l, ... ,n), 

a*(s)g*(s)iexP[-s(X+Yi+l)]f(Yi+l)Ai+l (x+.ri +l ) 

i 
xII a.(x.) (i=O,l, ... ,n), 
j=l J J 

i -
a*(s)g*(s) [at+l (S)<Pt(H)-<Pt+l (s) ]exp[ -sx]G(x) (i=O,l, .. ,n), 

i+l -
a*(s)g*(s) [afs+l(s)<lI'~(s)-<P~+l(s) ]exp[-sx]H .(x) 

'l- 1. 'l- 'l-

( i = O,l, ... ,n ), 
n+l -

p~{a,x) ,= a*(s)g*(s) <P~+l (a)exp[--sx]H/x) 

where 
n+1 n i+l 

a*(a)=l/ [l-g*(a) h*(s)<P*+l (a)- L g*(a) h*(s) {a~+l (a)<p~(a)-<P~+l (a)}], 
s n i=O 'l- 'l- 'l-

and 
i 
It a. (x.) 

j=l J ~l 

By p!(s) 

have eq. (1) . 

= 1 if i = 0. 

n 
fa Po*(s,xl)d:x:l + L f···r pfs(a,x·+l ;y·)d:x:·+1· ··d:x:l ' we 

i=l 0 a 'l- 'l- 1- 'l-
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