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A monotone rule is introduced to sum up individual declarations in a multi-variate stopping problem. 

The rule is defined by a monotone logical function and is equivalent to the winning class of Kadane. This paper 

generalizes the previous works on a majority rule. The existence of an equilibrium stopping strategy and the 

associated gain are discussed for the tlnite and infinite horizon cases. 

1. Formulation 

Let X , n,2: 1, 
n 

be p -dimentional random vectors on a probability space 

( ~ ,J3, p). The process {X } can be interpreted as a sequence of payoffs to 
n 

a group of p players. Each of p players observes sequentially the values of 

Its distribution is assumed to be known to all of the p players. A 

player must make a declaration to either "stop" or "continue" on the basis of 

the observed value at each stage. A group decision whether to stop the 

process or not is determined by summing up from the individual declarations. 

If the group decis:lon is to stop at stage n , then the player i 's net 

gain is 

(1.1) yi Xi i - n c 
n n 

i 
where c is a constant observation cost. According to the individual 

declarations, let us 

(1.2) d i 
= 1 (0) 

n 

define 
. i 

a random varlable d ,n,2:1, i =1, ... ,p by n 

if player i declares to stop (continue). 

We assume, for each nand i , 

(1.3) 

334 
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Multi- Variate Stopping (Monotone) 335 

where d3 ( X n) denotes the (J -algebra generated by X n 

Defini tion 1.1. An individual (stopping) strategy is a sequence of 

random variables 

(1.4) d i = i i i ) (d , d
2 

' ••• , d , ... 
1 n 

satisfying (1.3). Zi denotes the set of all individual strategies for player 

i. A p-dimentional and {O,l}-valued random vector 

(1.5) _ ( 1 d2 p) d - d, , .. . ,d n n n n 

denotes the declarations of p players at stage n. A (stopping) strategy is 

the sequence 

(1.6) d (d , d
2 

' ••• , d , ... ) 
1 n 

and jj' denotes the whole set of the strategies. 

Now we shall define a stopping rule by which the group decision is 

determined from the declarations of p players at each stage. A p -vari_ate 

and {O,l}-valued logical function 

(1. 7) 
_ 1 P 

'TT - 'TT (x , ... ,x ) {O,U
p 

+ {a,l} 

is said to be monotone (cf. Fishburn [2]\ if 

(1.8) ( 1 P 
'TT X , ••• ,x ) < 1 P 

'TT (y , ••• ,y ) 

i i whenever x ; y for each i 

Definition 1.2. A monotone rule is a non-constant logical function 'TT , 

which is 

(i) monotone with 

(ii) rr(l,l, ... ,l) = 1. 

In this paper a rule does not mean "when to stop the process" but means 

"how to sum up" the whole players' declarations. The property (ii) is called 

unanimity in Fishburn [2]. Its dual property 'TT (0,0, ... ,0) = ° is not needed 

to be assumed here. A constant function makes the problem trivial because the 

decision is always to stop from (ii). 

The monotone rule has a wide variety in choice systems of our real life. 

Some examples for the monotone rule are given as follows. 

Example 1..1. (i) (Equal majority rule) In a group of p players, if no 

less than r ( ;;;, P) members declare to stop, then the group decision is to stop 

the process. That is, 

1 P 'TT(in,···,d n ) 1 (a) if ,p d i > «) r. 
Li=l n 
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336 M. Yasuda, J. Nakagami and M. Kurano 

For instance, a simple majority rule for three players, i.e., ( p,r)=(3,2), is 

~(dl d 2 d 3 ) = d l .d2 + d 2 .d3 + d 3 .dl 
n' n' n n n n n n n 

where + is a logical SUIT and . is a logical product. The stopping problem of 

the maj ori ty rule is discussed in Kurano, Yasuda and Nakagami [ 5] • 

(ii) (Unequal majority rule) A straightforward extension of (1.9) is 

(1.10) ( I p) _ () ~ d , ... ,d - I 0 n n 
if 

where w i ~ 0, i =1, ... , p, are given weighting constants. See Table 3.1 in 

Section 3 for several rul es wi th p =3. 

(iii) (Hierarchical rule) A hierarchical system or Murakami' s representative 

system (cf.Fishburn [2]) is regarded as a composed rule. Since the 

composi tion of two monotone logical functions is monotone and satisfies the 

property (ii) of Def.1.2, the hierarchical rule is also a monotone rule. 

De:finition 1.3. For a strategy d =( d
1

,d 2"") E8 with d n =( d~ 
dP), n>l and a monotone rule ~ , a stopping time t (d) is defined by , ... , 

n ~ 

t first n > 1 such that ~ (d l , ... , d P ) = 1 
n n 

00 if no such n exists. 
t (d) 
~ 

(1.11) 

For any stopping time t (d), let 
~ 

(1.12) 

When the group decision 
i y ( t (d)) as a net gai n. 

~ 

n-+oo 

is to stop at 

if 

the 

n , 

t (d) = 00 • 

~ 

time t ( d), 
~ 

player i gets 

De:finition 1.4. Let ~ be a monotone rule. We call *d= (*d 1
, •.• , *dP) 

an equilibrium strategy with respect to ~ if, for each i and any d i E J::f , 
(1.13) E[yi(t~(*d))] ~ E[yi(t~(*d(i)))] 

where *d(') = (*d l *d i - l d i *d i +l *dP ) ~ , ... , ,,, , ... , . 
In this paper we treat a vector valued expected net gain 

(1.14) E[y(t (d))] 
~ 

d Eb 

and our objective is to find an equilibrium strategy *d E J3' for a given 

monotone rule ~ The notion of the equilibrium owes to the non-cooperative 

game theory by Nash [ 6J. 
In order to denote a stopping event of the process for a given rule, we 

need a set-valued function on <f3p( X
n

). For d =( d
l

, d
2

, ••• ), we shall call 

(1.15) 
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Multi- Variate Stopping (Monotone) 337 

an individual stopping event for player i at stage n. 
i 

If D
i . occurs, l .• e., 

WED
n

, then player i declares to stop. So 

(1.16) d~ = IDi 
n 

n 

where I D is the indicator of a set D on It. Hence there exists a set-valued 

function n on &3P( Xn) corresponding to a logical function 7r on {O, l}P , 

such that 

(d l p) 
7r , ... , d = 'TT (IDl , ... , IDP) = In ( 1 P ) n n n D , ... ,D n n n 

(1.17) 

Clearly two functions 7r and n are related to each other. For example, 

corresponds to 

The stopping event of the process at stage n is denoted by 

(1.18) D n {W E: n I 7r (d
l 

, ••• , dP ) = l} = n ( Dl , ... , DP ) . 
n n n n 

We note that, if 'TT is monotone, AiC Bi for each i implies 

(1.19) ( 1 P n A , ••• ,A ) C 1 P n(B , ... ,B ) 

from (1.18). 

For a given (monotone) rule 'TT , a corresponding set-valued function n is 

determined only by the union and the intersection of sets. 

Next, a one-stage stopping model is considered to clarify a strategy of 
1 . 

our problem. Each player observes a random variable X = (X , •.. , XP) Wl. th 

E I Xi I <00 , and player i receives a net gain Xi - a i if the group decision 

is to stop, or v i _ aiif not, where v·i. is a given constsnt. For a monotone 

rule 'TT , the stopping event of the process becomes n (~ , ... , DP) for 

i =1, ••• , P . Then the expected net gain for player i is 

expressed by 

(1.20) E[(xi-ai)In(D\ ... ,DP)1 + p(n(D\ ... ,DP))(vi _ a i ) 

E[(X
i

_ Vi)In(Dl, ... ,DP)J + vi a
i 

Since a logical function can be written generally as 

1 i liD -i 1 b :r? 
'TT(x , ... ,:r?) = x • 'TT(x , ... ,l, ... ,X'") + x • 'TT (x , ... ,0, ... , ), 

it holds 

(1.21) 
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338 M. Yasuda, J. Nakagami and M. Kurano 

in terms of the events. A substitution of this for the last expression of 

(1.20) yields 

(1.22) f .(Xi _ vi){I 1 _v, - I I rf }dp 
D~ II(D , ... ,Q~ ... ,1F) II(D , ... ,cp, ... , ) 

i 
- e . 

By (1.19), it is clear that Q, ... ,rf) - I ~ v 
IT( II; ... , cp, ... ,D' ) 

> O. Therefore we can derive the next proposition. 

Proposition 1.1. When 

player i's maximum expected net 

(1.23) *Di = {i > vi}, 

and it equals 

(1.24) 

+ V
i i -. e , 

d , ... , i-I , Di+l, ... , if 
gain subject to DiE d3(X) 

are fixed, the 

is attained by 

where X += max( X ,0) and x = max(-x ,0). Especially, when TI( D\ ... 
,Q, ... ,rf) = II(D 1

, ... ,cp, ... ,rf), playeri's expected net gain (1.22) or 

(1.24) is constant not depending on Di 

By Prop.1.1, we have solved a one-stage problem where the seeking 

equilibrium strategy is given as (1.23) and we have shown that the player i's 

indi vidual strategy depends only on the i-th component xi of the p -dimen

sional vector X. Because the larger he perceives his own value, the larger 

will be his net gain, he is eager to declare to stop when his observed value 

is high. This situation holds under a monotonici ty of the rule, but does not 

hold under other rules including a negation. It is known that the monotone 

logical function does not include a negation and vice versa. Another 

essential point is the "non-cooperati ve" character in a reward, so other 

players I net gains do not affect his gain. Therefore, he observes his own 

value closely. 

In the end of this section we shall now refer to the winning class of 

Kadane [4J. He proved the conjecture of Sakaguchi [8J, that is, the 

reversibili ty in the juror problem by the choice of many persons. To prove 

the reversibility affirmative, Kadane used a notion of the winning class as a 

choice rule. 
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Multi- Variate Stopping (Monotone) 339 

Defini tion 1. 6. Let P denote a number of players. A family CW" of 

subsets of integers {I, 2, ... ,P} is called a winning class if 

( i) { 1 ,2, .•. , p } ~ 1U and 

(ii) W E'uL W':J W implies W' f-?U. 

Assume that l' players, e.g., player i
1

, ... , i1' declare to stop. Then 

the process must be stopped if the set { i 1 • . . .• i 1'} is an element of?JJ, or 

continued otherwise. 

For a non-empty subset W={ i 1 • •••• i 1' } of {I, 2, ... , p} there corresponds a 

vertex x of the p -dimensional unit cube whose i
1
-, i

2
-,.. and i1' -th 

components are equal to 1 and the remaining components O. Concerning to the 

two correspondences between W I' W 2 and Xl' x 2 respectively, a necessary 

and sufficient condition for W 1 C W 2 is that X 1 ~ X 2 (component-wise). 

Let V be a set of vertices corresponding to a winning class <W. Define a 

logical function 1T by 

1 if (xl, ... ,xP) E: V, 

o otherwise. 

Accordingly the following proposition clearly holds. 

Proposition 1.2. The stopping rule defined by a winning class of 

players, Def .1. 6, is equivalent to the one by a monotone logical function, 

Def.1.2. 

2. Finite Horizon Case 

Consider a finite horizon case restricted by a prescribed number N < co • 

Our objective is to find an equilibrium strategy for a given monotone rule and 

determine the associated expected net gain under the situation formulated in 

the previous section. 

Assumption 2.1. (a) For any d ,,( d
1

, .•• ,dn , ... ) f: e, dt = 1 for 

i =1, ••• , P 

pendent and 

wi th probabi lty 1. ( b) R1mdom vectors Xl' ••• , X
N 

are inde-

EIX~I < oofor each nand i. (c) 1T is a monotone rule and IT is 

the correspondi.ng rule of events. 

Let us consider a sequence of vectors Vn =( v~ , ••• , ~) defined by 

(2.1) 
. . . . + IT{i} {i} i 

= v~ - e1.-1- E[ (x1-n - V~) 13n (Vn IXN- n )] 

_ E[(X~_n - v~)-a~{i}(V~'i}IX~_n)], n~l, 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



340 M. Yasuda, J. Nakagami and M. Kurano 

(2.2) i a J 

where 1 i·-I i+l 0) p-l (v, .•. ,v ,v , ... ,0' ER, 
n n n n 

i=I, ... ,p, 

(2.3) aII{il(, {ill i ._ ( (* I * i-I 1"1 *Di+1 *_v )Ixi ) 
fJ V XN )-P IT DN ' ... , DN ,", N ' ... , V:N- N ' n n -n -n -n -n -n-n 

(2.4) aII{il(v{illxNi )=P(II(*D
N
1 , ••• ,*Vi - 1 t/J,*vNi+1, ••• ,*if!.N )lx

N
i ). 

n n -n -n N-n' -n -n -n 7 

and *Vi = {i > vi }E03(X
N

_
n

) 
N-n N-n = n 

i=I, ... ,po 

From Assump.2.1 (a) and (c), P ( t'TT (d ) ~ N ) = 1 holds for all d E£1 
even if the corresponding observation cost is negative. 

Theorem 2.1. By the sequence V =(v1 , .•• ,;; ) , n2:,l in (2.1) and (2.2), 
n n n 

let us define a strategy *d E iJ as follows: For n=l, ••• , N -1, 

(2.5) if wE *Vi , i.e., Xi(w)~ v
N
i , 

n n - -n 

otherwise 

and 

(2.6) I, a.e., W E: n. 

Then, under Assump.2~.1, *d is an equilibrium strategy and 

(2.7) 

holds. That is, v ~ is an equilibrium expected net gain for player i. 

Proof: Define 

t* = t ( *d) = first m;;rt such that 'TT (*d )=1 
n n m 

t* =t ( *d ), 
1 

where t (*d ) for Clearly n < t* < N n =1, •.• ,N and 
= n = 

t (*d) and 'TT is fixed. We will show that 
'TT 

(2.8) 
i i i 

E[Y (t~ )] = vN_n+1 - (n-1)a , i=l, ••• ,p, 

by backward induction on n. 

From tit =N and (2.2), it is trivial for n =N. Assume that it is true 
N 1 

for 

Hence 

where 

n+1. From the dehni tion of *D IT (*V , ••. , *r!) E 43 (X ), 

*D n' 

on *D. n 

E[yi(t~)] = E[Y~;*Vn] 

E[Y;V]= SyoIvdp. Since 

n n n n 

Xn+1 , Xn+2 ,··· are independent of 

Therefore we have the recursion: 

x , 
n 
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By induction, it is equal to 

i i i i) i E[X -v
N 

;*D] +(v
N 

-e -(n-1)e_ 
n -n n -n 

The first term of the right hand side in the above is rewritten as 

i i + * 1 *_D)] [( i i )- (* 1 *rf?)] E[(X -VN ) ; IT( D .- •• n •..• v- - E X -vN ; IT Dn.··. </> •••• n n -n n n n-n 

= E[(Xi_i )+lU}(v{i}li)) _ E[(i_vi )- aIIU}(V{i}IXi )] 
n N-n N-n N-n n n N-n N-n N-n n 

So, from (2.1), 

vi 
N-n+1 

e i 

341 

This implies (2.8) and we have just proved the latter part of the theorem by 

letting n =1 in (2.8). 

Next we must show that, for fixed i, 

(2.9) E[yi(t(*d(i))] ~ E[i(t(*d))] 

1 i -IJ i i i 
where *d (i ) = (* d , ... , d , ... , *aL 

) ~d d = ( d1 , .. ·, dN is any indi-

vidual strategy for player i. Define n d1- ,n =0,1, ... , N by 

[ 

(d1
i

, ...• d
i

• *d
i 

1 •... ' *d,~) if n=1 •..•• N 
n n+ ," 

ndi = . 
*d1- if n=O 

using di and *di . This n di is consi stent with *d
i 

after first n periods. 

Also define a strategy nd(i) by 

nd(i) = (*al, ... ,ni,. .. ,*#). 

Clearly Nd(i)=*d(i) and °d(i)= *d. 

We show 

(2.10) 

for n =1, ... ,N because (2.9) can be proved immediately from (2.10). By the 

strategy n d ( i ), it is enough to consider a stopping time tn instead of t . 

It is seen that 

where D 
n 

is a stopping event with respect to *d! , ... , n di 
, ... , *c! Since 

t ( nd ( i )) = 
n+1 

becomes 

t 1 (*d) 
n+ 

on Dn an.d 
. i i 

E[y1- (t
n

+
1 

(*d))] = VN_n - ne it 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



342 

< vi 
N-n+l 
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i (n-l)C? 

Q.E.D. 

This is an extension of Theorem 3.1 in our previous work [5]. In the 

result, the player i's region for declaring to stop has the form of {Xi> a n= 
certain value }. It is intuitively natural, and this rule is called a critical 

level strategy. 

corollary. 

In the proof of the theorem we can see the following 

Corollary 2.1. A necessary condition for 

{*i = I} 
n {X~ ~ a certain value}, n~l 

is that 7T satisfies 7T( '+~, ... ,0, ... , *£) < n = 
7T ( *~, ... , 1 , ••• , * d~), n~ 1, 

for the equilibrium strategy *d. 

If we impose further assumptions, then next two corollaries are obtained 

immediately. 

Corollary 2.2. For each n, if components of (X~ , ••• , f) are mutually ° n independent and identically distributed with Xn ' then (2.1) implies 

(2.11) i i i +"IT{i}E(XO _vi )+ _ NIT{i}E(XO _vi)-vn+l=vn-a p u. n N-n n n N-n n 

where 

p( IT (*D
N
l , ... , Q , ••• ,*rf..N ) ) 
-n -n 

and 

IT{i} 
ex n 

exIT{i}(VH }) = p( IT (*D
N
l , ... , <p , ••• ,*rf..

N 
)) 

n n -n -n 
Corollary 2.3. In addition, if the monotone rule 7T is symmetric 

for i and j, that is, 

(2.12) 7T( ••• ,i , ... ,~ , ... ) 7T ( ••• ,~ , ••• ,i , ... ) 
and if ai = aj , then vi = v j for each n. If 7T is symmetric for any pairs, n n 
this leads to the majority case discussed in [~ 

Example 2.1. Similarly to Example 4.2 in [5], we shall consider a 

varient of the secretary problem (cf. [1] , [3]) with a monotone rule. Three 

players want to choose one secretary and we impose the following unequal rule: 

(2.13) 
123 123 

7T(X ,x ,x ) = x + x x , xi E: {O,l} , i=1,2,3. 

This means that a secretary is accepted only when either player 1 sayes "yes", 

or both of player 2 and player 3 say "yes". 
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From Thm.2.l, the equilibrium strategy *d is determined by the sequence 

of v~, n~l, in (2.11), where ai=O and vf=llN Since the rule n of (2.13) 

is symmetric for players 2 and 3, v~ = v~ from Cor.2.3. Define 

ri = inf {r; v1-n~r/N}, i=1,2. 

The strategy for player 1 is that he observes until the (r 1 -1) th stage and 

then declares to accept if the relatively best one appears. For player 2 and 

3, the strategy is similar. Numerical results are as follows. 

N 
1 1 2 2 r vN r vN 

10 3 .:3642 1 .1685 

30 10 .:3649 2 .0801 

100 36 .:3673 3 .0322 

300 110 .3677 4 .0135 

1000 367 .:3678 5 .0050 

10000 3678 .3679 6 .0007 

We have applied our result to a secretary problem with an unequal 

monotone rule and showed the equilibrium strategy is a critical level 

strategy. But, as a remark, the asymptotic numerical result is non-interest

ing. Under the rule (2.13), player 1 behaves as if it were a one-person-game 

and player ;~, 3 are neglected. A modified setting of the secretary problem 

has been discussed by Presman and Son in [7] and Sakaguchi [9]. 

3. Infinite Horizon Case 

In this section we shall treat an infinite horizon case N = 00 The 

class of rules is therefore {d E .b; P( tn ( d) ,:S 00 ) = 1 } The problem is 

worth studying when the observation cost is non-negative. Thm. 3.1 discusses 

the case of ai > 0 for all i , in which case the stopping time is finite. 

When ai 0, i =1, ... ,p 

Though we have defined 

some trouble occurs in the multi-variate problem. 

Y! = l~::UP Y~ in (1.12) in the analogy of 

one-dimentional problem, apparently this definition is not natural for all 

players under some rules. 

stopping time is finite. 

To avoid this, we assume that the equilibrium 

Then, we can establish the continuity from the 

fini te horizon case and compare the expected gains between rules and between 

players. ]Crom the formulation of our model, this assumption is often 

satisfied because the process is forced to stop by the conflict among players. 
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Assumption 3.1. ( a) Random vectors 

independent and identically distributed with 

Xl' X2'···, X = (.0-, .•. ,#) are 

Elil< 00 for all i. (b) Each 

element of cost vector c= (el , ... , eP ) is strictly positive. 

monotone rule and let IT be the corresponding rule of events. 

following simultaneous equation of V = ( vI, ••• , vP): 

(3.1) E[ (i _ vi)-a.IT{i} (V{i} IXi)] 

(c) 1T is a 

(d) The 

i e 

i =1, ... , p has a solution. Where {i} (1 i-l i+l 0) _0-1 V = V,···,V 'V ,· .. ,if El{'- , 

an{i} (v{i} li) 

a.n{ i} (V{ i} li) 

1 . 
P(IT(D , ••• ,n, ... ,zf)lx"Z-), 

and Di = {Xi i}. I 2 ~ V ,"Z- = , , ... , p. 

Theorem 3.1. Under Assump.3.1, A strategy 

determined by 

*d ( *d 1 , ... , *dP ) 

(3.2) if > ( <) 

for each n and i , is an equilibrium strategy in the class {de.8;P( t (d)<oo)=I} 
1T = 

and 

(3.3) 

(3.4) 

P( t ( *d) < 
1T 

E[i(t (*d)] 
1T i = 1, .. . ,p 

hold where *V = ( *v1 , ... , *vP) is a solution of (3.1). 

By (3.4), *V is called an equilibrium extected net gain. 

proof is similar to that of Theorem 5.3, 5.4 of [5], we omit it here. 

Since the 

For the rest of the section we shall restrict our attention to the case: 

(b') c = O. 

Under the assumption (b'), it may happen that the equilibrium stopping time is 

not finite. But if the assumption (e) should be added, the following 

corollary must then hold. 

(e) P( t (*d ) < 00 ) = 1 
IT 

where *d is defined by (3.2). 

It is seen in Ex.3.2 that there are cases which satisfy (e). 

Corollary 3.1. Assume the assumptions (a), (b'), (c), (d), and (e). If 

X is bounded with prob. 1, then *d is an equilibrium strategy in the 

restricted class {dE~;P( t (d )< 00 )=1} and (3.4) holds. 
1T 
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Proof: The proof is immediate by Theorem 5.3, 5.4 of [5]. 

Hereafter we sssume that 

(a' ) (a) and components of ( xl , ... , X p) are independent. 

Corollary 3.2. Under the assumptions (a'), Cb'), (c), (d) and (e), if 

P{ Xi = y) = 0 where y = sup { y ;p( xi> y) > O}, then *d is an equilibrium 

strategy in the class {dE,&;P( t
1T
(d) ~ co) = 1 } and (3.4) holds. 

Proof': By Assump. (e), P{ II ( *Dl, ..• , *rR)) > 0 where *Di = {Xi ~ *v i }. 

If we assume that P(1I(*D1 , ... ,iJ, ... ,~rJ?)) = 0, then P(ll( *v1, ... ,n, ... 

, *DP )) > 0 from the monotonic i ty of the rule. From (3.1), it follows that 

(a'), p{ n{*v1 , ... ,n , ... , *DP)) > 0 and p(n (*D1 , ... ,iJ, ... , *rR )) = 0 

imply (Xi -*v~: )+ = 0 a.e., that is, *vi ~ y. This means *Di = iJ a.e. by 

the assumption. We have 

p(lI( *Dl, ... , *Di , ... , *!:?)) == p{lI{ *Dl, ... ,iJ, ... ,*DP )). 

This is a contradiction because the left hand side is " > 0" but the right 

hand side equals zero. Hence we obtain p{ II (*vl , ... ,1> ••••• *rJ? )) > O. For 

the strategy *d{i} = (*d1 , ••• , ai, ... , *dP where di is any individual 

strategy, it is seen that p( t1T ( *d{ i} ) < co) = 1. Hence the proof is 

immediately completed from Thm.3.1. 

Q.JLD. 

For a rule 1T with p{ t1T ( *d)= co ) 1, there is player i such that 

(3.5) = sup { i y ;p( X > y) > 0 }. 

Clearly (3.4) is satisfied for player i. by (1.12). But for another player 

j (;01 i), *vj does not necessary satisfy (3.4). Therefore the solution of 

(3.1) does not always consist with the equilibrium expected gain in this case. 

In order to discuss the associated gain including this case, we simply call an 

expected gain (omitting "equilibrium") by the solution *V • which is the 

limiting value as N -+ co in the finite horizon case. For this see Figure 4.1 

in [5] and Table 3.1. 

Now we shall derive a bound of the expected gain by varying 1T 's. The 

expected gain vi = vi ( 1T) associated with a monotone rule 1T satisfies that 

(3.6) 
i 

< v < sup { y ; (Xi> y) > 0 }. 

This is proved by using a ratio (3.8) as follows. By (a') and (b'), equation 

(3.1) implies 

(3.7) {i}( {ill 
PIT V 

where 
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(3.8) 

p( IT (D1, ... , <p , ••• ,if))/p( IT (if, ... ,Q , ..• ,if)), 

providing that the denominator is non-zero. Since rr is monotone, 

(3.9) o ~ < 1 

holds. Therefore (3.9) implies (3.6) immediately. 

From the above argument, Prl i} ( 0 i} ) = 1 implies vi = E Xi and 

p{il(Ji} ) = 0 implies vi = sup{y;P(Xi>yl>O}. The second assertion 
IT 

corresponds to P ( t (*d) = 00 ) =1 as remarked at ( 3.5) . Here these two 
rr 

extreme cases 

First, 

and also to 

are interpreted as follows. 

p ~ (V{i} ) = 0 is equivalent to IT (D1 , •.• ,-/>, ••• ,DP ) = -/> a.e. 

rr( d , ... ,0, •.• ,dP ) = 0 with prob. 1. This means that whenever 

player i declares to continue, the decision process surely continues. But it 

does not mean that declaring to stop causes to stop the process. Player i is 

endowed with a veto power. 

Secondly pV}(V{i} ) = 1 is 

••• , Q , ••• ,DP) a.e. and "Iso 

This brings him the maximum expected gain. 

equivalent to IT (rJ , ... ,-/>, ••• , if ) = IT(lf, 

to rr ( d
1 

, ... ,0, ... , d p) = rr (al , ... ,1, ... , d p) 

with prob. 1. For player i, declaring to stop or to continue does not affect 

the resulting process. He is ranked as an outsider of the game, and his 

expected gain EXi is the least one. 

Now we shall make a comparison of gains between players under a fixed 

monotone rule in Cor. 3.:3 and also between two different monotone rules in 

Cor.3.4. The next theorem is immediately proved from (3.7). 

Theorem 3.2. Let VIT = (v~, .•• , Vh) and Vff (Vff' ... 'vff ) be the 

expected gains correspond ing to IT and IT respectively. For player i and j , 

let us assume that p{i} and pij} are defined by (3.8). If xi and Xj are 
IT IT 

identically distributed, we have 

(3.10) 

if and only if 

(3.11) p~i} (V~i}) { ~ J 4j
} (Vrl

j
}) 

Corollary 3.3. Under a fixed IT, if Xi and xi are identically 

distributed and if 

(3.12) 
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then > 

Corollary 3.4. If, for player i, 

(3.13) IT(D1 , ... ,n, ... ,if):> IT(lr-, ... ,n , ... ,rY) 

and 

IT(Ll, ... ,<p, ... ,rY) C IT (If, ... ,<p , ... ,If) 

for every DkEtl3(X) , k f- i, or 

(3.14) {d(V{i}) < !P (V{i}) 
PIT PIT 

for every Vii} ( u1 , ... ,ui - 1 , ui +l , ... , uP) such that EXk < k 
u < 

sup {y ;p( xk >y) > o}, k f- i , then v1,;::, V~ holds. 

Example 3.1. Consider a maj ori ty rule IT[r] = (p ,1' ) of players, where 

l' (l ~ l' ~ p) is a majority level. Let Xi, i =1, ..• , p, be independent and 

identically distributed with X • If EX < sup {y ; p ( X> y) > O}, then the 

equilibrium expected gains for each rule are 

(3.15) > v 
IT[p-l] 

> > 

In fact, since the rule IT [1'] is symmetric, we can set the players' gains 

being equal: 

Hence 

where 

i 
VIT[r] i=I,2, ... ,p. 

p{-£} (VU}) = P (V) 
IT[r] IT[y. ] 

1 - n(r ,v), 

\' p-l (p-l) ( - k- p-k-l 
l. k~ -1 k I-v) V 

and v=P(X < V). Since n (1' , V) is increasing in V and n(r, V) < 

n (1'+1, v), we can see PIT[r](V) is decreasing in V and PIT[r](v»PIT [r+l](V) 

for each V. Similarly as Cor.3.4, it implies (3.15). 

Figure 4.1 in [5] shows each expected gain of (3.15) for p = 5 players. 

For l' =1, ... , p-l, IT[r] has an equilibrium strategy and is an 

equilibrium expected gain from Cor.3.<~. But for l' = P , each player has a 

veto power and so VIT[p] = sup{ y;P(X>y) > O} Though its stopping time is 

such that p( tIT[p too) = 1, the associated expected gain is shown to an 

equilibrium one directly from (1.12), (1.13) and (3.4). 

Example 3.2. Let components of random vectors be independent and 

identically distributed with a common uniform distribution U(0,1). Table 3.1 

shows a numerical example with p = 3 for non-trivial monotone rules. In the 

first four rules p( t (~d )< 00) = 1, but this does not hold in other cases. 
1T 
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From (3.5), there exist players who attain the maximum expected gain "unity" 

in the last four rules. Each expected gain is the 1 imi ting value of the 

finite horizon case. Except for the 5-th, 6-th and 7-th rule, the value is an 

equilibrium one by Cor.3.2. 

Table 3.1 Monotone rules with p 3. 

Monotone rule 

rr(x I 2 3 x l +x
2

+x3 xl+x2 x l +x2x 3 I 2 2 3 3 I 
,x ,x ) xx+xx+xx 

Comments ma.iori ty pI. 3 is asymmetric majority 
for the rule rule for an case rule for 

(P.;r' )=( 3,1) outsider (p,r)=(3,2) 

(Equi- vI 0.5437 ([5-1 )/2 12/2 /2/2 

librium) 
~0.6180 ~O. 7071 

expected 2 0.5437 ({5-l)/2 2-12 [2/2 V 

gain V 
i ~0.5858 

v 3 0.5437 0.5 2-[2 /2/2 

1 1 2 1 3 1 2 123 x x x +x x xx xxx 

pI.1 is plol has plo3 is unanimity 
a dictator a veto an (p,r )=( 3, 3) 

power outsider 

1 1 1 1 

0.5 (J5-1)/2 1 1 

0.5 ([5-1)/2 0.5 1 

Acknowledgment 

The authors wish to express their thanks to the referees for helpful 

comments and suggestions. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Multi- Variate Stopping (MolWtone) 349 

References 

[1] Chow, Y. :3., Robbins, H. and Siegmund, D. Great Expectations : The. 

Theory of Optimal Stopping. H01Jghton Mifflin Co., Boston, 1971. 

[2] Fishburn, P. C. The Theory of Representative Majority Decision. 

Eaonometriaa, Vol.39 (1971), 273-284 .. 

[3] Gilbert, J. and Mosteller, F. : Recognizing the Maximum of a Sequence. J. 

Amer. Stat:. Assoa., Vol.61 (1966), 3~)-73. 

[4] Kadane, J. B. : Reversibility of a Multilateral Sequential Game : Proof 

of a Conjecture of Sakaguchi. J. Cper. Res. Soc. Japan, Vol.21 (197:3), 

509-516. 

[6] 

Kurano, M., Yasuda, M. and Nakagami, J. 

with a Majority Rule. J. Oper. Res. Soc. 

Nash, J. Non-Cooperative Games. 

286-295. 

: Multi-Variate Stopping Proplem 

Japan, VOl.23 (1980), 205-223. 

Annals of Math ., Vol. 54 (1951), 

[7] Presman, E. L. and Sonin, I. M. : Equilibrium Points in a Game Related to 

the Best Choice Problem. Theory Prob. Appl., VOl.20 (1975),770-781. 

[8] Sakaguchi, M. A Bilateral Sequential Game for Sums of Bivariate Random 

Variables. J. Oper. Res. Soa. Japan, Vo1.21 (1978), 486-508. 

[9] Sakaguchi, M. : Non-Zero-Sum Games Related to the Secretary Problem. J. 

Oper. Res. Soc. Japan, Vol.23 (1980), 287-293. 

Masami YASUDA 
Statistics Laboratory 
College of General Education 
Chiba University 
Yayoi-cho, Chiba, 260, Japan 

Junichi NAKAGAMI 
Department of Mathematics 
Faculty of Science 
Chiba Unversity 
Yayoi-cho, Chiba, 260, Japan 

Masami KURANO 
Department of Mathematics 
Faculty of Education 
Chiba Unversity 
Yayoi-cho, Chiba, 260, Japan 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




