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Abstract In a branch-and-bound algorithm, a partial problem Pi is terminated if the lower bound of the optimal 

value of Pj is greater (in case all optimal solutions are sought) or not smaller (in case a single optimal solution is 

sought) than the least upper bound on the optimal value of the original minimization problem Po currently available. 

Although it seems obvious that tighter lower bounding function and upper bounding function always improve the 

efficiency of a branch-and-bound algorithm, counterexamples can be easily constructed. In this paper, therefore, 

it is extensively studied when such improvement is guaranteed, for typical search strategies such as heuristic search, 

best-bound search and depth-first s(,arch. The model of branch-and-bound algorithms used for investigation is 

quite general in the sense that it allows the dominance test as well as the lower bound test mentioned above. The 

efficiency is measured by the number of partial problems decomposed in the execution of the algorithm. 

1. Introduction 

A branch-and-bound algorithm to solve a minimization problem Po is gener­

ally defined by (i) a branching structure jW describing how Po is decomposed 

into partial problems of smaller and smaller sizes, (ii) lower bound test based 

on an upper bounding function u and a lower bounding function g (defined on the 

set of partial problems.9') that terminates those partial problems whose lower 

bounds are greater (in case all optimal solutions of Po are sought) or not 

smaller (in case a single optimal solution of Po is sought) than the least 

upper bound of the optimal value of Po known by then, (iii) dominance test 

based on a dominance relation D (a binary relation defined on~) that termi­

nates a partial problem P. if another partial problem P. generated by then is 
~ ] 

known to have a better solution, and (iv) a search function s specifying the 
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Branch-and-Bound Algorithms 293 

order of testing the generated partial problems. Four known types of search 

functions are treated in this paper; heuristic search function, best-bound 

search function, depth-first search function and breadth-first search function. 

Our view is therefore that, for a given branching structure.5lJ, a branch-and­

bound algorithm is essentially a lower bounding function g, an upper bounding 

function u, a dominance relation D and a search function s. 

Although branch-and-bound is a wel1known principle for solving combina­

torial optimization problems, only limited amount of research has been directed 

to clarify its general properties. Motivated by the pioneering work such as 

[8, 13, 18, 19], the author has investigated in earlier papers how the com­

putational efficiency of a branch-and-bound algorithm (measured by the number 

of decomposed partial problems) depends on the accuracy of a search function 

s [9] and the strength of a dominance relation D [11]. Contrary to our in­

tuitive understanding, it turned out that improvement in efficiency is theo­

retically guaranteed when a search function is improved or dominance test is 

strengthened only for certain restricted classes of branch-and-bound algo­

rithms. Similar properties were also examined in [10] for approximate branch­

and-bound algorithms which incorporate allowance functions specifying allowable 

deviation from the exact optimal value. 

In this paper, we discuss how the efficiency depends on the tightness of 

an upper bounding function u and a lower bounding ftmction g. The first result 

shown in Sections 3-4 is that tightening u and/or g does not always result in 

an improvement of efficiency. We see that this pathological phenomenon comes 

from the conflict between lower bound test and dominance test, which becomes 

possible under certain search functions. It is then examined what is neces­

sary to guarantee an improvement in computational efficiency when u and/or g 

are tightened, for each case of the above four search functions. It turns out 

that the consistency assumption of D with respect to g plays a crucial role. 

Under this assumption we show that tightening g always results in improvement 

for most search functions, in Sections 3 and 4, and that tightening u always 

results in improvement for all search functions mentioned above, in Section 5. 

Without assuming the consistency, an improvement in efficiency is not guaran­

teed except for a few special cases. These special cases are also discussed 

in Sections 3--5. As will be noted later, some special cases of our results 

have been known in the literature such as [5, 8, 13, 15, 18]. 

2. Branch-and-Bound Algorithm 

A formal deseription of a branch-and-bound algorithm A applied to a rnini-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



294 T. Ibaraki 

mization problem Po is given in this section, after introducing eight con­

stituents of it. The justification may be found elsewhere [1, 2, 6, 8, 9, 13, 

16, 1"7, 18, 20] and is not given here. Two types of branch-and-bound algo­

rithms are considered throughout this paper: One is to obtain all optimal 

solutions of Po and the other is to obtain a single optimal solution of PO. 

In most cases, however, proofs are given only to the case of all optimal solu­

tions. The case of a single optimal solution can usually be treated similarly. 

Complete proofs may be found in [12]. 

A finite rooted tree .59 = (9, g') with a set of nodes g and a set of 

(represented by the root Po of.59) is decomposed 

all possible decompositions are executed; 

arcs g' represents how Po 
into partial problems when 

(p ., P,) E g' denotes that partial problem P
j 

is generated from Pi by a de­

Y denotes the set of leaf nodes in .59. Termino logies such as 
~ ] 

composition. 

son, ancestor, descendant, depth of P. (denoted d(P.» are def ined in a cus-
~ ~ 

tomary manner (e.g., [9]). 

Let f: g + E U {oo} denote the optimal values of nodes (partial problems), 

where E is the set of real numbers. f(P.) = 00 if P. is infeasible. f satisfies 
~ ~ 

(2.1) P j) E g' } 

and hence 

(2.2) f(P.) < f(P.) for (P., P.) Eg' 
~ ] ~ ] 

o(p.) denotes the set of optimal solutions of P. E g. It satisfies 
~ ~ 

O(P.) = {o(P.) I f(P.) = f(P.), (P., P.) E g'}. 
~ ] ] ~ ~ ] 

(.59, 0, f) (0 is sometimes omitted) is called the branching structure of PO. 

In executing a branch-and-bound algorithm, f(P.) is usually not known but 
~ 

a lower bounding function g(P.) is evaluated for each generated p .• 
~ ~ 

g: g + E U {oo} satisfies 

(a) g(p.) ~ f(P.) 
~ ~ 

(b) g(p') f(P .) 
~ ~ 

(c) g(p') ~ g(p') 
~ ] 

for PiE g , 

for p. EY, 
~ 

for (P., P.) E g' 
~ ] 

~ denotes the set of nodes p. for which g(P') = f(P.) is known (and o(P.) is 
~ ~ ~ ~ 

obtained) or O(P
i

) no(pO) = ~ is concluded, in the computation process of g. 

It satisfies 

(A) g(p .) f(P .) for p. E~ 
~ ~ ~ 

(B) ~::Jy 

(C) P. E ~ implies p. E ~ for (p ., P.) E g' • 
~ ] ~ ] 

Note that condition (A) is assumed for simplicity even if p. E ~ is concluded 
~ 
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due to a(pi)na(p
O

) = cp, since in this case the value g(p) is not relevant to 

the computation process. 

At this point, let us derive .9J and g of a typical branch-and-bound algo­

rithm for the (mixed) integer programming problem, as an example. Assume that 

the algorithm uses the decomposition scheme proposed by Dakin [3] and the LP 

(linear programming) lower bound (e.g., [6] for general description). Then a 

partial problem Pi (including the case of Pi = PO) is decomposed into two 

partial problems by adding constraints 

(2.3) < K and x > K + 1 k -

respectively to the original constraint of Pi' where x
k 

is an integer variable 

selected for decomposition (called a branching variable) and K is a nonnegative 

integer such that x
k 

assumes a value between K and K + 1 in the optimal solu­

tion of the LP problem corresponding to P, (i.e., obtained from P, by removing 
~ ~ 

the integrality condition on variables). Thus all partial problems are again 

integer programming problems. We see now that the resulting branching struc­

ture is a finite binary tree (finite under the assumption that all integer 

variables are bounded both from below and above). f(P.) is the optimal value 
~ 

of integer programming problem p" a(p ,) is the set of optimal solutions of 
~ ~ 

P;' and g(p,) is the optimal value of the LP problem corresponding to P,. We 
~ ~ ~ 

say that Pi E Y if all integer variables are fixed by additional constraints 

of type (2. 3), and P, E ~ if the LP optimal solution happens to be an integer 
~ 

solution or the LP problem turns out to be infeasible. Obviously these.9J, f, 

a, ~ , g, Y satisfy the above conditions. 

In many practical cases, a good feasible solution of each partial problem 

P, is obtained by simple computation. This gives rise to an upper bounding 
~ 

function u: g' ... E U {oo} satisfying 

(I) u(P.) ~ f(P.) for P, Eg 
.l ~ ~ 

(II) u(p,) f(P,)forp,E~ • 
. l ~ ~ 

u(p,) = 00 denotes that no feasible solution is obtained for P, or that the 
~ ~ 

computation of u(p,) is not attempted. u = 00 stands for that u(p,) is never 
~ ~ 

computed, and u = u(P
O

) stands for that u is computed only for the original 

problem PO. Note however that condition (11) is assumed even in these cases. 

A dominance relation D is also used to test partial problems. D is a 

partial order,ing on g satisfying the following conditions. 

When all optimal solutions of Po are sought: 
(i) P ,DP, 1\ p, 1 p, implies f(P ,) < f(P ,) (including 00 < 00). 

a ~ ] ~ ] ~ ] 

(ii) P ,DP, 1\ P, 1 p, implies that, for each descendant P-c of Pj' there 
a ~ ] ~ ] ] 
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exists a descendant P-:- of p. satisfying P-:- DP7. 
l. 2 2 ] 

When a single optima'j solution of Po is sought: 

(i) P.DP. A P; # p. implies f(P.) ~ f(P.) and that p. is not an ancestor 
s 2 ] 4 ] 2 ] ] 

of P .• 
2 

(ii) P.DP. A p. # 
s 2 ] .1 

p. implies, for each descendant P7 of P., there exists 
] ] ] 

a descendant P-;- of P. 
2 l. 

satisfying P-:- DP7,. 
2 ] 

(iii) There exists 
s 

no sequence of nodes P. , p. , ••• , P. (k ~ 2 and P. , 
21 22 2k +1 21 

P. , ... ,P. are distinct) generated during computation, such that P. is a proper 
22 2k 2S 

descendant of P. or P. DP. Af(P. )=f(P. ) for s=l ,2, ••• ,k, and P. =P .. 
2s+1 l.s 2s+1 2S 2s+1 2k +1 21 

(This condition is not used in this paper but is necessary to guarantee that a 

single optimal solution is obtained.) 

A dominance relation D is called to be consistent with g if it satisfies 

the following additonal condition: 

P .DP ,AP .#P. implies q(p .)<g(P.) in case all optimal solutions are sought, 
2 ] 2 ] . 2 ] 

and g(P.)<g(P.) in case a single optimal solution is sought. 
2 - ] 

D = I (identity relation) indicates that the test based on D is not ef-

fective. 

Examples of dominance relations in various combinatorial optimization 

problems may be found in [11] together with relevant references. The con­

sistency assumption is satisfied in most of these examples. However, it would 

be still nice to prove properties without the consistency assumption, if pos­

sible, since D and g are usually designed independently without regard to the 

consistency between them. 

The order to test the generated partial problems is specified by a search 

function s:- ,f -+ g such that s(~ Eff for --if EJ, where J denotes the family 

of independent subsets of~. The following four search functions are typical. 

s is the heuristic search function based on a heuristic function h: ~ 

+ E, denoted s=sh' if 

h (s (Sf"'» = min {h (p.) I P. E ~} for ~ E J . 
2 2 

It is usually assumed that h(P.) # h(P.) for P. # P. by using an appropriate 
l. ] 2 ] 

tie breaking rule if necessary. In particular, s = s is called the best-bound 
g -

search function. The depth-first search function based on h, denoted s = sh' 

is defined by 

h (:; h (Sf"'» = min 

sh W) E N (Sf"') 

for Sf'" E J, where 

{h (p.) I p. E N (~)} 
2 2 

N (Sf"') = {P. E ,if I d(P.) 
2 2 

max {d(P.) 
] 

p, E~}} 
] 
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Finally, the breadth-first search function based on h, denoted s 

fined by 

min {h(P.) 
~ 

Sh (sI) E N (.521') 

N(s/) = {Po E sfl d(P.) 
~ ~ 

p. E' N(.d)} 
~ 

mi n {d (p .) I p. E d }} 
] ] 

It is known [9] that a heuristic search function sh is most general among 

the above search functions in the sense that the other three can be viewed as 

sh with special h. Thus properties proved for heuristic search are valid for 

all the above search functions. 

A heuristic function h is called nonmisleading if h(P .)<h(P.) implies 
~ ] 

f(P.)<f(P.) for P., p. Eg. 
~ -] ~] 

A nonmisleading h is considered as a theoretical 

goal when we design a heuristic function [4, 9]. Even if h is not nonmis-

leading, however, it is shown in [9] that the behavior of a branch-and-bound 

algorithm becomes close to that with a nonmisleading one if h is almost non­

misleading. Thus the analysis of the case of a nonmisleading h may help 

understand the behavior of branch-and-bound algorithms that are very nicely 

designed. 

Based on these constituents, a formal description of a branch-and-bound 

algorithm is now given both for the case of all optimal solutions and for the 

case of a single optimal solution. 

Branch-and-bound algorithm A =(LS9, 0, f), (~, g, u), D, s): all optimal 
a 

solutions 

In the following, ~c g denotes the set of nodes currently generated. 

A node in ~ is active if it is yet neither tested nor decomposed. d denotes 

the set of current active nodes. (7 stores the set of best feasible solutions 

currently available. z is called the incumbent value and stores the current 

best upper bound of f(P
O
)' Generally z:::'f«(7) (=f(x) for xE(7) holds (z<f«(7) 

is possible since z is set in Step A2 ev'~n if optimal solutions are not known), 

but z=f«(7) is satisfied if u=oo or if the computation has terminated. It is 

assumed that o(P.) is obtained as a by-product of testing P. if P .E~. 
~ ~ ~ 

A3. 

Al(Initialize): d+-{PO}'~+-{PO}' z+oo and (7+-<p. 

A2(Search): Ifd=<p, go to A9; else p.+-s(si), z+min[z, u(P.)] and go to 
~ ~ 

A3(Test by ~): If P.E~, go to A7; else go to A4. 
~ 

A4(Lower bound test): If g(p»z, go to A8; else go to AS. 

A5(Dominance test): If there exists Pk(lpi)E~satisfying PkDP
i

, go to 

A8; else go to A6. 

A6 (Decompose) : Generate sons P. , P. , ... , 
~1 ~2 

After letting sf+-sf U{P. , P. , ... ,P. } - {p,} 
~1 ~2 ~k ~ 

P. of p.. Return to A2 
~k ~ 

and ~ +-~ U{P. , p. , ••• ,P. }. 
~1 ~2 ~k 
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A7(Improve): Go to A8 after letting 

{

O(P') if f(P .)<J.'(C) 
~ ~ 

C-+- C u o(p.) if f(1' .)=f(C) 
~ ~ 

C otherwise . 

A8(Terminate P.): 
~ 

A9(Halt): Halt. 

Branch-and-bound 
optimal solution. 

.Si/ -+-.Si/-{p .} and return to A2. 
~ 

C=o(P
O

) and z=f(P
O

) hold. 0 

algorithm A =«.93", f), (,§" g, u), D, s): 
s 

a single 

In this case, Cstores at most one solution x, and z=f(x) always holds. 

It is assumed that a feasible solution x of P. satisfying f(x)=u(P.) is ob-
~ ~ 

tained in the computation of u(P.) if u(p.)<oo (thus an optimal solution of p. 
~ ~ ~ 

is obtained if P.E'§'). 
~ 

A1, A5, A6, A8 are the same as those in A. A7 may be eliminated since 
a 

it is never executed. 

A2(Search): If.Slf=cjJ, go to A9; else P.-+-s(.5/), z-+-min[z, u(P.)], C-+-C 
~ ~ 

if u(P.»z else{x}, where x is a feasible solution of p. with f(x)=u(P.). 
~ - ~.1 

Go to A3. 

A3 (Test by '§' ) : If P .E'§', go to AB; else go to A4. 
~ 

A4(Lower bound test): If g(P.»z, go to A8; else go to AS. 
~ -

A9 (Halt): Halt. x stored in C and z satisfy f(x)=z=f(P
O
)' 0 

The finiteness and correctness of the above two algorithms (or their 

special cases) may be found in references such as [1, 2, 6, 8, 13, 14, 16, 17, 

18, 20]. 

Throughout this paper, the following parameters are used to measure the 

computational efficiency of a branch-and-bound algorithm A. 

T(A): The number of nodes decomposed in A6 before the termination in A9 

is reached. 

B(A): The number of nodes decomposed in A6 prior to the last modification 

of C (which has occurred in A7 if all optimal solutions are sought, or in A2 

if a single optimal solution is sought). 

T(A) is relevant to the total computation time of A, and B(A) is relevant 

to the time when optimal solutions of Po are stored in C. B(A) is an im­

portant measure for the quality of solutions stored in C when the computation 

may be cut off before the normal termination in A9, due to the insufficiency 

of the available computer time. It is of course desirable to make T(A) and 

B(A) small. 

In the subsequent discussion, subscripts a and s are sometimes added, 

e.g., Aa' As' Ta(A), Bs(A) and so on, to distinguish the cases of all optimal 

solutions and a single optimal solution respectively. No subscript is added, 

however, if it is not necessary to distinguish them. 
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3. Power of Lower Bounding Functions under Heuristic Search 

Consider two branch~and-bound algorithms A(gl) = «$,0, f), (~1' g"l' 

u), D, sh) and A(g2) = «$,0, f), (~2' g2' u), D, Sh)' A(gl) and A(g2) 

differ only in ~ and g, and both algorithms use the same heuristic search 

function Sh which is not dependent on (~?, g). We say that (~1' gl) is 

tighter than (~2' g2) and denote by gl .:: g2' if ~1 ::J ~2 and gl(P) ~ g2(P) 

for p. E ,t? For example, let g2 (p .) denote the LP optimal value for an 
~ ~ 

integer programming problem P., as mentioned in Section 2. It is known that 
~ 

g2 can be improved to gl satisfying gl ~ g2 by employing the concept of penalty 

(e.g., [21]) or by resorting to the group theoretic approach []J in case P. 
~ 

is an all-integer problem. It has been I:onjectured that gl ? g2 implies 

T(gl) ~ T(g2) and B(gl) ~ B(g2)' where T(gk) and B(gk) are abbreviations of 

T(A(gk» and B(A(gk» respectively. But this is not generally true as we 

shall see below. 

Theorem 3.1. Let A(gl) = «$,0, "f), (~1' gl' u), D, sh) and A(g2) = 
«$,0, f), (~2' g2' u), D, sh) be branch-and-bound algorithms using heuris­

tic search. Then gl ~ g2 does not necessarily imply T(gl) S T(g2) or B(gl) ~ 

B(g2)' This is true even if sh is further restricted to be (i) a depth-first 

search function, or (ii) a breadth-first search function. Furthermore, (iii) 

gl ~ g2 does not necessarily imply T(gl) S T(g2) even if h of sh is nonmis­

leading. 

Proof. See the example given in Fig. 1. Fig. Ha) gives ($, f), (~1' 

gl)' (~2' g2)' hand D. Nodes in ~1 = ~ 2 (in this case) are indicated by 

double circles, and dominance relation P .DP. is denoted by P ........ P .. 
. 1 ] ~ ] 

assumed in this example (note however that u(P.) = f(P.) are assumed 
~ ~ 

u = 00 is 

for P .E~ 
~ 

by definition). The computation process,~s of A (g 1) and A (g2) are illustrated 

in Fig. l(b) and Fig. l(c) respectively. The node numbers denote the order in 

which nodes are tested. The z-value attached to each node is the incumbent 

value after the update in A2. It is easy to see that T(gl) = B(gl) = 5 > 'r(g2) 

= B(g2) = 4 in spite of gl ~ g2' 

(i) is true since sh used in Fig. 1 is a depth-first search function. 

(ii) is proved by the example in Fig. 2; this has T(gl) = B(gl) = 4 > T(g2) 

B(g2) = 3 in spite of gl ? g2' (iii) is proved by considering the subtree of 

Fig. l(a) surrounded by broken curve; h of this portion is nonmisleading and 

o 

The next theorem treats the final case, i.e., the B-count under a nonmis­

leading sh' 
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f=l .1 
91 =1. 1 

92=0.8 
h=1.3 

T. lbaraki 

(a) (~, f), 9 and h (u=oo is assumed) 

f=9=1.5 
h=2.3 

z=0.5 z=O.5 

z=l 

(b) Computation process of A(91) (c) Computation process of A(9 2) 

Fig. 1 Counterexample to the conjecture gl2: g
Z 

c:) T(gl)~T(gZ)I\B(gl)~B(gZ) under 

heuristic search used in the proof of Theorem 3.1. (Nodes in ~ are 
denoted by double circles. Dominance relation P.DP. is indicated by 

~ ] 
P. --~ p .• 
~ ] 

Some relations derivable from others by conditions (i)~(iii) 

of D are not indicated. 
of nodes tested in A(gl) 

Node numbers in (b) and (c) denote the order 
and A(gZ) respectively.) 
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f=1.5 
91=1.1 
92=0.8 
h=l.l 
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f=1.5 f=1.6 f=1.7 

T(91)=B(91)=4 > T(g2)=B(92)=3 

301 

f=0.5 

Fig. 2 Counterexample to the conjecture gl~g2 q T(gl)::;T(g2)I\B(gl)::;B(g2) under 

breadth-first search used in the proof of Theorem 3.1. (Only relevant 
values of u, f, g and h are indicated.) 

Theorem 3.2. Let A(gl) and A(g2) be defined as in Theorem 3.1, and assume 

in addition that h is nonmisleading. Then Bs (gl) = Bs (g2) holds, i.e., the 

Bs-count is independent of (W, g), and 9"1 ~ g2 implies Ba (gl)::; Ba (g2) (proper 

inequality is possible only if W 1 ? ~ 2)' 

Proof. Let 5/ = p. p. .., p. be the sequence of nodes selected in A2 
J 1 J 2 J t 

of A(gl) (and A(g2» with A3 (test by~) replaced by: If P. E Y go to A7; 
~ 

else go to A4, and with A4 (lower bound test) and A5 (dominance test) sup-

pressed. (Thus 5/ is the sequence of all nodes in g arranged in the order 

selected by search function sh' It is independent of (~, g) and D.) The 

sequences of nodes actually selected in i\(g 1) and A (g2 Y are subsequences of 

5/ (Proposition 4.3 of [9]), and when h is nonmisleading, 

::; ... ::; 

holds (Lemma 5.1 of [9]). 

We give a proof only for the case of all optimal solutions. Let 

the last node which is selected in A2 of A(gl) and satisfies P. E~l' 
J a 

f(P
O

) • 

g(P. ) 
Jb 

Then P. (1::; b::; a) is terminated neither by lower bound test since 
.lb 

::; f(P
J
. ) ::; f(P. ) = f(P

O
) ::; 21 (Pi)' nor by dominance test since P. 

b.la ~b .lb 
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is not dominated by any other nodes because of f(P. ) = f(P
O

) and condition 
Jb 

(i)a of D. Here zk(P) denotes the incumbent value right after P is selected 

and Z is updated in A2 of A (gk) • This property can be extended to A (g2) . 

Although some of P. (1 ~ b ~ a) may be terminated by ~2 (in A(g2))' such P. 
J b Jb 

is also terminated by ~1 (in A(gl») since ~1 ::J ~2' Consequently P. 
Jb 

(1 ~ b ~ a) is terminated in A(g2) only if it is terminated in A(gl)' This 

proves Ba (gl) ~ Ba (g2)' The result concerning proper inequality is also 

obvious. 0 

As we have seen in the above theorems, T and B are not monotonically 

related to (~, g) in most cases. In order to guarantee the monotomic rela­

tion, the consistency assumption on D with respect to g (defined in Section 2) 

seems to be crucial. 

Theorem 3.3. Let A(gl) and A(g2) be as defined in Theorem 3.1, where 

A(gl) and A(g2) use a heuristic search function sh' In addition, assume that 

D is consistent with g. Then gl .2 g2 implies T(gl) ~ T(g2) and B(gl) ~ B(g2)' 

Proof. We consider the case of all optimal solutions only. Let ~1 = 
P. p. P. and s?2 = P. P .... P. be the sequences of nodes selected 
~1 ~2 ~s J 1 J2 J t 

in A(gl) and A(g2) respectively. These are subsequences of Y introduced in 

the proof of Theorem 3.2. We first show by induction that ~1 is a subsequence 

of s?2. (This immediately implies T(g 1) ~ T(g2)' and is a key step to prove 

B(gl) ~ B(g2)') 

For that, consider a slightly 

-1 Y a 
p. 
~1 

there is the unique 

,;;2 = 
J p. 

such that P. 
~ 

a 

J 1 

p. p. , 
~2 ~ 

a 

initial portion 

p. 
J 2 

stronger induction hypothesis that for any 

~ a ~ s, 

-2 
of Y , 

-2 
sequence of Y

b
, where ~k(P) is the set of active nodes when P is selected in 

A2 of A(gk) (k = 1, 2), and zk(P) was defined in the proof of Theorem 3.2. 

This also implies /1 (P. ) c /2 (P. ) since /..1 (P. ) = {P. , P. , ••• , P. } 
~a J b .La.L1.L2 ~a-1 

U ~ (P. ) and /2 (P. ) = {P. , P. , ••• , P. } U ~ (P. ). 
~a Jb J 1 J2 Jb - 1 Jb 

This induction hypothesis is trivially true for a = 1, since §~ satisfies 

the above conditions. In order to prove the general case, we first show that 
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P. 
~ 

a 
is terminated in A(g,) whenever p. is terminated in A(g2)' 

J1;> 
The following 

two cases are considered corresponding to how P. is terminated. 
J b (a) p. is terminated by ~ 2 or by lower bound test: 

J b 
If p. E ~ 2' then 

J b 
P. (=P. ) 
~a ~b 

E§", by ~, :::J ~2' If g2(P ) > z2(P,), then gl(Pi) 2: g2(P.,) > 
J b J b a 1b 

z2 (P. ) = 
Jb 

(by induction hypothesis). In either case p. 
~ 

a 
is terminated 

inA(gl)' 

(b) p. is terminated by dominance test: 
Jb 

Then some P. E /2 (P. ) satis-
Jp J b 

fies P. DP., where ~(p) denotes J;V'when P 
Jp J ll 

is selected in A(gk)' Assume 

P. ~v11(P. ) since otherwise P. is also terminated. 
Jp ~a ~a 

This means that a proper 

ancestor Pi of p. has been terminated in A(gl) (see 
q Jp 

Fig. 3). 

Fig. 3 Illustration of the set of nodes used in the proof of Theorem 3.3. 

If Pi has be,en terminated by lower bound test, or by ~" it follows that 
q z, (Pi 

a 
.$ z, (Pi) 

q 
.:0; g , (Pi ) 

q 
< g, (Pi ) 

a 

(since p. is selected after P. 
~ ~ 

a q 
50 g,(P.) (by condition (c) of g) 

Jp 

(since D is consistent with g). 

Hence P. is 
~ 

terminated in A(gl) by lower bound test. Thus as sume that F'. 
~ 

q a 
has been terminated in A(g,) by dominance test, i.e. , p. DP. 

~ ~ 
u q 

for some P. 
1 

U 

E 

Then P. 
~ 

u 
E v1Z(Pi ) follows since 

q 
J;V;(P

i 
) :::J ~(Pi ) by induction hypothesis. 

q q 
Thus p. 

~ q 
must have been terminated in A(g2) by dominance test, a contradiction. 

This proves that Pi is terminated in A(g,). 
a 

Now the induction can proceed one step unless 

proof is done): 

-, g 
a 

~1 (in this case the 
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-1 
Ya+1 P. P. p. P. 

~ 1 ~Z ~ ~ 
a+1 a 

-Z 
'?b+w p. P. P. P. • J 1 JZ J b J b+w 

where P. = p. This 9 Z 
exists since .J&?"Z (P. ) contains P . (= P. ) 

~a+1 J b+w ' b+w Jb J b+w ~a+1 

by .J&?"Z (P. ) ::J ~ (P. ) (induction hypothesis) and P . is eventually tested 
Jb ~a Jb +w 

in A(gZ). Obviously s?~+1 is a subsequence of s7;+w. We then prove ~(P. ) 
~a+1 

c st; (p . ). Note that ~ (Pi) c .J&?"Z (p . ) follows from .J&?"1 (Pi) C 

Jb+w a+1 Jb + 1 a 

.J&?"z(P. ) (induction 
Jb 

hypothesis) and the fact that Pi is decomposed in A(gl) 
a 

only if P. is decomposed i.n A(gZ). 
Jb 

By definition of heuristic search. 

h(P. ) 
:La+l 

min {h (p) I P E .J&?"1 (p . )} 
~a+l 

and all nodes p. • 
Jb +v 

s v < w. satisfy 

h (p . ) < h (p . ) (=h (p . » . 
J b +v J b+w ~a+1 

Le .• P. 9!~(P. ) for v 1. Z ••..• w -1. This proves ~(P. ) c 
J b+v ~a+1 ~a+1 

~Z (p . ). To prove zl (p.
l
. ) = Zz (p . ). note that a proper ancestor p. 

J b+w a+1 J b+w ~e 
(1 ~ e ~ a) of each P. (1 ~ v < w) (we assume w> 1 since otherwise the proof 

J b +v 
is trivial) has been terminated in A(g 1) by :? or by lower bound test. (If 

Pi is terminated in A(gl) by dominance test. it is also terminated in A(gZ) 
e 

by dominance test since ,AI;(p
i 

)c ~(Pi ) follows from the induction b.y-
e e 

pothesis.) Thus 

u (p . ) 2: g 1 (p . 
J b +v J b +v 

and gl(P; ) 2: zl(P; ) 2: zl(P; ) if P. 
~e ~e ~e+1 ~e 

lower bound test. This shows u(P. ) ~ 
Jb +v 

is tested in been improved even if P. 
Jb +v 

On the other hand zl(P
i 

) 2: zZ(P. ) 
a+1 Jb +w 

and hence zl(P, ) = zZ(P. ). 

is terminated in A (g 1) by :? or by 

z 1 (p . ). i. e •• 
~a+1 

zl would not have 

A (g 1)' implying zl(P. ) ~ zZ(P. ). 
~a+1 Jb +w 

since <f1 is a subsequence of <f2 
.J a+1 .J b+w' 

~ +1 Jb +w a -1 ~ 
Consequently Y is a subsequence of Y . and T

a
(gl) ~ is an im-

mediate consequence of it. To treat the B-count. let 
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gl {P. E g I p. E ~1' f(P .) f(P
O

) , and no proper ancestor of 
opt ~ ~ ~ 

Pi belongs to ~1}. 

2 
g opt is similarly defined. Obviously Ba (gk) is equal to the number of nodes 

decomposed in A (g k) before all nodes in g ~Pt are tested. By ~1 :::J ~2' it 

follows that, for any p. E g2 there exists P. E /UJl such that P. is an ] opt ' ~ .7 opt ~ 

ancestor (including the case of P. = P.) of P .. 
~ J ] 

-2 
a subsequence of ~ lead to Ba (gl) 5 Ba (g2)' o 

-1 
This property and that.? is 

A property similar to Theorem 3.3 has been known as Theorem 2 of [13] 

(see ['4] for the complete proof), though there are some nont:rivial deffer­

ences such as [13] treats only depth-first and breadth-first search functions, 

definitions of u and D are slightly different, and [13] does not discuss the 

B-count. 

4. Power of Lower BQunding Functions under Best-Bound Search 

Along the line discussed in Section 3, we treat in this section two 

branch-and-bound algorithms A (gl) = (Cr:B, 0, f), (~, g l' u), D, s ) and 
gl 

A(g2) = «~, 0, f), (~2' g2' u), D, s ) using best-bound search functions 
g2 

sand s that are usually different. Classes of branch-and-bound algo-
gl g2 

rithms in which gl ~ g2 implies T(gl) ~ T(g2) and B(gl) 5 B(g2) are clarified. 

In addition, for some classes not satisfying this monotomic relation, weak 

statements such as T(g,) 5 T(g2)+E and B(gl) ~ B(g2)+E are proved for some 

small positive number E. 

The effect of g under best-bound search was first investigated in [8, 18] 

(see also [5]); special cases of Theorem 4.4 (i) - (iii) were therein proved. 

The phenomenon that gl .? g2 does not necessarily imply Ts (gl) ~ Ts (g2) (the 

first half of Theorem 4.4) was also observed in [13J. 

When best-bound search is concerned, it may not be reasonable to assume 

g(p.) ., g(P.) for all pairs P . ., P.. In case g(p') = g(p') holds for some 
~ ] ~ ] ~ ] 

p . ., P., some, tie breaking rule is used to determine the node selected fi.rst. 
~ ] 

A tie breaking rule which selects P. before P. if g(p') = g(P.)/\(:3 a proper 
~ ] ~ ] 

descendant P
k 

of P.) (PkDP.) is sometimes used in the following discussion. . ~ ] 

If s 
g 

uses such a tie breaking rule, it is said to be compatible with D. (As 

an example consider the case in which P.DP. occurs only if P. and p. are in 
~ ] ~ ] 

the same depth. Then a tie breaking rule putting a priority on nodes with 
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smaller depth results in an s compatible with D.) Usually, however, we will 
g 

not assume any particular tie breaking rule unless otherwise stated. 

Theorem 4.1. Let A(gl) = «~, 0, f), (?1' gl' u), D, s ) and A(g2) 
gl 

«JW, 0, f), (?2' g2' u), D, s ) be branch-and-bound algorithms using best­
g2 

bound search. Then gl ~ g2 does not necessarily implyT(gl) ~ T(g2) or 

B(gl) ~ B(g2)' 

f='.5 f='.2 

T(9,)=B(9,)=4 
T(92)=B(92)=3 

Fig. 4 Counterexample to the conjecture gl~g2 q T(gl)~T(g2)AB(gl)~B(g2) under 

best-bound search in the proof of Theorem 4.1. (u=oo is assumed.) 

Proof. The example of Fig. 4 has T(gl) 3, 

in spite of gl ~ g2' o 

Note that D used in Fig. 4 is not consistent with gl' Under the consist­

ency assumption, stronger statements can be made as shown in the rest of this 

section. The following lemma is useful to prove them. 

Lemma 4.2. Let A(g) = «~, 0, f), (?, g, u), D, s ) be a branch-and­
g 

bound algorithm using best-bound search, where D is consistent with g. 

Define 

(4.0 y = {P. E g 1 g(p.) .$ f(P
O
)} 

~ ~ 

(4.2) .9
D 

= {P. E g 1 no P .(';P.) E .9' satisfies P .DP.L 
~ ] ~ ] ~ 

Then Ta(g) = lyngD - wl· 
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Proof. It is known (e.g., lennna 6.1 of [11J and Lennna 3 of [8]) that: 

g(p. ) ~ g(P. ) holds if p. is selected after p. in A(g), and that z is set 
~1 ~2 ~2 ~1 

to f(P 0) before any Pi with g(p) > f(P 0) is selected. When all optimal solu-

tions are sought, therefore, p. is terminated by '§' or by lower bound test: if 
~ 

and only if Pi r/:. f - '§'. Next consider a node PiE Y - '§' and assume that 

there exists l' .(y,P.) satisfying P .DP., i.e., P. ~ g. Then g(P') < g(p.) 
] ~ J~ ~ D ] ~ 

since D is consistent with g. Thus P. E /(p.) if p. is eventually generated 
] ~ ] 

in A(g), implying that p. is terminated by dominance test. On the other hand, 
~ 

if p. is not generated in A(g), a proper ancestor P
k 

of p. must have been 
] ] 

terminated by dominance test, i.e., PtDP
k 

for some other Pt E /(P
k

) (note 

that P
k 

is not. terminated by '§' or by lower bound test since g(P
k

) ~ g(p
j

) < 

g(P
i

) ~ f(P
O

) implies P
k 

E Y- '§'). By condition (ii)a of D, there exists a 

descendant P of Po such that P DP. (see Fig. 5). If Pm is eventually gener-
m '"' m ] 

ated in A(g), it is generated before p. since g(p ) < g(P.) < g(P.). In 
~ m ] ~ 

addition, P DE'. holds by the transitivity of D (note that D is a partial order­
m ~ 

ing). Thus P is terminated by dominance test. On the other hand, if P is 
~ m 

not generated in A(g), we can repeat the above argument. However, this process 

can not be repeated indefinitely since ,~~ is finite; showing that P. is termi­
~ 

nated by dominance test. Consequently 

dominance test if and only if Pi 6; ,9
D

• 

a node P. E Y - '§' is terminated by 
~ 

Therefore we have Ta(g)=lyngD-~~I. 0 

Fig. 5 Relative positions of Pi' Pj' Pk ' Pt' Pm used in the 

proof of Theorem 4.2. 

Theorem 4.3. Let A(g1) and A(g2) be defined as in Theorem 4.1, where 

A(g1) and A(g2) use best-bound search. In addition, assume that D is con­

sistent with g1· Then g1 :0: g2 implies Ta (g1) ::; T
a

(g2) and B
a

(g1) ::; B
a

(g2) + 

L;rrl< n gD - W1 I, where 

(4.3) 5Y* = {Pi E g I g1(P
i

) g2(P
i

) f(P
O

)}· 
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(4.4) 

where ~ is defined by (If.1) for A (g) = A (gk)' k=l, 2. Note that the second 

relation is inequality because D may not be consistent with g2· Since g 1 2: g2 

implies <~ c ~ and ~1 :J ~2' Ta (gl) ~ Ta (g2) immediately follows. 

B (gl) < B (g2) + 137'-* n .9
D 

- ~11 : Let a - a 

(4.5) Jf"1 {p, E .9 gl(Pi)<f(PO)' g2(Pi )<f(P
O

)} 
1. 

, 
{p, gl(Pi )=f(PO)' g2(P

i
)<f(P

O
)}. (4.6) %1 E ,9 

1. 

Under best-bound search, nodes in ~ U Jij'are tested in A(g2) before nodes 

* in%. Furthermore, all nodes P, satisfiying P ,E ~2 1\ f(P') = f(P
O

) belong * ] ] ] 
to%. Thus, denoting the set of nodes decomposed in A(g2) by .9

2
, we have 

I (~ U ,~) n .92 1 ~ Ba (g2). 

, * 
Next note that nodes in ~ are tested in A(gl) before nodes in %1 J % , and 

nodes P j satisfying P j E ~1 1\ f(P j) = f(P 0) belong to 371' U %*. Thus, de­

noting the set of nodes decomposed in A (g 1) by .9
1

, we have 

, * 
Ba (g 1) ~ I ~ n .911 + I (371 u ,% ) n .911 

1 ~ n.91 1 + pr;' n 3J'1 + 1%'" n .91 I 

~ 1 ~ U~) n .92 1 + \.%* n .9D - ~1 I 

* * (by .92 ::::J .91 and by% n .91 =.% n9D - ~1 

derived from Lemma 4.2) 

o 

* The term 1% n .9
D 

- ~11 is necessary in the above theorem because a 

best-bound search function s (without a tie breaking rule) does not decide 
* g 

which nodes in% should be tested first. This term, however, seems to be 

very small in most cases encountered in practice. 

When a single optimal solution is sought, the situation is somewhat dif­

ferent. Theorems 4.4 and 4.5 below summarize the results for T and B respec­

tively. For proofs of these results, see [12]. 

Theorem 4.4. Let A(gl) and A(g2) be defined as in Theorem 4.1, where 

A(gl) and A(g2) use best-bound search. Furthermore assume that D is consistent 
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with g1' In general, g1 ~ g2 does not necessarily imply T
s

(g1) ~ T
s

(g2) even 

if D=I is assumed (as shown in Fig. 6). However, the following propertiE!s are 

true. 

f=1.0 f=1.3 

(a) (/j?>, f), 91 and 92 (u=oo is assumed) 

z=oo 

z=l.O z=l.O z=l.O z=l.O 

\(91)=Bs (91)=3 

(b) Computational process of 
A(91) (The tie breakin9 
rule selects node 2 prior 
to node 3 thou9h both 
have the same 9l-value.) 

z=oo 

z=1.0 z=1.0 

Ts (92)=Bs (Q2)=2 

z=oo 

(c) Computational process of 
A(92) (The tie breakin9 
rule selects node 3 prior 
to node 4 thou9h both 
have the same 92-value.) 

Fig. 6 Counterexample to the conjecture g12:g
2

,::::> Ts (g1 ).$Ts (g2)AB
s 

(g1 ).$Bs (g2) 

under best-bound search and D=I, used in the proof of Theorem 4.4. 
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(i) 

T.lbaraki 

If s is compatible with D, then 
gl 

(ii) If s. is compatible with D and g 1 (Pi) > g2 (Pi) for PiE !?. ~1' 
gl 

If gl (p.) > gl (P.) for every (P., P.) E iif with P.E!? - ~1' and 
] ~ . ~ ] ~ 

if P
k 

E ~1 has higher priority than P£ ¥ ~1 satisfying gl(P£) = gl(P
k

) in 

selecting an active node in A2 of A(gl)' then gl 2: g2 implies T s (gl) ~ T s (g2)' 0 

Special cases of Theorem 4.4 (i) ~ (iii) assuming a certain dominance 

relation specific to the shortest path problem were proved in [5, 8, 15, 18]. 

(Their results are more general in the sense that JW could be infinite.) 

Theorem 4.5. Let A(gl) and A(g2) be defined as in Theorem 4.1, where 

A(gl) and A(g2) use best-bound search. Furthermore assume that D is consistent 

with g. Although gl ~ g2 does not necessarily imply B
s

(gl) ~ B
s

(g2) even if 

D=I is assumed, the following properties are true. 

(i) If u=oo and s is compatible with D, then 
gl 

* gl ~ g2 q Bs (gl) ~ Bs (g2) + 1.% n !?D - ~11. 

(ii) If u=oo, Sgl is compatible with D and gl(P) > g2(Pi ) for Pi Eo!?-

If u=oo, gl (P.) > gl (P.) for every (P., P.) E iif with P. E !?-
] ~ ~ ] ~ 

~1' and if P
k 

E ~1 has higher priority than P£ft ~1 satisfying gl(P£) 

gl(P
k

) in selecting an active node in A2 of A(gl)' then gl ~ g2 implies 

Bs (gl) ~ Bs (g2). 0 

The results in Sections 3 and 4 are summarized in Table 1, where --­

indicates that a monotone dependence of T (or B) on g is not guaranteed. 

t The first condition on g may by changed as follows: "If s is compatible 
gl 

iif wi th Pi rl ~1' P j E ~1'" 
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Table 1. Computational efficiency of A(gl) and A(gZ) with gl~gZ. 

(Entries -- denote that T(gl)~T(gZ) or B(gl)~B(gZ) does 

not necessarily hold.) 

General Consistent with g 

311 

~D 
Strateg1es '~ Properties Theorems Properties Theorems 

Heuristic 

(General) 

Heuristic 

(Nonmis leading) 

Depth-First 

Breadth-First 

(a) 
Best-Bound 

3.1 

3.1 

3.1 

3.1 

3.1 

4.1 

4.1 

T(gl ) .:0; T(gZ) 3.3 

B(gl ) .:0; B(gZ) 3.3 

T(g 1) ~ T(gZ) 3.3 

B(gl ) ~ B(gZ) 3.3 

T(gl) .:0; T(gZ) 3.3 

B(gl ) .:> B(gZ) 3.3 

Ta (g 1) .:> Ta(gZ) 4.3 

-- (b) 4.l1 

Ba (gl) ~ Ba (g2) + 
4.3 

I%*ng- ~'I 
D 1 

-- (c) 4.5 

(a) Note that search functions also change when g is improved, in case of 
best-bound search. 

(b) See Theorem 4.4 for detailed analysis. 

(d) See Theorem 4.5 for detailed analysis. 

5. Power of Upper Bounding Functions 

Consider two branch-and-bound algorithms A(U
1

) = «~, 0, f), (~, g, u
1
), 

D, s) and A(UZ) = «$, 0, f), (~, g, u:z), D, s) with different upper bound-

ing functions u
1 

and uZ• u
1 

is said to be 

if u1(P.) ~ uZ(P.) holds for any P. E~. 
111 

tighter than uz' denoted by u
1 
~ uz' 

Again u
1 
~ Uz does not generally 

imply T(U
1

) ~ T(U
Z

) and B(U
1

) ~ B(U
Z

) as we shall see below. Classes of 

branch-and-bound algorithms for which u
1 
~ Uz implies T(U

1
) ~ T(U Z) and 

B(U
1

) ~ B(U
Z

) are also clarified in this section. Properties of U along this 

line were first examined in [13 J, and a result similar to Theorem 5.4 was 
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therein obtained (though [13] did not consider the B-count, treated only upper 

bounding functions of type U = U (PO), and did not assume the general class of 

heuristic search). 

Theorem 5.1. Let A(U
1

) = «33',0, f), (:if, g, u
1
), D, sh) and A(U

2
) = 

«33', 0, f), (:if, 0, u
2
), D, sh) be branch-and-bound algorithms using heuristic 

search. Then u
1 

.::; u2 does not necessarily imply T(U
1

) .::; T(U
2

) or B(U
1

) '::;B(U
2
). 

This is true even if sh is restricted to be a depth-first search function or 

a breadth-first search function. 

T(u1)=B(u1)=4 
T(u2)=B(u2)=3 

f=1.7 
h=1.9 

f=1.8 
h=2.0 

Fig. 7 Counterexarnple to the conj ecture U 1,::;u
2 

q T(u 1 ).sT(U
2
)" 

B(U
1

)'::;B(U
2

) under heuristic search, used in the proof of 

Theorem 5.1. (uk=uk(PO) is assumed for k=l, 2. Only 

relevant parameters are indicated.) 

Proof. The ~xample in Fig. 7 has T(U
1

) = B(U
1

) = 4 > T(U
2

) = B(U
2

) = 3 

in spite of u
1 

.s u
2

• The search functidn sh used here is also a depth-first 

search function. The case of a breadth-first search function is treated in 

Fig. 8, in which T(U
1

) = B(U
1

) = 7 > T(U
2

) = B(U
2

) = 5 in spite of u
1 

:s u
2

• 

Note that the examples used in the above proof have upper bounding func-

tions of type u
k 

Uk(PO). Thus Theorem 5.1 holds even if u
k 

is restricted 

o 
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to be of type llk = uk(P
O
)' For best-bound search, however, u

1 
.:5 u

2 
always 

results in T(U
t

).:5 T(U
2

) and B(U
1
).:5B(U

2
). 

f=l.O 
g=0.5 
h=1.3 

f=l.O 
g=0.5 
h=1.9 

f=l.O 

Fig. 8 Counterexample to the conj ecture U 1.:5u2 c::;> T(u 1 ).:5T(U2) t\ 

B(U1).:5B(U2) under breadth--first search, used in the proof 

of Theorem 5.1. (uk=uk(Po) is assumed for k=l, 2. Only 

relevant parameters are indicated.) 

Theorem 5.2. Let A(U
1

) = «!B, 0, r), ( $', g, U 1)' D, s ) 
g and A(U

2
) = 

«(!B, 0, f) , ( $', g, u
2

) , D, s ) be branch-and-bound algorithms using best·-
g 

bound search. Then u
1 

.::; u
2 

implies T
a

(U
1

) = T
a

(U
2

), B
a

(U
1

) = B
a

(U
2

), T (u ) 
s 1 

Ts (g2) and Bs (lll) .:5 B
s

(U 2 )· 

.:5 

Proof. When all optimal solutions are sought, computational processes of 

A (u 1) and A (uZ ) proceed independent ly of U 1 and u
2

' since Pi is decomposed if 

and only if PiE Y n .!?D - $' (this set does not depend on U 1 or u
2

) by 

Lemma 4.2. This proves T
a

(U
1

) = T
a

(U
2

) and B
a

(U
1

) = B
a

(U
2

). 

-1 
When a single optimal solution is sought, let Y = p. p. 

~1 ~2 
-2 Y = P. 

J 1 
P. 

J 2 
P. be the sequences of nodes selected in A(U

1
) 

J t 

• •• p. and 
~ 

s 
and A(U

2
) 

respectively. It is shown by induction that y1 is a subsequence of .92 • 
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-1 
To prove this, assume that for ,9 = P, 

a ~1 
p. p. , 1 S a S s, there exists 
~2 ~ 

a 
= p. , ~l(Pi )c ~2(P, ), 21 (Pi ) S 

Jb a Jb a 
p. satisfying that p. 

J b ~a 

-1 -2 
z2 (P. ) and 9 is a subsequence of g b' 

J
b 

a 
For a = 1, this induction hypothesis 

is trivially true since j?; satisfies the above conditions. In a general case, 

we first show that p. 
~ 

a 
is terminated in A(U

1
) if P, is terminated in A(U

2
). 

Jb 
Three cases are considered. 

(a) p. is terminated in A (u
2

) by ~ : 
Jb in A(U

1
) by 0/. 

Then P. (=P. ) is also terminated 
~a J b 

(b) p. is terminated in A(UZ) by lower bound test, i.e., g(p. ) ~ 
J b J b 

zz (P. ): Then zz (P. ) = ,f(PO) holds as a characteristic of best-bound search, 
Jb Jb 

(lsp~b) satisfying and there exists P. 
Jp 

-z uZ(P. ) = f(PO) in gb' Assume that a 
Jp 

proper ancestor p. of p. has been 
~q Jp 

terminated in A(U
1
), since otherwise 

zl(P
i 

) 5 u 1(P. ) S uZ(P. ) = f(PO) ~ 
a Jp Jp 

g(P. ) 
Jb 

g(P. ) and hence P. is termi-
J a ~a 

nated in A(u 1) by lower bound test. If p. 
~ q 

has been terminated in A(U
1

) by 

lower bound test, it follows 

g(P. ) ~ g(P. ) (since p. is selected after p. ) 
~ ~ ~ ~ a q a q 

(5.1) ~ zl (Pi ) = f(PO) 
q 

.2: zl (Pi ) (since P . is selected after P. ) 
~ ~ 

a a q 

and P. 
~ 

is terminated in A(U
1

) by lower bound test. On the other hand, if 
a 

P. 
~ 

q 
has been terminated by dominance test Pi DPi for Pi E ~(Pi ), we have 

r q r q 
/Z (Pi)::J ~ (Pi) (this follows from the induction hypothesis) and p. must 

~ q q q 
have been terminated in A (u

2
) by dominance test. This contradicts that: P , 

Jp 

(a proper descendant of Pi ) was generated in A(UZ)' 
q 

(c) p. is terminated in A(UZ) by dominance test 
Jb 

~(P. ): 
J b 

A(U
1

) since 

Assume that a proper ancestor P. 
~d 

of p. has been terminated in 
J e 

otherwise P. is also terminated in 
~ 

A(U
1

) by dominance test:. 
a 

For 

simplicity, assume that P. 
~d 

has been terminated by lower bound test. (If P. 
~d 

has been terminated by dominance test, the argument used for Fig. 3 in the 

proof of Theorem 3.3 can be used. The following argument is also valid for 

this case with minor modification.) Then it follows. 
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a -I -I 
Now assume that.9' "'.9' (since otherwise the proof is done) and define 

a 
the following two sequences 

-2 
.9'b+w 

such that p. 
~a+1 

p. 
~2 

P. 
J 2 

-I 
P j .. .9'a+1 

b+w 

p. 
~ 

a 
P. 
~a+1 

p. , 
]b+w 

-2 
is a subsequence of .9' b+w. ~ (P. ) C 

~a+1 
~ (P. ) can be 

J b+w 
proved in a manner similar to the proof of Theorem 3.3. 

prove z,(P, ) < z2(P, ), assume contrary, i.e., z,(P, ) > z2(P, ). 
~a+'1 - Jb +w ~a+1 J b +w 

To 

Then there exists P. (I.s;k<w) such that z2 (p . ) u
2 

(p . < z, (P. ). 
J b+k J b +w J b+k ~a+1 

Since P. 
J b +k 

is not generated in A(U , ), there is Pi 
U 

-I -2 
in .9' a and.9'b = P. 

Jv 
respectively such that (I) P. is a proper ancestor 

J v 
of P. 

Jb +k 
(2) terminated in A (u ,) but P. is not termi.nated in A (Ut). 

J v 

and (2) P. is 
~ 

U 

is possible only 

if p. is terminated by lower bound test, as obvious from the above proof. 
~ 

U 

Therefore 

and p. 
J b+k 

(a descendant of P. ) satisfies 
Jv 

(Z 1 (p i )~) z 1 (Pi) .:s g (P. ) .:s g (p . ).:s U 2 (p . ) , 
a+l U J v J b+k J b+k 

which is a contradiction. This proves 2: 1 (p . ) ~ z2 (p . ) • 
~a+1 J b +w 

Consequently 9" is a subsequence of 512
, and Ts(U , ) $. T

s
(U

2
) innnediately 

follows. Bs(U').s; B
s

(U
2

) can also be proved in a manner similar to the proof 

of Ba(U,).:s B,~(u2) in Theorem 3.3 (use also the property z,(Pi).s; z2(P,) for 
a Jb 

p. =P.). 0 
~a Jb 

Remark. In the above proof, it is assumed that A(U , ) and A(U2 ) use the 

same search function including the tie breaking rule. In other words, if P., 
~ 

P j E ~, and Pi is selected before P j i.n A (u I)' then Pi is selected befo:re 
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p. in A(U
Z

) when P., p. E ·54I'Z' 
] ~ ] 

The next theorem treats a special case of heuristic search, i.e., when 

h of sh is nonmisleading. 

Theorem 5.3. Let A(U
1

) and A(UZ) be defined as in Theorem 5.1, where 

A(U
1

) and A(UZ) use the same heuristic search function sh' Furthermore assume 

that h is nonmisleading. Then u
1 
~ Uz implies Ta (U1) = Ta(UZ)' Ba(U

1
) = Ba(UZ) 

and B
s

(U
1

) ~ Bs(U
Z
)' but does not necessarily. imply Ts (U

1
) ~ Ts(UZ)' 

Proof. The last result is shown by the example given in Fig. 9, in which 

T
s

(U
1

) = 3 > Ts(u
Z

) = Z holds though u
1 

~ Uz holds and h is nonmisleading. 

u1=1.0 
u2=1.5 
f=l.O 
g=O.O 
h=l.O 

f=2.0 
h=l. 7 

f=2.0 
g=0.4 
h=1.6 

f=2.1 
h=1.8 

Fig. 9 Counterexample to the conjecture u1~uZ'~ Ts(u1)~Ts(UZ) 

under nonmisleading heuristic search, used in the proof 
of Theorem 5.3. (uk=uk(Po) is assumed for k=1, Z.) 

Ta (U 1) = Ta(U Z) and Ba (U 1) = Ba(UZ): Let ~I = P
i1 

P
iZ 

... Pip be the 

initial portion of the sequence of the nodes selected in A(U
1

) such that Pi 
p 

is the last node satisfying p. 
~ 

p 
E 9? A f(P

i 
) = f(Po)' 

p 
We show below that 
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A(U
Z

) also selects exactly the same sequence of nodes and that Pi (1 .$ r .::: p) 
r 

Then it is decomposed in A(U
1

) if and only if it: is decomposed in A(U
Z
)' 

implies that Pi is also the last node selected in A(UZ) such that p. E ~' 1\ 
~ 

P 
f(P 0)' since C§' 

P 
f(P. ) 

~ 
and f are independent of u

1 
and uz. This proves 

P 
Ba (U 1) Ba (u2)· To prove Ta (U 1) = Ta (uZ), note that zl and Zz are set to 

f (PO) when A(U
1

) and A(U
Z

) complete the Y
I 

portion. The rest of computation 

then proceeds independently of u
1 

and u
2

• Thus T
a

(U
1

) = Ta(UZ) follows. 

Now to prove the above assertion by induction, assume that s7 = P. p. 
l. a ~1 ~Z 

P. 
~ a 

(1 ~ a .$ p) is the sequence of the first a nodes selected in both 

A(U
1

) and A (u .. ).) , and that sf
1 

(P. ) = ..w:, (P. ) holds. 
~ /.. ~ 

For a = 1, this is 
a a 

trivially true. Let a < p since otherwise the proof is done. We show that 

P. 
~ 

a 
is terminated in A(U

1
) if and only i.f it is terminated in A(UZ)' (Then 

the induction can proceed one step, and it completes the proof.) First note 

that f(P. ) = f(P. ) = ... = f(P. ) = f(PO) holds as a characteristic of a 
~1 ~Z ~a 

nonmisleading heuristic search function (Lemma 5.1 of [9]), and that 2 Z (Pi ~ 
a 

21 (Pi) .2: f(PO)' Thus g(P
i 

) ~ f(P
O

) .$ 2
1

(P
i 

) ~ zZ(P
i 

) and Pi is not 
a a a a a 

terminated in A(U
1

) or A(U
Z

) by lower bound test. Furthermore the induction 

hypothesis implies /1 (P. ) = {P. , p. , ... , p. } U sf
1 

(p; ) = {P. , p. , •.. , 
~a ~1 ~Z ~a-l ~a ~1 ~2 

P . } u sf
Z 

(p. ) = ~ (p. ). Thus p. is terminated in A (u 1) by dominanee 
~a-1 ~a ~a ~a 

test if and only if it is terminated in A(U
Z

) by dominance test. This com-

pletes the proof. 

A proof for B
s

(U
1

) .$ Bs(U
Z

) is similar [lZ]. o 

Theorem !i.4. Let A(U
1

) and A(U
Z

) be defined as in Theorem 5.1, where 

A(U
1

) and A(U
Z

) use heuristic search. Furthermore assume that D is consistent 

with g. Then u
1 

.$ Uz implies T(U
1

) .$ T(U
Z

) and B(U
1

) .$ B(U
Z
)' 

Proof. l-le consider the case of all optimal solutions. The case of a 

single optimal solution is similar. The proof is done by slightly modifying 

the proof of ~fueorem 5.Z (the case of a single optimal solution). Assume that 
-1 -2 ''?a and .9' b satisfy the same induction hypothesis as in Theorem 5.Z. To prove 

that p. is terminated in A(U
1

) if p. is terminated in A(U
Z
)' three cases are 

~ Jb conside~ed. 

(a) P. is terminated in A (u
Z

) by C§' : Then P. (=P. ) is also termi-
J b 

~ J b a 
nated by C§'. 

(b) P. is terminated in A (u
Z

) by lower bound test: The proof of 
J b 
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Theorem 5.2 «b)-part) can be used after changing (5.1) to: 

(5.3) g(P. )=g(P. »z2 (P. )=u2 (P. )2:g(P. )2:g(P. »zl (P. )2:z1 (P. ). 
~a J b J b Jp Jp ~q ~q ~a 

(c) P. is terminated in A(U2 ) by dominance test: The proof of 
J b 

5.2 «c)-part) can be used after changing (5.2) to: 

(5.4) 
g(P. 

~ 
a 

(since D is consistent with g) 

-1 -2 
The construction of (1' 1 and.9" to complete the induction step can 

~ a+ b+w 
also be done in the same manner as Theorem 5.2. Thus we have T

a
(U

1
) ~ Ta (U

2
) 

and B
a

(U
1

) .$ B
a

(U
2

). o 

The results of this section are summarized in Table 2. 

Table 2. Computational efficiency of A(u
1

) and A(U
2

) with ul~u2. 

(Entries -- denote that T(U
1

).sT(U
2

) or B(U
1

).$B(U
2

) does 

not necessarily hold.) 

;~ 
General Consistent with g 

Search 
Strategies Properties Theorems Properties Theorems 

Heuristic - 5.1 T(u 1) .s T(U
2

) 5.4 

(General) - 5.1 B(U
1

) .s B(U
2

) 5.4 

Heuristic Ta (u
1

) = Ta (u2 ) 5.3 T
a

(U
1

) = T
a

(U
2

) 5.3 

(Nonmis leading) - 5.3 T
s

(U
1

) .$ T
s

(U
2

) 5.4 

B
a

(U
1

) = Ba (U
2

) 5.3 B
a

(U
1
) = B

a
(U

2
) 5.3 

Bs (u
1

) .$ B
s

(U
2

) 5.3 B
s

(U
1

) .$ B
s

(u
2

) 5.3 

Depth-First - 5.1 T(U
1

) ~ T(U
2

) 5.4 

Breadth-First - 5.1 B(U
1 

) .s B(U
2

) 5.4 

Best-Bound T
a

(U
1

) = T
a

(U
2

) 5.2 T
a

(U
1

) = T
a

(U
2

) 5.2 

T s (u 1) .$ Ts (u 2 ) 5.2 T
s

(U
1

) .$ T
s

(U
2

) 5.2 

B
a

(U
1

) = B
a

(U
2

) 5.2 B
a

(U
1

) = B
a

(U
2

) 5.2 

B
s

(U
1

) .$ B
s

(U
2

) 5.2 Bs (u
1

) .s B
s

(U
2

) 5.2 
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6. Further Comments 

We have extensively studied how u and g affect the T-count and B-count. 

Another count often used to measure the performance of a branch-and-bound 

algorithm A is the required memory size. This is usually evaluated by 

M(A): The maximum size of ~ attained during the execution of A. 

It may be possible to develop a similar theory treating how M(A) depends on 

u and g. Some results are included in [12]. 

Finally, in concluding this paper, we emphasize that the results in this 

paper is primarily of theoretical interest. Even if an improvement of u and g 

possibly makes the resulting algorithm less efficient, our empirical knowledge 

tells that such phenomenon occurs extremely rarely. Thus an effort should 

always be directed to obtain tighter upper and lower bounding functions when 

we want to design efficient branch-and-bound algorithms. 

Acknowledgement 

The author wishes to thank Professors H. Mine and T. Hasegawa of Kyoto 

University for their comments. This work is partially supported by Scientific 

Research Grant-In-Aid from the Ministry of Education, Science and Culture, 

Japan. 

References 

[1] Agin, N.: Optimum Seeking with Branch and Bound. Management Science, 

Vol.13 (1966), B176-B185. 

[2] Balas, E.: A Note on Branch-and-Bound Principle. operations Research, 

Vo1.16 (1968), 442-445. 

[3] Dakin, R. J.: A Tree Search Algorithm for Mixed Integer Programming 

Problems. The Computer Journal, Vol.8 (1965), 250-255. 

[4] Fox, B. L., and Schrage, L. E.: Th,~ Values of Various Strategies in 

Branch-and-Bound. Technical Report, Graduate School of Business, Univer­

sity of Chicago, 1972. 

[5] Gelperin, D.: On the Optimality of A*. Artificial Intelligence, Vol.8 

(1977), 69-76. 

[6] Geoffrion, A. M., and Marsten, R. E.: Integer Programming Algorithms: 

A Framework and State-of-the-Art Survey. Management Science, Vol.18 

(1972), 465-491-

D] Gomory, R. E.: On the Relation bet~veen Integer and Noninteger Solutions 

to Linear Programs. Proc. National Academy of Science, Vo 1 .53 (1965), 

260-265. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



320 T. Ibaraki 

[8] Hart, P. E., Nilsson, N. J., and Raphael, B.: A Formal Basis for the 

Heuristic Determination of Minimum Cost Paths. IEEE Trans. on System 

Science and Cybernetics, Vol.SSC-4 (1968), 100-107. 

[9] Ibaraki, T.: Theoretical Comparisons of Search Strategies in Branc:h-and­

Bound Algorithms. International J. of Computer and Information Sciences, 

Vol.5 (1976), 315-344. 

[10] Ibaraki, T.: Computational Efficiency of Approximate Branch-and-Bound 

Algorithms. Mathematics of Operations Research, Vol.l (1976), 287-298. 

[11] Ibaraki, T.: The Power of Dominance Relations in Branch-and-Bound 

Algorithms. J. of ACM, Vol.24 (1977), 264-279. 

[12] Ibaraki, T.: The Power of Upper and Lower Bounding Functions in Branch­

and-Bound Algorithms. Working Paper, Department of Applied Mathematics 

and Physics, Kyoto University, Japan, 1976. 

[13] Kohler, W.H., and Steiglitz, K.: Characterization and Theoretical Com­

parison of Branch-and-Bound Algorithms for Permutation Problems. ,7. of 

ACM, Vo1.21 (1974), 140-156 

[14] Kohler, W. H.: Exact and Approximate Algorithms for Permutation Problems. 

Ph. D. Dissertation, PrincetonUniversity, Princeton, N.J., 1972. 

[15] Kowalski, R.: Search Strategies for Theorem-Proving. In Machine Intelli­

gence 5, B. Meltzer and D. Michie, eds., Edinburgh University Press, 

181-201, 1970. 

[16] Lawler, E. L., and Wood, D. E.: Branch-and-Bound Methods: A survey. 

Operations Research, Vol.14 (1966), 699-719. 

[17] Mitten, L. G.: Branch-and-Bound Methods: General Formulation and Pro­

perties. Operations Research, Vol.18 (1970), 24-34. 

[18] Nilsson, N. J.: Problem-Solving Methods in Artificial Intelligence. 

McGraw-Hill, New York, 1971. 

[19] Pohl, I.: First Results on the Effect of Error in Heuristic Search. 

In Machine Intelligence 5, B. Meltzer and D. Michie, eds., Edinburgh 

University Press, 219-236, 1970. 

[20] Rinnooy Kan, A. H. G.: On Mitten's Axioms for Branch-and-Bound. Opera­

tions Research, Vol.24 (1976), 1176-1178. 

[21] Tomlin, J. A.: An Improved Branch and Bound Method for Integer Pro­

gramming. Operations Research, Vol.19 (1971), 1070-1075. 

Toshihide IBARAKI: Department of 

Applied Mathematics and Physics, 

Faculty of Engineering, 

Kyoto University Kyoto, 606, Japan 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




