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Abstract We consider an n-job one machine scheduling problem in which the processing time of each job i is 

a random variable subject to a normal distribution N(mi' v[) and the object is to maximize the weighted number 

of early jobs subject to the constraint that some specified jobs must be early. It is assumed that mp < mq implies 

v~ ~ vJ, where mi and vl are, respectively, a known mean value and a known variance associated with each job i. 

If such constraint is relaxed, the problem has been shown to be NP-complete, suggesting strongly that there exists 

no efficient exact algorithm whatever for the problem. Moreover, it is assumed that if mp < mq or v~ < vJ, then 

wp ~ W q' where wi is a known weight associated with each job i. It is well known for the problem with arbitrary 

weights to be NP-complete even in the deterministic case (Le., vl = 0). 

We show that the problem with the above assumptions can be solved in O(n2) time and that it has a practical 

application. 

1. Introduction 

We consider a chance-constrained scheduling problem defined as follows: 

(i) A single machine processes a set of n jobs, J z {1,2,"',n}, avail

able at time zero. 

(ii) Each job i requires a raniom processing time Pi subject to an 

- d ld"b' ( 2) wherem.andv~are k ~ndepenentnorma ~str~ut~onNmi,vi' ~ ~ a nownmean 

value and a known variance, respectively, It is assumed that 

(1) 
2 

v for p,q = 1,2"" ,n. 
q 

(iii) Each job i has a known due time dj' 

of generality that 
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It is assumed without loss 
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194 H. Kise, A. Shiomi, M. Uno and D. -So Chao 

(2) d
1 

~ d
2 

~ ••• ~ dn. 

(iv) A positive real number u (u < 1) is given. A job is said early if 

the probability that the job is completed prior to its due time is not smaller 

than u. Otherwise, the job is said tardy. 

(v) A subset Q of J is specified such that all the jobs in Q are re

quired to be early. A schedule is called feasible if all the jobs in Q are 

early. 

(vi) A weight w. is associated with each job i, (i . ~ 
1,2,···,n). It is 

assumed that for p,q E J-Q 

(3) w ~ w if m < m or v
2 < v2 

p q p q p q. 

A feasible schedule is optimal if it maximizes the weighted number of early 

jobs (i.e., minimizes the weighted number of tardy jobs) over the feasible 

schedules. It is desired to find an optimal schedule. 

Moore [9] has solved a special case of this problem in which Q = ~, 
2 

wi = 1 and vi = 0, i = 1,2,···,n, are assumed, i.e., the processing time is 

not a random variable, but a known value. We refer this problem to Moore's 

problem. Sidney [10] and Lawler [8] have generalized Moore's problem to 

cases with non-empty Q and with weights satisfying (3), respectively. These 

are also special cases of our problem. There have been other generalizations 

for Moore's problem [3,6]. On the other hand, Karp [5] has shown that if 

arbitrary weights are imposed, Moore's problem becomes NP-complete, suggesting 

strongly that there exists no efficient exact algorithm whatever for the 

problem. 

Balut [2] has first discussed the chance-constrained scheduling problem 

in which m. and v~, i = 1,2,···,n, are arbitrarily given. However, it has 
~ ~ 

been quite recently shown [7] that the algorithm proposed by him does not 

always give an optimal schedule and the problem is NP-complete. Anyway our 

problem becomes NP-complete if assumption (1) or (3) is relaxed. 

In the following we show some properties for the optimality of the 

problem and propose an O(n
2

) time algorithm for the problem, based on these 

properties. A practical application of the problem is also given. 

2. The j-Optimal Set for the Problem 

For a schedule IT = (i
1
,i2 ,···,i

n
), 

job i
k

, where i
k 

denotes the k-th job to 

k 
ci

k 
~h=l Pi

h
, k = 1,2,···,n. 

let ci be the completion time of 
k 

be processed. Then 
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Chance-Constrained Scheduling Problem 195 

Moreover. for the schedule TI. let 

(4) f{ .. . } - "" k i3 ["" k 2 ] 1/2 2 ~1'~2'···'~k = ~h=l m. + ~h=l v. • k = 1 • • ···.n. 
~h ~h 

where i3 = ~-l(a) is defined by ~(.). the distribution function of the standard 

normal distribution N(O.l). Then as shown by Balut [2]. 

holds by the reproduction property of normal law. Thus job i
k 

is early if 

and only if 

f{ .. . } 
~1·~2···· '~k 

~ d .• k = 1.2.···.n. 
~k 

Here we may assume without loss of generality that 

(5) mi+l3vi~difor'\!iEJ. 

since otherwise. job i can not become early in any schedule. A set of jobs 

E is called early if there is a schedule in which all the jobs in E are early. 

The set E = {i 1 .i2 .···.i
k

} is early if an only if 

f{.. . } < d h 1 2 k 
~1·~2·····~h = .• = • •••••• 

~h 

where i1 < i2 < ••• < i
k 

is assumed (see (2». This is an extension of 

Jackson's Lemma [4]. Thus for our object it can be assumed without loss of 

generality that any schedule takes the form of TI = (E.T). where E is a set 

of early jobs ordered according to nondecreasing order of due times and T = 
J-E is a set of tardy jobs ordered arbitrarily. Therefore. our scheduling 

problem becomes to find an early set E :: U 1.i2••·· .ik I i1 < i2 < ••• < i k } 

which 

(6) subject to E 2 Q 

such that f{.. . } < d .• h = 1.2 •...• k. 
~1·~2···· '~h = ~h 

We define, the same problem for each subset J. :: {1.2.· •• • j}. j 
] 

1. 

2.···.n. as (6). A subset X of J. is called a feasible subset of 
] 

J if it j' 
is early and satisfies X 2 Q n J .• 

] 

j-optimal if it satisfies 

(7) LiEE . w. > L
iEX 

w. 
~ ~ 

] 

or 

(8) LiEE . w. L
iEX 

w. and f E . 
~ ~ 

] ] 

~ 

A feasible subset E. of J. is called 
] ] 

fx 
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for any other feasible subset X of J
j

• Obviously, El = {1} by (5) and En E 

by I
n 

= J. 

Here we introduce a list If-<If of jobs in J-Q representing their relative 

desirability for inclusion in an early set as follows: 

fP' rnq (V
p 

;:: v by (1) , w ::; w by (3» , q P q 

m = m and v2 > v2 (w ::; w by (3» , 
(9) p -< q, if P q q q p q 

2 2 
mp mq , vp v and w < w or q p q 

2 2 and p < m mq , v Vq' wp = w q. p p q 

Obviously, ~ uniquely orders the jobs in J-Q. It is a generalization of the 

list used by Lawler [8] for the deterministic case (i.e., v~ = 0, ~iEJ). 
~ 

Lemma 1- For p, 

;;; v2 ;;; m mq , 
p p 

Proof. Obvious 

Lemma 2. For a 

Proof. By Lemma 

By (4) and Lemma 

q E J - Q, p -< q implies that 

2 
and w ::; v q p 

from (9). 0 

subset U of J 

L. . { } w. 
~EU- q ~ 

w. q 

and two jobs p, 

f - f {} u-{p} u- q LiEU-{p} mi - LiEU_{q} mi 

q E U, P ~ q implies that 

+ S[(L;EU_{p} v~)1/2 - (L v~)1/2] 
~ ~ iEU-{q} ~ 

= m - m + S [( v2 - v2) / {(L. U { } v~) 1 /2 
q p q P ~E - P ~ 

+ (L. v~)1/2}] ::; O. 0 
~EU-{q} ~ 

Theorem 1. For each j-optimal set E
j 

(j = 1,2,···,n), there is a ~

optimal set E~ satisfying 

(10) E~ S E j U {j+l,j+2, ... ,~} for ~=j+l,j+2,···,n. 

Proof. The theorem obviously holds for j = 1 by (5). Thus it is suf

ficient to show that we have (10) when 

is assumed. 

E. 1 u {j,j+l,···,~} 
]-

If E. = E. 1 'J {j}, we have (1 0) by (11). 
] ]-

Thus we consider 
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another case when E. is a proper subset of E. 1 U {j}, i.e., 
] ]-

D = E. 1 U {j} - E. ~ ~. ]_. ] 

If Et and D are disjointed, again we have (10) by 

En <; E .. lU{j,j+l, •.. ,t} = E. lU{j}U{j+l, ••• ,t} = DUE.U{j+l,···,R,}. " ]- ]- ] 

Thus the remaining case to be considered is that 

(12) C = EilD = ER,n(Ej _1U{j}-E
j

) = E{I(Ej _
1
U{j})-ER,nEj ~ ~. 

In Fig.l we illustrate the relation among sets defined above. Note that 

E .uc is not a feasible subset of E. lu{j} by the optimality of E. (see (7), 
] ]- ] 

(8», while 

(ElER,)UC = (EjUC)n(ER,UC) = (EjUC)nER, 

is a feasible one by the feasibility of BR,' Thus 

(13) B = E.·-E.nE n = (E.UC)-(E.UC)nE n ,~ ~ (see Fig.n. 
] ]" ] ] " 

E. lu{j} r 

{ 

1'r"7'='==-=~ 
"c ·1 

D I i 11 
I . '1 

L...----_,L.-.-.- . .J 

E
j 

{ L..1_·_-_·_B_·_·_.=--l_;l ____ E_R,_I]! 
L._._._ . .J, 

{j+l,j+2.·· .. 1l {IL..-__ L_/_~_-_-_-_-_-_-_-_-_-_-_]_~.....Ii 
Fig. 

In short, the subset ER,n(Ej _ 1U{j}) of ER, is different from the j-optimal 

set E.: the former has a non-empty set C, the latter does not have C but 
] 

another non-empty set B. For (12) and (13), two cases are possible: 

(i) For an element PEC, there is an element qEB such that m = m , P q 
v = v and w = w. Let 

P q P q 

(14) Et = (E
j

_
1
U{j})nER,u{q}-{p} (E.-B)U{q}U(C-{p}), 

] 
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i.e., E' is obtained by replacing P with q in E~n(Ej_lu{j}) and hence has 

one more common elements with E. than Enn(E. lU{j}). Obviously it holds 
] ,,]-

that 

(15) f , = f ( {} (see (4». E Etn Ej _
1

U j ) 

Moreover, it holds by the feasibility of E. 1 (see (11» and PfQ (by the 
;-

feasibility of E.) that E' is a feasible subset of E. 1U{j}. For if JEE', 
] ]-

E'-{j} is a feasible subset of E. 1 by E'-{j}SE. 1 and hence E' is a feasible 
]- ;-

subset of E
j

_
1
U{j} by (15), otherwise E'(SE

j
_

1
) is obviously a feasible one. 

Therefore, we can construct a new t-optimal set from the old one: 

Obviously, the new t-optimal set has one more common elements with E. than 
] 

the old one. Thus by repeating (16), we can finally obtain E
t

n(Ej _
1
U{j}) 

= E., i.e., (10) or the next case. 
] 

(ii) For an element PEC, any element qEB is such that m ~ m , v ~ 
P q P 

v or w ~ w • 
q P q 

This case does not obviously satisfy (10). However, we show 

that it contradicts the t-optimality of Et' 

Let P be the minimum element with respect to ~ in C and q the maximum 

element with respect to ~ in B. Then 

(17) P ~ q and m > m , v > v or w < w • 
P q P q P q 

Since otherwise, it can be easily shown by (9) and Lemma 2 that E.U{p}-{q} 
] 

is a feasible subset of E
j

_
1
U{j} and superier to E

j
, contradicting the opti-

mality of E .• 
] 

Let 

E - EtU{q}-{p} = (Et n{j+l, j+2,···,t})UE' 

where E' is obtained by (14). It holds by (17) and Lemma 2 that 

and one of these inequalities strictly holds. Thus it can be shown by the 

simillar argument as case (i) that E' is a feasible subset of E. lu{j}. 
]-

Therefore, we have that E is a feasible subset of E. lU{j,j+l, •.. ,t} and 
;-

superier to Et, contradicting the optimality of Et. 0 

Theorem 1 shows that a j-optimal set E. can be treated as a subset of 
] 

E. lu{j} rather than J. = 
]- ] 

{1,2, .•. ,j}. Utilizing this property, our algo-

rithm sequentially computes E., j 
] 

the above proof suggests that the 

= 1,2, •.. ,n, in this order. Moreover, 

set D = E. lU{j}-E. may have more than 
;- ] 

one elements due to the existence of the set Q. We, in fact, see such 
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situation in an example shown in Table 1 (see the next section). 

3. Algorithm 

step 1. j + 0, Ej + ~ and Sj + ~. 

step 2. If j = n, halt. Otherwise, j + j + 1 and go to Step 3 after 

letting 

E.+B· 1 U{j} 
J J-

+ r Sj_l 
s. I 
J, { .} . s. 1 U J 

]-

if j E Q, 

otherwise • 

step 3. If f
E

. ~ d., return to Step 2. Otherwise, find the minimum 
J J 

element r with respect to -< in S. and repeat Step 3 after letting 
J 

E. + R. - {r} and S. + S. - {r}. 0 
J J J J 

To illustrate the algorithm, we consider an example shown in Table 1. 

Table 1 An example with n 5, B 1 (a. 0.84···) and Q {5} 

i 1 2 I 3 4 5 

m. 10 10 I 8 4 18 
1. 

2 5 4 4 1 8 v. 
1. 

d. 25 25 25 25 25 
1. 

w. 30 30 40 50 10 
1. 

1 2 3 4 / 
Note that it is assumed in this example that job 5 must be early and all 

199 

the jobs have the same due time 25. Applying the algorithm to this example, 

the computation proceeds as follows: 

1) (Step 1) j + 0, EO + ~, So + ~. 

2) (Step 2) j + 1, El + {1}, Sl + {1}. 

3) (Step 3) f + 10+15 < 25. 
El 

4) (Ste.p 2) j + 2, E2 + {1,2}, 
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5) (Step 3) f + 20+/9 + 25. 
E2 

6) (Step 2) j + 3, E3 + {1,2,3}, S3 + {1,2,3}. 

7) (Step 3) fE + 28+113 > 25, r + 1, E3 + {2,3}, S3 + {2,3}. 
3 

8) (Step 3) fE + 18+/8 < 25. 
3 

9) (Step 2) j + 4, E4 + {2,3,4}, 54 + {2,3,4}. 

10) (Step 3) fE + 22+/9 = 25. 
4 

11) (Step 2) j + 5, E5 + {2,3,4,5}, S5 + {2,3,4}. 

12) (Step 3) fE5 + 40+117 > 25, r + 2, E5 + {3,4,S}, S5 + {3,4}. 

13) (Step 3) f + 30+;g-> 25, r + 3, E5 + {4,5}, S5 + {4}. 
E5 

14) (Step 3) fE + 22+;g-= 25. 
5 

15) (Step 2) j = 5. Halt. 0 

As result, we have an optimal set E E5 

value~. w. = 60. 
~EE ~ 

{4,5} with the objectivE! 

To show the validity of the algorithm, the following two lemmas are 

necessary. 

Lemma 3. Each E.(j=1,2,···,n) constructed by the algorithm is a feasi
J 

ble subset of J .(={1,2, ... ,j}). 
J 

Proof: E. is a feasible subset of J. if E. 
J J J 

is early and E. ~ Qn,] .• 
J J 

We assume that E. 1 constructed by the algorithm r 
is a feasible subset of 

J' l (={1,2,"',j-l}) and then show that E. is a feasible subset of J .• r J J 
If jEQ, then j is not included in S. but E. in Step 2. Thus j is never 

J J 
excluded from E. in Step 3. 

J 
Step 3 repeatedly revises E. until E. becomes 

J J 
E. is a feasible subset of J. under the above 

J J 
early. Thus the resultant 

assumption. El = {1} is a feasible subset of J
1 

= {1}. Therefore, we have 

the lemma by induction. 0 

Lemma 4. E. (j=1 ,2,'" ,n) constructed by the algorithm is j-optimal. 
J 

Proof: El is l-optimal by (5). So we assume that E. 1 is (j-1 )-optimal. 
J-

Then by Lemma 3 and Theorem 1 it is sufficient to show that 

( 18) ~iEE . w. 
~ 

> ~iEX wi 
J 

or 

( 19) ~. W. ~iEX w. and f E . :;: fx ~EE . ~ ~ 

J J 
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holds for any other feasible subset X of E. 1 u {j}. If E. = E. 1 U {j}, we 
]- J]-

have (18) or (19). Thus consider another case that Ej _
1

U {j} is not early. 

That is, 

D - E. 1 U {j} - E. ;z! cp. 
r J 

In this case obviously 

c = E. lU {j} - X ;z! cp. 
r 

Note that D and C include no element of Q by the feasibility of E
j 

and X. 

By Step 3 of the algorithm D has IDI minimal elements with respect to ~ in 

Sj' where I· I denotes the cardinality of the set therein. Thus let D = {r 1 , 

r 2,···,r IDI }, where r 1 -< r 2 -< '" -<rlDI and C = {il,i 2 ,···,i lcl }, where il 

-< i2 ~ ••• -< i I cl' then 

(2a) rk:5.ik, k = 1,2,"',£ (£ = min {IDI, Icl}), 

where by:5. we mean that r
k

-< i
k 

or r
k 

= i
k

• Let 

Zk = XU {il,i 2 ,"',ik
} - {r1 ,r2 ,"',rk }, k = a,l,···,L 

Note that Za ,= X and xu{il,i2 , .. ·,i
k

} ~2 {r
1
,r

2
,···,r

k
L Then it follows 

from Lemma 2 .and (2a) that 

L.iEX w. L.. w. ;;; L.. w. ;;; ;;; r.. wi ' ~ lEZa ~ ~EZl ~ ~EZ£ 

d. ~ fx f ~ f ~ ... ~ fz J Za Zl £ 

If Icl = IDI = £, Z£ = E
j 

and hence we have (18) or (19). If Icl > IDI £, 

then it follows from X U C = E. U D = E. 1 U {j} that 
J r 

ZR, xu{il,i
2
,···,i£} - D = (E j _

1 
u{j} - c) u{il,i 2,···,iR,} - D 

(Ej _1U{j}-D) - {iR,+1,i£+2,···,i lcl } = Ej - {i£+1,i£+2,···,i lcl }· 

Thus we have (18), since 

L.hEE . wh > L. { }) wh ~ L.hEX who J hE(Ej - i£+l,···,i lcl 

If R, Icl < IDI, then 

Therefore, 

dj ~ fx ~ .•• ~ fzR, = fEju{rR,+1,rR,+2, .•. ,rIDI}· 

contradicting Step 3 of the algorithm. 0 

Theorem 2. The proposed algorithm is valid and requires o(n2
) time. 

Proof: The validity of the algorithm immediately follows from Lemma 4. 
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The computational complexity is proved as follows: For each j (=1,2,··.,n) 

Step 2 requires time bounded by a constant value and hence its overall com

putation takes O(n) time. For each j (=1,2,"',n), let x. be the number of 
] 

jobs removed from S. (or E.), then Step 3 is repeated x. times for each j. 
] ] ] 

At each time when a job is removed from s., at most o(n) time is required to 
] 

compute f , 
E. 

] 

the minimum r with respect to -<, E. and S .' Thus Step 3 requires 
] ] 

at most O(x .n) time 
n ] 2 

O(L j =l xjn) ~ o(n ) 

Its overall computation, therefore, takes for each j. 
n 

time by Lj =l Xj < n. 

Note that jobs can, if necessary, renumbered according to (2) and the 

list -< can be made in O(n log n) time by using special sorting methods such 

as heap (e.g. see [1]). 

4. An Application 

There is a textile factory which performs many manufacturing processes 

for spinning and weaving. It has a machine shop for the maintenance of 

machines used in the factory. An important work in the machine shop is to 

produce various kinds of gears which are frequently requested in manufacturing 

processes. There is only one machine available for this purpose. Thus it 

is always busy. 

The processing time to make each gear is an uncertain value subject to 

a normal distribution such that the larger its mean value is, the larger its 

variance is. 

At the beginning of each month, a planner sets up a schedule for making 

gears the requests of which are in his hand at that time. Some of them must 

be finished by their due time since they are critical to the overall pro

duction schedule for the factory, or have been already demanded in the pre

vious months and not yet finished. 
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