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Abstract This paper considers the stability of the waiting time in the queueing system with the critical condi-

tion: ESi = sETi. It is shown that the waiting time is stable in the model with special moving average input and the 

unstability condition is obtained in the strictly stationary input with the finite variance. 

1. Introduction 

This paper deals with the s-server queuing model with FIFO discipline. 

We assume that the first customer arrives at time zero. Let T be the time 
n 

interval between the arrival of the nth customer and that of the (n + l)th 

customer and S be the service time of the nth customer. We assume that 
n 

(T , S )(n ~ 1) is the strictly stationary process and extend it to form the 
n n 

strictly stationary process (T , S )(_00 < n < 00). Let w = (w ••• w ) 
n n n n,l' 'n,s 

be the waiting time vector at the arrival point of the nth customer. We 

regard w
l 

to be fixed. That is, each component of the vector w
l 

is the cor

responding server's work given at the starting point. We use the terminologies 

defined by Loynes [6], i.e. stable, substable, unstable, honest, dishonest, 

Un Sn - sTn , etc. 

The asymptotic behavior of the waiting time in the queueing model has 

been discussed by Lindley [5], Loynes [6], Miyazawa [7] and othe~s. They 

proved that if Si - ST
i 

is the strictly stationary process such as ES
i 

> sET
i

, 

then w is unstable and that if ES. < sET .• the w is subs table . In the case 
n 1. 1. n 

of ES. = sET., Lindley proved that the w is unstable in the single server 
1. 1. n 

queue satisfying the conditions: (i) the two sequences T and S are inde-
n n 

pendent, (ii) the sequence T is identically and independently distributed, 
n 

(iii) the sequence S is identically and independently distributed. Kiefer 
n 

and Wolfowitz [3] obtained the same result in the many-server queue with (i), 

(ii) and (iii). Loynes considered the queue without these assumptions and 
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Stability of the Critical Queueing Systems 141 

showed that if S. - sT. is the strictly stationary process and if the servers 
~ ~ 

are initially unoccupied, the distribution of wn = 

tonically to some distribution, i.e., W is stable 
n 

(W ••• W ) tends rnono-
n,l' , n,s 

or unstable. He also 

obtained the unstability of the critical queue with both assumptions (i) and 

(ii) or both (i) and (iii). 

Though Loynes suggested the existence of stable model with this critical 

condition, he gave few examples. The purpose of this paper is to give such 

examples and to discuss some unstable cases. So, throughout the paper, it is 

assumed that EU = O. 
n 

The unstability of wn is obtained under the more 

relaxed condition than Loynes'. 

2. Examples of the Stable Single Server Queue 

In the single server queueing model with FIFO discipline and w
l 

waiting time of the nth customer is represented as 

W 
n 

n-l t 
sup L: U

k
] , 

l~r~n-l r 

0, the 

where [x]t lnax(x, 0), so that the asymptotic behavior of W depends only on 
n 

the process Un' It will be useful to note that for any given strictly station

ary process un there is a two-variate nonnegative valued stationary process 

(T , S ) such as U = S - Tn' for example, Sn = [u ]t and T [u ]t - U • 
n n n n n n n .n 

Now, the wn has the same distribution as [ sup ~U ]t. Hence the 
l~r~n-l 1 -K 

limiting distribution of W is honest if and only if the distribution of the 
n 

random variable 

M [sup ~U ]t 
r?'l 1 -k 

r 
is honest, and M is honest if and only if pdsup L:U_

k 
< co} = 1. 

r?'l 1 

In this section we give the following two stable examples. 

Example 1. The circular stationary process such as 

i=l, ... ,p, m=0,t1,± 2,···. 

In this case, if r mp + i, 

P i 
mL:U + L:U_

k
• 

1 -k 1 
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142 T. NalaztllUka 

p 
Hence, M is honest if and only if Pr{~u_k ~ O} 1. 

1 

Example 2. The moving average input 

- 6 E 
P n-p Un = En - 61 En _1 -

p 
with the condition 1 - ~8. 

1 ~ 
= 0, where En is the strictly stationary process 

with mean zero. In this model the equation 

r p-1 p 
(1) sup ~U_k E_1 + ~ ( 1 - 81 - ... - 8 .)E 1 . - inf ~ (8. + •• ·+8)E . 

r~l 1 i=l ~ --~ r i=l 
~ P -r-~ 

holds, so that M is honest if the following (a) or (b) holds. 

(a) There is a constant K such as pd lE I < K} = 1. n 
(b) There is a constant K such as pdE > -K} = 1, and 6 + •.• + El ~ 

n n p 
for all n. 

Now we assume that E is identically independently distributed. If we n 

0 

let T1 and T2 be the numbers such as 

T1 = inf{T: pdE 
n < T} > O} 

and 

T2 = sup{T: pdE > T} > O}, n 

then the third term of the right-hand side of (1) is 

f [8. + ••• + 8 ]tT - f [-(8. 
i=l ~ p 1 i=l ~ 

+ .•• + 

Then, if M is honest, (a) or (b) holds, that is, the above condition is the 

necessary and sufficient condition, and moreover we can find the distribution 

of M from that of the first and the second terms of (1). 

p 
The condition of 1 - ~ 8. = 0 of Example 2 is necessary, as is shown in 

:i=l ~ 
the following theorem. 

if 1 

Theorem 1. In the moving average input 

U 
n 

p 
- ~ 8. 

i=l ~ 

Proof: 
r 

~u_k 
1 

E -
n 

# 0, 

x 
r 

8 E -
1 n-l 

if pdE 
n 

+ Yr 

O} < 1 and if EIE I < 00, then M is dishonest. 
n 
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and 

x 
r 

(I - 8 -
1 

p-l 
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-l-p 
8 ) E €. 

P i=-r ~ 
(ri::p+1), 

p 
y = € + 

r ·-1 E (1 - 8, -
i=l 

- 8.)€ . - E (8. + ••• + 8)€ .• 
~ -1-~ i=l ~ P -r-~ 
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By Chung Fuchs' theorem ([3] or [9] p.196), sup x = 00 with probability one. 
n 

Hence for any positive numbers m and K 
r 

Pr{ sup LU_
k 

~ K} 
r<::p+1 1 

00 

n 

~ E Pr{x. < mK, (p+1 ~ i ~ n-1), x ~ mK, y ~ (1 - m)K} 
n=p+1 ~ n n 

The random variable Yn is independent of the random vector (x
p

+
1
,···,xn) and 

its distribution does not depend on n. Hence we continue with 

= Pr{y , ~ (1 - m)K} m + 00, O. 
p+ 

Q.E.D. 

3. Examples of the Stable Many-Server Queue 

First we will prove the following theorem. Kiefer and Wolfowitz or 

Loynes proved that w 1 is stable if and only if w is stable, so that the n, n 
following theorem also holds with respect to w 1 instead of w • 

n, n 

Theorem 2. Suppose 

V
1 

and V
2 

such that V
1 

< 

Then w is stable if and 
n 

that s ~ 2 and that there are honest random variables 
j 
L U < V

2 
for .'ill i and j, and suppose that w

1 
= O. 

n=i n 
only if sup Sn < 00 with probability one. 

n 

Proof: Since w1 = 0, the distribution of wn tends monotonically to some 

distribution which is honest or dishonest. First we suppose that sup S < 00 
n 

with probability one. For an arbitrary positive integer k there is an integer 

j (~) such as 

Then 

and 

w. 
],r 

i j 

j + ~ i ~ k. 

J =~_ 0 
L sup Sn: r ~ 2 

r = 

n 

k-1 
SW

k 
= sw]' + L u. < (s - ') sup S' + V2 i=j ~ n 
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s 
where Sw 

n 
L: w .• 

i=1 n,~ 
Therefore the limiting distribution of SW

n 
is honest 

and W 
n 

is stable. 

Next suppose that sup Sn 
n 

00. Then sup SW
n n 

00 from the inequality 

SWn+1 2 W ~ Sn - T - n+1,s n 

On the other hand 

Sw 
n 

n-1 n-1 

L: S. - s L: T + 0 
i=1~ i=l i n 

~S + 
s n s 

n-1 
L: u. + 0 

i=l ~ n 

U 
n 
~~S 

s n 
+.!v 

s l' 

where 0 is the sum of the total idle times of servers from the original 
n 

starting point to the arrival point of the nth customer. Hence, 

Since 0 is non-decreasing with respect to n and sup Sw = 00 lim 0 = 00 from 
n n ' n n+OO 

the right inequality of (2), so that lim Sw 
n 

00 from the left inequality of 
n+OO 

(2). The unstability of wn follows from this. 

Q.E.D. 

From this theorem, the W in the following three cases is stable if and 
n 

only if sup Sn < 00 with probability one. 

Example 3. S = sT = x where x is the strictly stationary process. 
n n n n 

In this example U o with probability one. 
n 

Example 4. u S .- sT is the circular stationary process such that 
n n n 

p 
U - u (i=l,"',p, m=O,±1,±2,"') and that Pr{L:u. mp+i - i 1 ~ 

example, 
k 

inf L:U 
1~~p-1 1 n 

~ 

j 
L: 

n=i 
u 

n 

k 
:;; sup L:u 

1:;;k?,p-1 1 n 

O} 1. In thi.s 

Example 5. u S - sT E 
n n n n 

- 8 E - - 8 E where the para-
1 n-1 p n-p' 

meters satisfy the equation; 1 - 8
1 

8 = 0 and E is the strictly 
p n 

sta tionary process such that Pr{ 1 El:;; K} 
n 

1 for some number K. In this 

example 

j p-1 p 

1 L: u 1 :;; 

n=1 n 
K{ 1 + L: 11 - 8

1 
- '" - 8.1 + L: 18. + •. , + 8 I}. 

1:=1 ~ i=1 ~ P 
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4. Strictly Stationary Input with the Finite Variance 

In the examples of the previous sections the finiteness of Var Un' is not 

supposed. If Var U < 00, i.e., if U is the strictly and weakly stationary 
n n 

process, the autocovariance of U is characterized by the spectral distribution 
n 

function F, that is, 

IT ikA 
EU u k = f e dF(A). 

n n-. -IT 

Although the stability of w , as is seen in Example 2, is not determined only 
n 

by the spectral distribution function, the stable processes given by Example 

1 ~ 5 have the special spectral distribution functions. For example, the 

spectral distribution of the circular stationary process has masses only on 

the points A= 2j
IT, (J' = [ 2-p ] .•. -'I 0 1 ••• [p..]) and the spectral 

j p 2'" , , , 2 
density of the moving average process of Example 2, if E is identically 

n 
independently distributed, is 

f(A) ~; 11 - i e ,e-
ijA I2 , 0

2 

j=l J 

P 
Moreover, the condition Pr{L:u, = O} = 1 of Example 1 or 4 is corresponding to 

1 ~ P 

F(O) - F(O-) = 0 and the condition 1 - :: e, 
i"l ~ 

o in Example 2 or 5 means that 

These facts make us infer that the stable process has some special spectral 

distribution and that its spectral distribution has small masses in the 

neighborhood of A = O. In this section ~le will consider these points. 

First, the following theorem shows the various possibility of existence 

of the stable model in the strictly stati_onary process with the finite 

variance. 

Theorem 3. Let f(A) be a nonnegative function on [-IT, IT] such that f(A) 
A -2 is symmetric with respect to A = 0 and that f(A)(sin 2) is integrable. Let 

the Fourier series of If(A) (2sin ~ )-2 be I e ,eijA 
j=_OO J 

If I le, I < 00, then 
j=_oo J 

we can construct the stable model with s servers in which f(A) is the spectral 

density function of a strictly stationary process un. 

Proof. Let En be the sequence of identically independently distributed 

random variables with mean zero and variance one. Moreover we suppose that 

Pr{IE I < K} = 1 for some number K. Then the spectral density function of 
n 
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00 

x L e.£ . is 
n j=_oo] n-] 

T. Nakatsuka 

A -2 
f(.l..) (2sin 2) . 

sT = [u ] t - u • 
n n n I -iA12 Then the spectral density function of U is 1 - e f(A) x 

n 
00 .l.. -2 

(2sin 2) = f(A) (see Nakatsuka [8], Theorem 1, 11). Since Ix I < K Lle.1 
n j=-oo] 

< 00, this is the case of Example 2 or 5 with p = 1. 

Q.E.D. 

Next, we consider about unstability. If the single server queue with 

U is unstable, the many-server queue with the same U is unstable. This is 
n n 

easily seen by the relation Sw 1 ~ [sw + u ]t. n+ n n 
n 

Theorem 4. Let cr 2 
n Var( L u_

k
). If there is a sequence ni such that 

k=l 
n. 

2 ~ 2 
lim a = 00 and (a L ll_k) is uniformly integrable, then the s-server queue 
i+oo n i n. k=l 

~ 

with this u is unstable. 
n 

Proof: Without loss of generality we assume that lim a2 
n 

n 

00 and 

(_1 '" u k) 2 1's . f 1 . t bl ~ un1 orm y 1n egra e. 
an k=l -

n+OO 

-1 n 
If we put Yn = an LU_k , Yn distrib-

1 

utes with mean 0 and variance 1. By the Helly's sellection lemma there is a 

subsequence n. such that the distribution function of Y converges weakly to 
] nj 

some right continuous nondecreasing function G. G is a probability distribu

tion function because of the Tchebychev's inequality 

Pr{y > k} < ~2 for any k. 
n k 

2 
From the uniform integrability of y the distribution G has mean zero and 

n. 
] 

variance 1 (see [2] p.32), which means that G has the positive probability on 

the open half line (0, 00). Hence there are positive numbers a, £ and m(a, £) 

such that for any j larger than m(a, £) 

pr{ 

n. 
] 

L u > a a} 
1 -k nj 

n 

Pr{y 

Therefore Pr{sup L U_
k 

= oo} > o. 
k=l 

n. 
] 

> a} > £ > o. 

Q.E.D. 

Loynes proves that the G/G/1 queue with EUn = 0 is unstable if one of Sn 

and Tn is a mutually independent sequence. If the weakly stationary process 
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is mutually independent, its spectral density is a uniform function of [-rr, rr]. 

Therefore, in the strictly ~-mixing stationary input with the finite variance, 

the Loynes' result is included in the following corollary. 

Corollary 5. Suppose that u_
k 

is <p-mixing with ~~! < 00. Let f(A) be the 
n 

spectral density function of the absolutely continuous part of the spectral 

distribution function of U_
k

' If f(A) is continuous at A = 0 and if f(O) > 0, 

then w is unstable. 
n 

Proof '. ll.·ml.·nf.!. 0'2 ~ 2~f(0) ( [8) 274 [1) 459) B (2) _" see, p. or ,p . • y , n n 
n 

n 
1 ( ~ U k)2 is uniformly integrable. 
n k=l -

1 Hence, -
i n 

grable. The corollary follows from Theorem 4. 

2 
~ U_

k
) is uniformly inte-

k=l 

n 

Q.E.D. 
n 

If U is Gaussian, (~U_k)2 is uniformly integrable. In such cases 
n 0'2 1 

n 

the queue is unstable if limsup 0'2 = 00. The following theorem means that 
n 

n+oo 

l ' 2 'f d 1 'f ITI (' A )-2d l.msup an = 00 l. an on y l. -TI Sl.n 2 F = 00. 

Theorem 6. Let F be the spectral distribution function of U_
k

• Then, 

(3) 

TI A-2 
where I (sin -2) dF = 00 if F(O) - F(O-) > O. 

-TI 

Particularly if F is the absolutely continuous function, 

(4) 

Proof: 

nA n TI 

~ e
itA

I
2

dF 
TI sin-

}2dF (5) Var(W_
k

) I I J { 2 
X 

J -TI t=l -TI sin -2 

1 
TI cos nA + 1 I 

TI 
1 

-2 1 
(' X)2 

dF 2 X 2 dF. 
-TI Sl.n 2 -TI (sin "2 ) 

The right inequality of (3) is easily derived from this. Next we prove the 
A -2 left inequality. First suppose that I{sin 2) dF < 00. Unless left inequality 
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of (3) holds, there are an integer m and a positive number E such that for any 

n <;: m 

(6) 
IT 

f cos nA dF > E. 

( . X) 2 -IT sm"2 

Therefore 

n IT 
Hminf ~ f cos jA dF <;: E. 

n-m-1 (. A)2 
n-+OO j=m -IT s1n"2 

This is impossible by the Lebesgue's dominated convergence theorem and by the 

equation 

n 
lim __ 1__ ~ (cos jA + isin jA) 

n-m-l 
n-+co j=m 

A -2 
Next suppose that f(sin "2) dF = 00. 

I . 1 ~ ijA {1: A 0 
1m n-m-l . e = 0: A I O. 

n-+oo J=m 

Then F(O) - F(O-) > 0 or 

A -2 In the former case f (sin "2) dF = 00. 

{n;;:IAI>o} 

(7) fIT I ~ e itA
I
2dF <;: n{F(O) - F(O-)} n-+oo ___ -+ 00. 

-IT t=l 

In the latter case if 0 > 0, 

(8) 
IT n "2 

limsup f I ~ e~tA I dF ;;; 
n-+OO -IT t= 1 

By the fact proved first, 

;;: t f (sin ~ )-2dF 0 ~ 0, 00. 

{IAI>o} 2 

h b I 1 · . fIT (. A) -2dF < Next let F be tea so ute y cont1nuous funct10n such as -IT S1n "2 00 

From (5) it is sufficient to prove that the equation 

(9) lim fIT g(A)COS nAdA 
-IT 

n-+OO 

o 

holds for any integrable function g(A) on [-IT, IT]. 

Let B be the set of all subsets E on [-IT, IT] such as lim J cos nAdA = O. 
n-+oo E 

B contains the any interval and is a 0 additive field, so that B contains 

the any Borel set on [-IT, IT]. Hence, (9) holds for any simple function and 

therefore for any integrable function. 
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IT A-2 
When f (sin -2) dF 

-IT 
00, the equality; lim / I ~ e

itA I2
dF 

12+00 -IT t",1 
00 is proved 

by (7) and (8). 

Q.E.D. 

5. Initial Condition 

Loynes ([6] p.506) states that the w with a special circular process 
n 

and a positive initial value is properly substable. As other example we will 

consider Example 2 with the process U '" E - E 1 where E is identically 
n n n- n 

independently distributed. Since we have 

max{wn + Un' O} 

max{w1 + U
1 

+ ••• + U ,u + ••• + U , ••• , U , O} 
n 2 n n 

En + max{w1 - EO' -El'···' -En _1 , -En}' 

the limiting distribution is the same as that of En + max{w1 - EO' -T 1}. 

Hence, although w is stable for any initial condition, its limiting distribu
n 

tion is affected by the initial condition. In this case the variance of 
n 
L U, is bounded from Theorem 6 and generally the following theorem holds. 

i"'l ~ 

Theorem 7. There is no queue satisfying the following three conditions. 

(10) wn is stable for any initial condition. 

n 
(11) The variance of L u, is bounded with respect to n. 

i=1 ~ 

( 12) The limiting distribution of w is not affected by the initial con-' 
n 

dition. 

Proof: Let's assume that a w 
n 

satisfies these conditions and let G be 

the limiting distribution of Sw • 
n 

Then for any real number K, 

n-1 
pr{ L u, :;;; K} = pr{Sw - SW1 

- 0 :;;; K} 
i=l 

~ n n 

~ pr{Sw :;;; K + SW
1

} 
n 

If we select w
1 

such that K + sW
1 

is the continuity point of G, then we can 

continue with 

This is impossible because of Tchebychev's inequality and the condition (11). 

Q.E.D. 
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