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Abstract Maximum likelihood estimates of parameters in continuous time Markov chains are obtained when the 

observation plan is Poisson sampling. Furthermore, for birth and death processes, variance-covariance matrix of 

parameters is obtained. Especially, for queueing model M/M/I, the variance·covariance matrix by Poisson sampling 

is compared with the variance-covariance matrix by complete observation in detail. 

1. Introduction 

Let {x(t), t ~ O} be a continuous time Markov chain with transition 

intensity matrix Q = (q . . (8», where 8 is a m-dimensional column vector 
7..J 

which represents an unknown parameter ranging over a set e in m-dimensional 

Euclidean space. The problem which we shall consider is that of estimating 

from observations on the process. 

If x(t) is observed continuously over the time [O,T], we say that this 

observation plan is complete observation. 

In this paper, we shall consider a different observation plan named 

Poisson sampling. We shall observe the process at a random observation points 

{VD = 0+ < VI < Vz < ••• }, and count the number of transitions of states 

occuring in the random observation intervals (vk_l,V
k

] (k = 1,Z, ... ). Now, 

assume that (k = 1,Z, ... ) are independent identically dis-

tributed exponential variates with parameter v. This sampling is then called 

Poisson sampling derived from {x(t), t ~ a}. This method was first consider­

ed by Kingman [4]. But an application to a statistical problem using Poisson 

sampling is only seen in Basawa [1]. 

Here we shall consider the estimation of the parameters of a continuous 

time Markov chain based on Poisson sampling. We often encounter the case that 
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100 Y. Baba 

the between-event intervals are unobservable. Such situations are not un­

common in practice, and occurs particularly in certain queueing and other 

stochastic models. In such a case, Poisson sampling is a powerful method, 

because Kingman [4] showed that it determines the original process completely. 

In Section 2, we shall construct the likelihood function of a continuous 

time Markov chain of general type when the observation is done by Poisson 

sampling. And solving the maximum likelihood equations, we shall obtain the 

maximum likelihood estimates of parameters. Furthermore we want to get the 

variance-covariance matrix of parameters and compare two matrices in the 

complete observation case and Poisson sampling case. However, it is very 

difficult to obtain the variance-covariance matrix in a general type Markov 

chain. So, in Section 3, we shall only consider the birth and death process 

which is a very useful but simple structured model. For the birth and death 

process, we have the variance-covariance matrices of parameters for two sim­

ple models given by Wolff [6]. But even for the birth and death process, the 

variance-covariance matrix by Poisson sampling is not yet represented by 

explicit forms. Hence, in Section 4, we shall deal with in detail a simple 

but useful queueing model M/M/l which is a special case of birth and death 

processes. For this model, we can compare the variance-covariance matrices of 

complete observation case over [O,T] and Poisson sampling case of w ob­

servation points. And the determination of W is done in order to obtain 

smaller variance of parameters than the variance of complete observation 

case. 

2. Maximum Likelihood Estimation of Parameters in Continuous Time Markov 
Chains by Poisson Sampling 

We observe a continuous time Markov chain with transition intensity 

matrix Q = (q . . (8» by Poisson sampling until the number of transitions of 
1.-J 

states amounts to n. So the data obtained by this sampling are successive 

states (XO,XI' ... ,Xn ) and li 

servation points between x
i

_
l 

Let q.(8) = .r..q . . (8) and 
1.- J=Fl- 1.-J 

(i = l, .•. ,n) which are the number of ob­

and x .. 
1.-

1T •• (8) = q . . ( 8) / q . ( 8) • Then, from the prop-
1.-J 1.-J 1.-

erties of a continuous time ~!arkov chain, the following equations hold clearly: 

(2.1) k I X. 
1.-

j) 
k 

JooexP(-~~)(vt) q.(8)exp(-q.(8)t)dt 
o • J J 
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k q .(S)v 
J 

{v+q.(S)}ktl 
J 
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(k 0.1 •... ) 

Thus. ignoring the distribution of initial state xo' the likelihood function 

based on these data is 

(2.3) L (S) 
n 

n-l 
IT 

i=O 

n-l 
IT 

i=O {v + q (S)}li+l+l 
x. 

t. 

Therefore, from the following maximum likelihood equations, 

(2.4) 
alnL (S) 

n as. = 0 
t. 

(i = 1, ... • m) 

we can get the maximum likelihood estimates (MLE) of S. 

Especially. if the state space is finite, that is, S = {l •...• s} and 

q . . (S) 
t.J 

q .. , then the log-likelihood function with Lagrange multiplier bE!­
t.J 

comes 

lnL n 

(2.5) 

n-l 

n-l n-l 
L lnq + L lk+1 lnv 

k=O xkxk+1 k=O 

n-l s 
L (Zk+1 + l)ln(v + q ) + L A .(q. -

k=O xk i=l t. t. 

n-l 
L n .. lnq .. + L lk+l lnv 

j#i t.J t.J k=O 

s s 
L P .In (v + q.) + L 

i=l t. t. i=l 
A. (q. - L q .. ) 

t. t. j#i t.J 

L q .. ) 
j"lzi t.J 

where P.= i: 8 .(lk +1), 
t. k=O xk,t. +1 

is the Kronecker delta) and 

the number of transitions such that x k = i and x k+l = j. 

Hence the maximum likelihood equations a.re 

'dlnL n .. 
n ....l::iL A. aq:-:=q .. - t. 

t.J t.J 
o (i = 1 •... ,8; j 1, ...• 8; j 1:= i) 

n .. 
t.~7 

is 
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(2.6) 
alnL n 
~=-

'Z-

alnL 

1'. 
'Z- + A. = 0 

v +qi 'Z-

__ n= 
q. - E q .. = 0 

'Z- j=/i 'Z-J 

Y. Baba 

(i = 1, ... ,8) 

(i = 1, ... ,8). 

Solving equations (2.6), we obtain 

(2.7) 
vn .. 

Cj = 'Z-,7 
ij 1'. _ r n .. 

'Z- j =Ii 'Z-J 

(i = 1, ... ,8; j= 1, ... ,8; j i=i). 

This MLE has a simple form. But the denominator 1'. -
'Z-

n .. 
'Z-J 

of (2.7) may 

be zero. For such i, we cannot estimate q . .• 
'Z-J 

3. Determination of Variance-Covariance Matrices for Birth and Death 
Processes by Poisson Sampling 

In Section 2, we have obtained the MLE of q . . (e). It is, however, very 
'Z-J 

difficult for a Markov chain in general type to obtain the variance-covariance 

matrix of q . . (e). So, in this Section, we shall consider only for ergodic 
'Z-J 

birth and death processes. 

We denote by A. (e) 
'Z-

and U. (e) 
'Z-

(i = 0,1, ... ) the parameters of birth 

and death processes. In our notaions defined in Section 2, A • (e) = q. '+1 ( e) 
'Z- 'Z-,'Z-

and U . (e) = q. . 1 ( e) • 
'Z- 'Z-,'Z--

In constructing the likelihood function, it will be useful to consider 

the portion of it, Li , which represents a single transition xi + x
i
+l . 

Given 

(3.1) xi = j and li+l = k, 
it is easy to show the following expression 

(3.2) 

Define 

(3.3) 

lnL. (e) 
'Z-

lnA/e) + klnv - (k + lHn{v + A/e) + u/ e)} 
if xi+l = j + 1 

lnu.(6) + klnv - (k + lHn{v + A.(e) + u.(e)} 
J J J 

if x i +l = j - 1. 

G = (alae )ZnL. (e) 
U U r 

G = (Gl, •.. ,Gm) 

(u=l, ••• ,m) 

G = (a 2 /ae ae )ZnL.( 8) uv u v 'Z-

Then, from Theorem 7.3 of Billingsley [2], 

(u = l, ... ,m; V = l, ... ,m). 

In (§ - e) is asymptotically 

normal (it converges in law to the normally distributed random variable) with 

O d · . i 0-1 (e) . B . d d 1 i mean an var1ance-covar1ance matr x eS1 es un er regu ar ty 

conditions the following facts are well known 

(3.4) E(G ) = 0, 
u 

E(G ) 
uv -a uv 
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From (2.4), the variance-covariance matrix of Gu' E(rxl), is 

(3.5) E(Gc1) = 0(8) = (0 ) = (-E(G )). uv uv 

We sha.1.1 ca.1cu.1ate the asymptotic variance-covariance matrix for two simp.1e 

mode.1s given by Wo.1ff [6]. 

Model 1: 
A. > 0, 
J 

\1 . > 0, 
J 

j 0,.1, ••• ,M-.1, 

j .1,2, ••• ,M, 
T 

There are 2M unknown parameters 8 

are required on.1y to be finite and positive. 
("o""'~-.1'\1.1""'\1M)' which 

A. is the j + .1 st component 
J 

and \1. is the M + j th component of El. From equation (3.2), under the 
J 

condition (3.1), we have 

103 

Gj +1 
.1 k + .1 

GM+j 
k + .1 for = j + .1 =T:- V + A. + \1. V + A' + \1' xi +1 

J J J J J 

(3.6) Gj +1 
k + .1 .1 

G == -- ~ + .1 for 
V + A. + \1. 

J J 

otherwise G = O. 
u 

, 
v+ MTj \1 • 

J 

We continue to condition on (3 • .1) 

.1 k + .1 
- A. 2 + (v + A. + \1.) <. , 

J J J 

GM+-' M+-' 
~ + 1 

G'+1 M+-' (v + A. + \1 .) 2 , J, J 
J J 

J , J 

(3.7) for 

G'+1 '+1 
k + .1 

G'+1 M+-' = (v + A. + ) <. 
, 

J ,J \1. J ' J J J 

A.+ \1. 
J J 

~ + .1 
(V + A. + \1.) 2 

J J 

x
i
+1 = j + .1 

7s. + .1 
(v + A. + \1 .) 2 

J J 

G.LJ..' .LJ..' 
1'1' ,J ,1'1 'J 

.1 k + .1 
-~+ --y \1 . (v + A. + \1 .) 

for x i +.1 j - .1 
J J J 

otherwise G = O. 
uv' 

Thus we have 

-E(G '+.1 '+.1 I x. J ,J -z. 

xi+1 

(3.8) 
>... 

.1 
>... + \1 . 
• 7 J 

{--L k + .1 } _ \1.i • k + .1 
>...Z - (v + A. + \1.:i2 A. + \1. (v + A. + \1J 2 
J J J J J J J 

.1 
>... (A. + \1.) 
J J J 

And similar.1y 

.1 k + .1 

j -

-E(GM+· M+' J, J 
k) 

\1.(>"'+\1.) (v + A. + \1.) <. 
J J (3.9) J J J 

.1 
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From equations (3.8) , (3.9) , and (2.2), we have 

-E(G'+1 '+1 j) = 
1 1 x. 

L(L+fl') ( A. + fl.) (v + L+ fl .) J ,J 1.-
J J J J J J J 

v+ fl· ,1 
L(A. + fl·)(V + L+ fl .) 

(3.10) J J J J J 

v + L 
-E(GMt · Mt' x. j) ,1 

1.- fl·(L + fl·)(V + A. + fl.) J, J 
J J J J J 

-E(G'+1 Mfj Ix. j) 1 
J , 1.- (A. + fl.) (v + A. + fl.) 

J J J J 

Here we define some notations. Let P. (j = 0,1, •.. ,M) be the sta-

tionary distribution and y. 
J 

J 
(j = 0,1, ... ,M) the probability that a 

randomly selected transition was out of state j. Then, using the fact by 

Wolff [6], it is easily shown that 

(3.11) 

where 

Hence, 

(3.12) 

y • = 
J 

(A. + fl.)P ./2R 
J J J 

(j = 0,1, ... ,M) 

M-I M 
R = L: LP. = L: P .P. (R is called the 

j=O J J j=O J J 
from (3.10), we have 

V (Gj +1 ) = E[-E(Gj +1 ,j+1 Xi k)] 

y . (v + fl.) 
.7 .7 

A.(A. + fl.)(V + A. + fl.) 
J J J J J 

Y • (V + A.) 
J ,7 

fl·(A. + fl·)(V + A. + fl·) 
J J J J J 

y .V 
C () .7 ov G j+1 ,M+j = - -,(-A-. -+-~) -:"( -+-A-+-----O-) 

J flj V j flj 

otherwise Cov(G,G) O. 
u V 

average throughput). 

Hence, using equations (3.11) and (3.12), we have 

P.(V + fl.) 

V (Gj +l ) 2RA.(~ + A. i fl.) (j O,l, ... ,M-l) 
J J J 

(3.l3) 

P.(V+A.) 
V(GM+j )=2R (.7+

A 
i) (j 1,2, ... ,M) 

Pj V j flj 
P.v 

COV(Gj +1,M+j) = - 2R(v +'\. + fl.) (j 1,2, ... ,M-I) 
J J 
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Model 2: 
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Cov(G ,G ) = 0 . u v 

A. = Ah(j) ]..I. = lJ{J(j) , j ,= 0,1, ••• , and g(O) = 0 
J J 

T where 6 = (A, ]..I), and h(j), g(j) are assumed to be arbitrary but known 

function of j. Moreover, for ergodicity, we assume that 

00 nn-l h(k) 
~ (A/]..I) ~ (k+l) < 00. Given (3.1), we have from (3.2) 

n=l k=O 9 

(3.14) 

G = ~ _ (k + l)h(J) 
1 A v + Ah(j) + ]..Ig(j) 

(k + l)h(,j) 
v + Ah(j) + lJ{J(j) 

(k + 1){h(,j)}2 

(k + 1) g(,j) 
G2 = - V + Ah(j) + lJ{J(j) 

if xi+l = j + 1 

1 (k + l)g(j) 
G2 = ~ - v + Ah(j) + ~(j) 

if x i +l = j - 1 

G
ll 

_.1...+ 
A2 {v + Ah(j) + lJ{J(j)}2 

G22 
(k + 1){g(,i)}2 

{v + Ah(j) + lJ{J(j)}2 

G12 
(k + l)h(,j)a(j) 

{v + Ah(j) + lJ{J(j)}2 if xi+l = j + 1 

G
ll 

(k + 1){h(,i)}2 
{v + Ah(j) + ]..Ig(j) P 

G22 
_.1...+ (k + 1){a(,t)}2 

]..12 {v + Ah(j) + lJ{J(j)}2 

(k + l)h(,j)a(,j) 
G12 = {v + Ah(j) + lJ{J(j)}2 if x i +l = j - 1 . 

By similar calculations as Model 1, we have 

00 {h(j) FP . 
V(Gl) - .....L ~ ,2 

- 2A2 - j=O 2R{v + Ah(j) + lJ{J(j)} 

(3.15) 
1 00 {g(j) }2p. 

V(G
2

) = ~ - ~ .1 
2]..1 j=O 2R{v + Ah(j) + ]..Ig(j)} 

00 h(j)g(j)P. 
_ ~ ,1 

j=O 2R{v + Ah(j) + ]..Ig(j)} 

105 

In both Model 1 and Model 2, we have obtained the asymptotic varianee-

covariance matrices of parameters. 

the explicit forms of P. and R. 
J 

But, in general, it is difficult to get 
-1 

So, a(6) or its inverse a (6) is not 
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represented here in explicit form. In next Section. we shall deal with in 

detail a simple but useful model M/M/l which is a special case of Model 2. 

4. Further Investigation of Queueing Model M/M/l 

Let us define 

A. A for i 0.1 •... 
1-

(4.1) ~. ~ for i 1.2 •... 
1-

0 for i 0 

and for ergodicity assume that A < ~. So that. in our notation in Section 3. 

h(i) 1 for i 0.1 •... 

(4.2) g(i) 1 for i 1.2 •.•. 

0 for i 0 . 
On this model. we shall consider the variance-covariance matrix of parameters 

both when the observation is complete over [O.T]. and when the observation 

is made by Poisson sampling of w observation points. 

In Section 3. we have fixed the number of transitions of states. But in 

this Section. we fix the number of observation points. So the number of tran­

sitions of states. n • becomes a random variable and depends on w. We denote 

it as n(w). 

We shall also consider the determination of w so that we get smaller 

variance than that in the case of complete observation over the interval 

[OS]. 

When the data were obtained by complete observation over [O.T]. we 

define the following notations. 

y. total souj'our>r! time in state i over [O.T] 
1-

a. the number of transitions i +i + 1 over [O.T] 
(4.3) 1-

b. the number of transitions i +i - 1 over [O.T] 
1-

00 00 

a L a. b L b. 
i=O 1- i=O 1-

Then. by using the notations (4.3). it is easily derived that the maximum 

likelihood estimates of A and ~ are 

(4.4) A = ~ 
T 

~ b 
~=---

T - yo 
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Furthermore, from Bi11ings1ey [2] and Reyno1ds [5], it is easily shown that, 

for large T, 

(4.5) 

Next we consider the Poisson sampli.ng case. We construct the likelihood 

function by Poisson sampling when the observation intervals are independently 

and identically distributed exponential variates with parameter v, and the 

number of observation points is W. We define some notations similarly to 

(4.3) . 

u. 
'2.-

(4.6) d. 
'2.-

u = 

the nwnber of transition;;: 

servation point 

the nwnber of transition;;: 

servation 
00 

point 

d = 

00 

I: 
i=O 

d .. 
'2.-

Then, similarly to (2.5) in Section 2, let 

(4.7) 1'. 
'2.-

n(w)-l 
I: 0 ,(Zk+1 + 1) 

k=O Xk ,'2.-
and 

i -+ i 

i -+ i 

l' = 

+ 1 untiZ 

-

00 

I: 
i=O 

1 until 

1' .. 
'2.-

w-th Poisson ob-

w-th Poisson ob-

Hence, analogously to (2.3), ignoring the initial distribution and end effect, 

that is, the information contained in the process from the last transition 

point to the last observation point, it is easily shown that the likelihood 

function based on these data is 

(4.8) L 

where K is a constant free from A and ].1. Taking the natural logarithm 

of both sides, we have 

(4.9) 

Hence, from the following maximum likelihood equations, 

(4.10) 

1'0 ----
\! + A 

aZnL d l' - 1'0 
~ = V-\! + A + ].1 

o 

o 

we obtain the maximum likelihood estimates 
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(4.11) A = _-'uc:..v"-----" 
r - u - d 

d(r - d) V 
o = (r - rOd) (r - u - d) • 

Besides, from equations (4.10), we have 

a2 ZnL 1"0 r - r u 0 
~= - ""i2 + (v + A) + (v + A + ]..I) 2 

(4.12) d2 ZnL d r - rO 
~=- - +-

]..I) 2 ]..12 (v + A + 

d2 ZnL r - r"() 

dAd]..l = (v + A + ]..I) 2 

When the number of observation points is w, actual w-th observation time, 

Tw' obeys w-th Erlang distribution with parameter v. Therefore the proba­

bility density function of Tw' f(t), is 

(4.13) 
w w-l 

v t 
f(t) = r(w) exp(-vt) 

Since it is well known that both u and d obey Poisson distribution with 

parameter ATw' E(u IT) = E(d IT) = AT • w w w Hence, we have 

(4.14 ) 
w 

E(u) = E(d) = f: Atf(t)dt = ~(w)f: tWexp(-vt)dt = )~ 

Next let z be the number of observation points from the last transition 

point to the last observation point. Then it is easily shown that 

(4.15) r = u + d + W - Z 

Taking expectations of both sides, we have 

(4.16) E(r) = E(u) + E(d) + w - E(z) = 2AW + w - E(z) 
v 

Since, for large w, it is easily verified that E(z) is negligible, we have 

(4.17) ZAw E(r) ~ - + W • 
V 

For Mlull, stationary distribution P. and average throughput R defined in 
J 

Section 3 have simple forms and are represented by 

(4.18) P. = (1 1..) (1..) j (j 0,1, ... ) R A' 
J ]..I ]..I 

And from (3.11), we have 

(4.19) YO = 
1:.(1 _ 1..) 
2 ]..I 

Hence we have 
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(4.20) E(U
O

) = E(u + d)yo = 2Aw.l(1 _ 1) = WA(U - A) • 
v 2 11 l1V 

Furthermore by taking the expectation of both sides in (4.7), we have 

(4.21) E(l' ) = E(u ). v + A = w(u - A) (v + A) 
o 0 A l1V 

where is the expectation of the number of observation points + 1 when 

a transition is from 0 to 1. From equations (4.12), (4.14), (4.17), (4.20) 

and (4.21) we obtain 

_E(.d 2 ZnL) "'" w(A2 + v2 + AV + u\» 
\.:3A2 AV(V+A)(V+A+p) 

(4.22) -E (.d~,~r;L) "'" WA(V + A) 
\. 0,.. 11 2 v(v + A + 11) 

Therefore asymptotic variance-covariance matrix of A and 11 are 

-E (d
2 

ZnL) ~ 
-1 

A(V + A) 1 
dA 2 -E (dAd\l ) W W 

(4.23) "'" 
_E(d

2
ZnL) -E(~) 1 ~2(AZ + v2 + A~ + I.l~) 

dAdl1 d11 2 W WA(V + A) 

Comparing with the complete observation ease, in order to obtain smaller 

variances of A. and 11 than those of complete observation over [O,T], the 

number of observation points by Poisson sampling, w, will be needed as fol­

lows by using (4.5) and (4.23) 

(4.24 ) >..(V + >..) < 1 
W =T' 

U2 (A2 + v 2 + Av + uv) .it 
WA(V + A) ,;. AT 

Solving the inequalities (4.24), we obtain 

(4.25) 

Now, we consider the problem which is better a complete observation or 

a Poisson sampling when we need the observation cost. Let CO' Cl be the 

observation cost per unit time by complete observation and the observation 

cost per an observation by Poisson sampling, respectively. Then the cost of 

observing the process over [O,T] by cOlnplete observation is given by COT 

and the cost of observing the process until the w-th observation point by 

Poisson sampling is given by Clw. From the inequality (4.25), if 
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(4.26) 
v + A + V(j.l - A) 

v + A 

Y. Baba 

then the cost for Poisson sampling is less than that for complete observation, 

in order to get the same variances. In such a case Poisson sampling is better 

than the complete observation. In Fig. 1, we showed the maximum value of 

Cl/CO in the case where the cost for Poisson sampling with parameter v is 

less than that for complete observation, when j.l = 1 and p = A/j.l is 0.5, 

0,'7 and 0.9. 

2.0 

1.5 

1.0 

0.5 

4 
o 

1 2 3 o 
v 

Fig. 1 
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