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Abstract We consider a stochastic version of minimal spanning tree problem in which edge costs are random vari-

abIes. The problem is to find an optimal spanning tree and optimal probability level of a certain chance constraint. The 

problem is first transformed into a deterministic equivalent problem. Then its subproblem with positive parameter and 

further an auxiliary problem of subproblem are introduced. Finally, fully utilizing relations among these problems, we 

propose an algorithm which finds an optimal solution of the original problem in a polynomial order of its problem size. 

1. Introduction 

Until today the minimal spanning tree problem has been well studied and 

many efficient algorithms such as [3,6,7] are known. This paper generalizes 

it to a stochastic version of minimal spanning tree problem where edge costs 

are not constant, but random variables~ The problem is to find an optimal 

spanning tree and optimal satisficing probability level of a certain chance 

constraint. In other words, the problem may be considered as a discrete ver-

sion of [4]. 

Section 2 formulates the problem Po and gives its deterministic equiva­

lent problem P. Section 3 introduces subproblem pq and clarifies its rela­

tion to the original problem P. Further in order to solve pq , its auxiliary 

problem pi is introduced. The relation between pq and pi is also clarified. 

Fully utilizing these results in Section 3, Section 4 proposes a parametric 

type algorithm. Section 4 also shows that the algorithm finds an optimal 
2 2 spanning tree Elnd optimal satisficing level in at most O(m n ) computational 
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time where m is the number of edges and n is the number of vertices in a given 

graph G. Finally, Section 5 discusses more improvement of the algorithm. 

2. Problem Formulation 

Let G=(N, E) denote undirected graph consisting of vertex set N={-z.;·l' v 2"' •• 

·,V
n

} and edge set E={.el'e
2

, • •• ,e
m

} cNxN. Moreover cost c
j 

is attached to edge 

e .. Spanning tree T=T(N,S) of G is a partial graph satisfying the following 
J 

conditions. (See [2] for details.) 

(a) T has a same vertex set as G. 

(b) S ~T. ISI=n-l where ISI denotes the cardinality of set S. 

(c) T is connected. 

T can be denoted with 0-1 variables x
1

,x2,"',x
m 

as follows. 

T: x
i
=l e

i 
ES 

xt=O ei ~ S. 

Conversely, if {eilxi=l} becomes a spanning tree of G with vertex set N, X=(x
1

, 

x ••• x ) is also called spanning tree hereafter in this paper. 2' , m 

Ord~nary minimal spanning tree problem is to seek a spanning tree X mini-

mizing L C.X., In many real situations, however, c. 's may not be constant, 
j=l J J J 

rather random variables. So we consider the following stochastic version Po 

of minimal spanning tree problem. 

Po: Minimize f - A.a 
m 

subject to (2.1) pr{ L c x :::f} ~a 
j=l j j - -

x.=o or 1, j=l, ... ,m, X: spanning tree, 
J 

1 
1;0.>'2 

where each c j is assumed to be distributed according to the normal distribu-
2 

tion N(~., 0J~) with mean ~. and variance 0., and they are mutually independ-
J J J 

ent. The probability level a is also decision variable representing a sat is-

ficing level of chance constraint (2.1) and A. is a positive constant. As is 

well known in the theory of stochastic programming ([5,8,9]), Po is equivalent 

to the following deterministic problem P. (For details, see Appendix.) 

P: 
m m 2 1 

Minimize g(X,q) t; L ~.x. +q( L OjX.rZ--AF(cj) 
j=l J J j=l J 

subject to X,,=O or 1, j=1,2,oo.,m, X: spanning tree, q >0, 
J 

where F(o) is the distribution fuction of the standard normal distribution 
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N(O,l) and q=F (a). 

Chance Constrained Spanning Tree Problem 

3. Subprob 1 ern pq and Its Aux il ; a ry Problem P~ 

First this section introduces the following subproblem pq in order to 

solve P. 

Hinimize 
m m 2 + L 11.x. +q( L a.x.) 

j=l J J j=l J J 

subject to x.=O or 1, X: spanning tree. 
J 

Let Xq denote an optimal solution of pq, X(q) set of all Xq and (X*,q*) an 

optimal solution of P. Further we define 
m 2 1 m 

D(X)=( L a.x.)"T E(X)= L 11.x. and D(q)={D(Xq) \XqE X(q)}. 
j=l J J j=l J J 

149 

Though q +D(q) is a point to set mapping, the following discussions hold, how-

ever, even if we choose D(Xq) corresponding to any Xq as a representative of 

D(q). Therefore, we denote above D(X
q

) as Dq simply as if Dq were unique. 

Property 1. D
q 

is a nonincreasing function of q. 

Proof: From the optimality of xqi and Xq2 for ql and q2> ql respectively 

the following relations 

and 

hold. Subtracting the right hand side of (3.2) from the left hand of (3.1) 

and the left hand side of (3.2) from the right hand side of (3.1) respectively 

we have 

or 

(3.3) 
m 2 + m 2 .} 

(q -q ){( L a.x~l) - ( L aJ.xJ~2) } ~O 
1 2 j=l J J j=l 

Since 

(3.4) 

In order to solve pq, now we define an auxiliary problem P~ with positive 
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parameter R as follows. 

~Q m cl 
Minimize R.t ~.x. +q L .x. 

j-l J J j=l J J 

subject to x.=O or 1, X: spanning tree. 
J 

Let X
q 

(R) denote an optimal solution of P~: Note that P~ is an ordinary mini­

mal spanning tree problem with each edge cost R~. +q~. Thus Xq(R) can be 
2 J J 

found by Prim [7], Kruskal [6] etc in O(n ). 

Property 2. D(Xq(R») is a nondecreasing function of R. 

Proof: From the optimality of X
q 

(RI) and X
q 

(R2) for RI and R2 > RI> 0 

respectively, we can obtain 

(3.5) 

and 

(3.6) 

Dividing (3.5) by RI and (3.6) by R2 respectively, 

(3.7) 
m m m m 
,q q,2q )<, q )~,2q 
L ~. x . (RI) + R L 0'. x . (RI = L ~. x . (R2 + R L O'j x. (R2) 

j=l J J lj=l J J j=l J J lj=l J 

and 

(3.8) 

result. Subtracting the right hand side of (3.8) from the left hand side of 

(3.7) and the left hand side of (3.8) from the right hand side of (3.7) respec-

tively, 

or 
2 m 2 

D (X
q 

(R » = L I]. X ~ (R ) 
1 j=l J J 1 

results since q>O and (1_ 1 »0. 
RI R2 

D(Xq(R
l
» ~ D(XQ(R

2
» 

holds since D(Xq(R
l
», D(Xq (R

2
»>O. 

That is 

Next the relation between pq and P~ can be clarified. 

o 
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Lemma 1. For R ~ 2D
q 

and any spanning tree X such that D (X) > Dq
, 

m m m m 
\ - \ 2- > \ q \ 2 q 

R l. 1l.X. +q L O.X. R l. lljx. + q l. 0jXj j=l J J j=l J J j=l J j=l 

holds. 

Proof: From the optimality of Xq for pq, 

m m lm m21 
L JJjX~+q( L O~X~)~ L lljX

j 
+q( L o.X.)"T 

j=l J j=l J J - j=l j=l J J 
(3.9) 

holds. Multiplying both hands of (3.9) by R such that 2D
q ~ R > 0 and rearrang­

ing 0.9) appropriately, 

m m 2 m m 2 
RI 11 • X

j
q

+q I O.x~~R I lljXj+q I 0jx.+q£ 
j=l J j=l J J j=l j=l J 

m 2 m 2 m 2 1 m 2 1 
where c ~ ( L 0jX

q
j ) - ( L o.xj ) +R{( L OjXj)"T - ( IOjxj)"T} • 

j=l j=l J j=l j=l 
results 

Then it is sufficient to prove £ < O. Uslng D
q 

and D(X), £ is rewritten as 

follows. 

£ = (D
q

) 
2 

_. D(X) 2 + RD(X) - RD
q = (D

q 
- D(X) )(D

q 
+ D(X) - R). 

Since D
q <: D(X) from the assumption of thts lemma and D

q 
+ D(X) - R < 0, 

= 
£<0 

is derived. 0 

Lemma 2. For R ~ 2D
q 

and any spanning tree such that D 6:)< Dq 
, 

W m 2 m m 2 
R 1. 1J.x~+q L OjX~ < R r lljj(j +q L OjXj j=l J J j=l J j=l j=l 

holds. 

Proof: Assume contrary, i.e., 

(3.10) 
m "l 2 m m 2 

R L 1l.Xq
j +q L OjXjq~R L ll·jt. +'1 L o.jtj 

j=l J j=l j=l J J j=l J 

From the optimality of X
q

, 

(3.11) 

holds. Then the assumption D(X) < Dq and (3.11) together implies 
m m 

0.12) \ q < \ A 
l. ll'Xj l. 1l.Xj • 

j=l J j=l J 
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Therefore from (3.10) and (3.12), 

(3.13) 

holds. 

(3.14) 

m 2 m 2 
q( I o.x~- Io.x.) 

R < j=l J J . j=l J J 

Since 

m m 
I )l.X. - L )l.X~ 

j=l J J j=l J J 

m m m21 m 2 1 
I ]J. x. - I)l . x q ~ q {( L o. x ~) T - ( L o. x . ) T} 

j=l J J j=l J j - j=l J J j=l J J 

holds from (3.11), the relations (3.13) and (3.14) together imply 

m 2 m
2 

m 2 m
2 

q( I o.X~- L o.x.) q{( I o.x~) - ( Io.X.)} 
R< j=l J J j=l J J < j=l J J j=l J J 

= 

(Dq)2_(D(~»2 
------ Dq+D(~) < 2DQ

• 

D
q 

- D(~) 

But this contradicts the assumption R ~ 2Dq . Thus this lemma holds. o 
Remark 1. All optimal solutions of PiDq have the same value with respect 

to D(') and E (.) • Thus they have the same value with respect to g (', q) • 

Theorem l. X Q(2Dq), an optimal solution of PiDq , is also optimal for pq. 

Proof: From Lemma 1 and Lemma 2, X
q 

is better than any ~ (X) in Lemma 1 

(Lemma 2) respectively for P(2D
q
). Further Remark 1 proves the optimality of 

X
q 

among spanning trees ~'s such that D(~)=Dq. [) 

Now let define 

at the point R=qRij , 

such that ° < qR .. < 00 
1J 

2 2 
Ri.=(O.-O.)/()l.-)l.) (i,j=1,2, ••• ,m, 

J J 1 1 J 2 
the order of cost R)l. + qC)'. changes. 

J J 
in increasing order, let 

(3.15) Rq < Rq < ••• < Rq 
1 2 Q, 

i < j). Note that 

Rearranging qRij 

and R6 ~ ° where !/, is the number of different qRij r s belonging to the interval 

(0,00). Note that the order of R~, i=0,1,2, ... ,!/', and!/, are independent of q. 
1 - - -

Theorem 2. Xq(R) for RE [Ri,Ri!l] is also an optimal solution of all P~ 
for R E [R~, Rq 1] so long as the latter interval includes R. 

1 i+ - -!'i 
Proof: Let T~ ~e a cOEresponding spanning tree of Xq(R) Le .• TR consists 

of N and edge set E~leilxq(R)i=l}. Then from the optimality of X~(R), 
- - 2 - - 2 

(3.16) R)lr+qOr ~R)lt+qOt 

m~st hold for any etEE~ and el'E£(e.
t

, T~) where£(e t , T~)={e)looP in {el'}u 

T~ contains edge et}' By the definition of ~, k=1,2, ... ,£, order of edge cost 

does not change among the interval [R~, R~+l]' Thus once (3.16) holds for a 
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also holds, i.e., xi is optimal for P~. o 

4. Algorithm for P 

let f(.) denote the probability density function of standard normal dis­

tribution. Then 

(4.1) 

(4.2) 

ag(X,q) = ( I G~x.)i - Af(q) and 
aq j=l J J 

2 
a ~(X,q) = _q_ e -h 2 

q2 v'21f 

Theorem 3. g(X,q) is a convex function with respect to q > O. 

Proof: Since q > 0, (4.1) implies 

2 
..i.J~ (Xi q) > 0 

aq 

for q>O. 

q > O. 

This inequality (4.2) shows the convexity of g(X,q) with respect to 

D 

By Theorem 3, the optimal q=q(X) for each spanning tree X becomes as follows. 

(A ~ IfiTD(X» 

q(X) = 

o (;\ < I27TD(X» 

Based on q(X), transformation T(q) with respect to q >0 is defined as follows. 

~ '1 { A 2 , (A ~ I21f Dq) 

T(q) = )I: og~ 2TT(Dq)ij 

o CA < I27T D
q

) • 

Note that T(q) is also not necessarily unique. Again as D
q

, the followings 

hold even if we use any D
q 

for T(q). 

Property 3. T(q) is a nondecreasing function of q. 

Proof: By Property 1, 

is nondecreasing function with respect to q and this proves Property 4. 0 
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Theorem 4. (X*,q*), an optimal solution of P, satisfies q*=T(q*), Xq*=X*. 

That is, q* is a fixed point with respect to T(q). 

Proof: q* "T(q*) means q*" q(X
q

*) and it impies 

q* q* q* g{X ,q*) >g{X ,q(X ». 

This contradicts optima1it:y of q*. 0 

Theorem 5. For q1 and q2 = T{q1)' 

q1 >q2 - I q* i. (q2,q1] 

and 

q1 < q2 - I q* t [q1,q2) 

hold. 

T{q) - q < T{q) - q < T{q ) - q = 0 
2 = 1 2 

holds since T{q) is a nondecreasing function of q. Therefore q does not satis­

fy the necessary condition of q*. In case of q1 < q2' the proof can be similar-

ly done. 0 

Now we are ready to construct our algorithm. In the algorithm, we use the 

fo110wimg notations. 

XL: a minimal spanning tree for the 

XU: a maximal spanning tree for the 

L L 
q ~ q (x ). 

U U 
q ~ q (X ). 

[A 1 gorithm] 

Step 0: Set q +-1 and calculate R6,··· ,Ri 
and i +-0. Go to Step 1. 

case 

case 

of each edge cost ~. ~ 
J 

of each edge 
2 

cost (J •• 
J 

L L -- L - L Then set C +- g (X ,q ), X +- X , q +- q 

Step 1: Set R+-~{Ri+Ri+l)' find xi and calculate g(xi, q(xi»· 

Step 2: 

Step 3: 

If C > g(~, q (~», set C +- g(~, q (~», X +-~ and q +-q (~), ana go to 

Step 2. Otherwise, go to Step 2 directly. 

Set i +- i+1. If i=R., go to Step 3. Otherwise return to Step 1. 

If g(XU,qU) <C, terminate after setting X*+-XU and q*+-qU otherwise 

terminate after setting X* +-X and q* +-q. 

Theorem 6. Above algorithm finds an optimal solution (X*,q*) in at: most 
2 2 

a(m n ) iterations. 
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Proof: (Validity) By Theorem 4, X:'\ E sq* holds where sq* is the set of 

all optimal solutions of pq*. Moreover by Theorem 1, sq* c Si~q* holds where 

Si~q* is the set of all optimal solutions of pq;Dq*. Above discussion and 

Theorem 2 together show X* is included among X~'s for (q,R) such that RE [Ri, 
Ri+l]' i=l, •.. , R., R < Ri and R > Ri, because of Remark 1. Further the order of 

Ri and ~ are fixed independent of q. The algorithm tests all these candidates 

and find a minimal solution of them. 

(Complexity) :l"irst note that the calcula.tion of Ri,··· ,Ri can be done in at 

most O(m
2
logm). For each (q,R), ~ can be found in at most (n2) if using 

Prim's algorithm [7] or Kruskal's one [6]. Clearly, the number of ~ cheeked 
n m(m-l) . by the algorithm is at most ",+2 < -2-- + 2 ln order to find (X*,q*). Thus in 

2 2 
at most a(m n ) computational time, the algorithm finds (X*,q*). 0 

5. Conclusion 

This paper considered a stochastic version of minimal spanning tree prob­

lem PO. First Po was transformed into the deterministic equivalent problem P. 

Then subproblem pq with a positive parameter q was introduced and its relation 

to P was clarified. Further, auxiliary problem P~ was introdued and its rela­

tion to pq was also clarified. Based on these relations, parametric type al­

gorithm which finds an optimal solution of P in at most O(m
2

n
2

) computational 

time has been proposed. 

Another type algorithm which alternatively changes q and X may be possi­

ble. Perhaps, this type algorithm may be more efficient than the algorithm 

and it is one of future research problems. 

Acknowledgement 

The authors would like to thank Associate Professor Yoshio Tabata of Osaka 

Cniversity for his valuable suggestions. 

Referencl:!s 

[1] Charnes, A. and Cooper, w. w.: Chance Constrained Programming. Management 

Science, Vol.6, °(1959), 73-79. 

[2] Christofides, N.: Graph Theory:An,~Zgorithmic Approach. Academic Press, 

1975. 

[3] Gabow, H. N.: A Good Algorithm for Smallest Spanning Trees with a Degree 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



156 H. lshii. S. Shiode and T. Nishida 

Constraint. Networks, Vol.S, (1978), 201-208. 

[4] Ishii, H., Nishida, T. and Nanbu, N.: A Generalized Chance Constraint 

Programming Problem. Journal of the Operations Research Society oj' Japan, 

Vo1.2l, (1978), 124-145. 

[5] Kataoka, S.: A Stochastic Programming Model. Econometrica, Vol.13, (1963) 

181-196. 

[6] Kruskal, J. B. Jr.: On the Shortest Spanning Subtree of a Graph and Trav­

eling Salesman Problem. Proceeding of American Mathematical Society, Vol. 

7, (1956), 48. 

[7] Prim, R. C.: Shortest Connection Networks and Some Generalizations. Bell 

System Technical Jou~l,Vol.36, (1957), 1387. 

[8] Sengupta, J. K.: Sto(Jhastic Programming. North Holland, Amsterdam, 1972. 

[9] Vajda, S.: Probabiliatic Pr>ogramming. Academic Press, 1972. 

Appendix. Transformation of Po into P ([1,5,8,9]) 

The chance constrain!: 

m 
pr{ I c. x. < f} .:: Cl 

j=l J J = -

is transformed as follows. 

m \ I (C.X.-].I.X.) f - .I. ].IjXj -===: Pr j=l J J ] ] < J=l Pr { I c. x. ::: f} ::: Cl •• - -
j=l ] ] - - m 2 2 1 m 2 2 + ( I 0.x

j
fZ" I 0

j
X .) 

j=l ] j=l ] 

(AI) 

m ~~22+ 
Since I (c.x. -].I.X,)/( L a.x.) is a random variable according to the stand-

j=l J ] J ] j-l J ] 

ard normal distribution, (AI) is further transformed into (A2). 

(A2) 
m m 2 2 1 -1 

(f - I fl. X .)/( I0.x.)7>F (Cl) 
j=l ] ] j=l ] ] = 

where F(o) is the distribution function of standard normal distribution and 
-1 1 F (Cl) is its 1000'. percentile point. Therefore, setting q ~ F- (a) > 0 (since 
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and noting x: = x. (0
2
=0, 1

2
=1) and minimum of f equals to 

J J 

m m 221 
L ll.x.+q( L a

j
x .)7 

j=l J J j=l J 

for each spanning tree X, Po is equivalent to the following deterministic p['Qb­

lem P. 

m m 1 

P: Minimize L ll.X. +q( L a.x.)7 - AF(q) 
j=l J J j=l J J 

subject to x =0 or 1, X: spanning tree, q > O. 
j 
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