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Abstract An inverse theory of sequential decision processes, including the standard control process and allocation 

process, is developed. A fInite-stage deterministic invertible (main) dynamic program (DP) whose reward functions 

depend not only on action but also on state is formulated a!i a sequential decision process. The main DP is transformed 

into an equivalent inverse DP by an algebraic inversion. Th(: main DP maximizes a generalized total reward, while the 

inverse DP minimizes a generalized total state. An inverse theorem is established. It characterizes optimal solutions 

(optimal reward functions and optimal policy) of inverse DP by those of main DP through inverse and composition. 

The main DP includl~s a linear equation and quadratic crit(:rion (main) control process on the half-line and a typical 

multi-stage (main) allocation process. Therefore, the inverse DP generates an inverse control process and an inverse 

allocation process, respectively. Not solving the recursive equation directly but applying the inverse theorem, optimal 

solutions of both inv(:rse processes are easily calculated by use of those of the corresponding main processes. 

1. Introductiion 

Recently Iwamoto [5], [6], [7], [8], [9] has developed an inverse theory 

of dynamic programs which is applicable to a number of mathematical programming 

problems with a single constraint-function. As will be shown at the concluding 

remarks, the well-known linear equation and quadratic criterion control pro

blem and the TIlulti-stage allocation problem are transformed into equivalent 

mathematical programming problems with n? constraint-function and multiple 

constraint-functions, respectively. Therefore, the inverse theory is not 

applicable to control and allocation problems. Furthermore, it makes no doubt 

that both are most interesting and typical problems which are formulated as 

sequential deeision processes (see Belllllan [1, Chap 1], [2, p.1l6], [3, p.329] 

and [4, p.10]). These two facts motivate the continuing interests in obtain

ing a "further" inverse theory for a class of sequential decision processes 

including control and allocation processes_ 
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2 S.lwamoto 

This paper deals with an inversion of finite-stage deterministic 

dynamic programs (DP's) on one-dimensional state space whose n-th reward 

function depends on state and action. These DP's are not included in those 

of [5], [6], [7], [8], [9]. The inverse theory is applied to a linear equa

tion, quadratic criterion and finite-horizon control process on the state 

space [0, 00) and to the well-known multi-stage allocation process. This 

generates two new processes, i.e., an inverse control process and an inverse 

allocation process. As far as the author knows, both processes have never 

been discussed elsewhere. 

Thus we have established a kind of duality theory for DP's, which is 

different from Bellman's duality (upper and lower bounds), quasilineariza

tion and inverse problem [2], [4]. 

In §2, specifying seven components, we formulate a (main) DP as a sequen

tial decision process. The recursive formula for the main DP is obtained. 

In §3, for the invertible DP, we specify an inverse DP by the components of 

the main DP. The recursive formula for the inverse DP is also obtained. 

This equation is not so well-known as the usual equations in [1]. In §4, we 

establish an inverse theorem between main and inverse DP's. The optimal 

reward functions of the inverse DP are inverse functions to those of the main 

DP. The main result is to apply the inverse theorem to a linear equation and 

quadratic criterion deterministic control process on state space [0, 00) (in 

§5) and to a multi-stage allocation process (in §6). Each process together 

with its inverse process is solved analytically. 

2. Main dynamic program 

1 Let Rand 5 be two intervals of one-dimensional Euc1idean space R. Then 

note that if f 5 -- R is onto strictly increasing function, then it is con
-1 tinuous and there exists the inverse function f : R --. 5 which is onto strict-

ly increasing_ Therefore such an f yields a homeomorphism from 5 onto R. 

A dynamio program (DP) V is specified by an ordered seven-tup1e (Opt, 

N+1 N+1 N {}N {}N 
{5n }1 ' {Rn }l ,{An}l' fn l' k, Tn 1)' where 

(i) N is a positive integer, the number of stages. 

(ii) 
1 the n-th state space" This element is 5 is an interval of R , s 

n n 
called the n-th sixxte. 

(iii) 
1 

the n-th reward space. This element is R is an interval of R , r 
n n 

called the n-th re'J.Jard. 
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Inverse Control and rnverse Allocation 

Pn 
(iv) A is a non-empty subset of the p -dimensional Euclidean space R , 

n n 
the n-th aation sJUae. Further there corresponds for each n-th state 

s E: S a nonempty subset A (s ) of A , the n-th action spaae at state n n n n n 
s. This element a is called the n-th action available at state s • 

n n 1 11 

'n A We usually write A (.) : S - 2 ,where 2 denotes the set of all 
n n 

nonempty subsets of the set A. It will be clear from the context 

whether A 
n 

is considered the set or the point-to-set valued 
A 

He define the graph 

graph(A ) = {(s , 
n n 

of the mapping A (.) : 
n 

a) I a E: A (s), s n n n n n 

S - 2 n by 
n 

E: S } CS xA • 
n n n 

mapping .. 

(v) f graph (An) xRn+l -4- Rn 

f (s ,a j.) «s ,a ) E: 

is an onto continuous function such that: 
n 

each n n n n n graph(An» is strictly increasing, the 

n-th re'JJard function. 

3 

(vi) k : SN+1 - RN+1 
reward ,function. 

is an onto strictly increasing function, the terrm:nal 

(vii) T : S xA _ RI is a continuous function such that its restriction n n n 
T Igraph(A ) n n 
T (.; a ) (a n n n 
tion. 

is a function from gl'aph(A ) to S 1 and that each n n+ 
E: A ) is strictly increasing, the n-th state transforma

n 

(vHi) Opt is either Max or Min, the optimizer. According as Opt = Max or 

Min, it repl'esents the optimization (maximization or minimization) 

problem : 

(2.1) 

subject to (i) T (s • a ) = n n' n sn+l 

(2.2) (H) a E: A (s ) 
n n n 1 ~ n ~ N. 

We call the DP V the main DP. Let us no~ define the (N-n+l)-subproblem of 

(2.1), (2.2) by the problem: 

(2.3) 

subject to 

(2.4) 

(i) T (s ;a ) = sm+l m m m 

(ii) a E: A (s ) 
m m m 

n < m < N 

n ~ m ~ N, 

where sn E: Sn' 1 ~ n ~ N. Let 

Further we define 1.1
0 

(sN+l) by 

o 

uN- n+1(s ) 
n 

be the optimum value of (2.3), (2.4). 

The function uN- n+l 
S 

n 

u (sN+1) 

Rn is called the (N-n+l)-st optimal reward function 
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4 S.lwamoto 

of V. ° 1 Thus the functions {u , u , 
N , u } are called the optimal reward 

functions of V. We have the recursive equation between two adjacent optimal 

reward functions. 

Theorem 1. (RECURSIVE FORMULA FOR V) 

(2.5) Opt N-n 
f (s ,a;u (T (s ;a ») sn E Sn' nnn nnn 

Proof: Easy. 

3. Inverse dynami c progY'am 

a EA (s ) 
n n n 

For a two-variable function h : AxB -- C we define two one-variable func

tions ha B - C and hb : A - C by 

ha(b) = h(a;b), hb(a) = h(a;b), 

{ }N+1 }N+1 {}N N N 
respectively. The main DP V = (Opt, Sn 1 ,{Rn 1 ' An l' {fn}l' k, {Tn}l) 

is called invertibZe if ft has onto strictly increasing optimal reward functions 

{uO, u1 , ••• ,uN}. An i:nverse V-1 to the invertible main DP V is specified 

by the following ordered seven-tup1e : 

V-
1 

= (Opt, {Rn}~+l, {Sn}~~ {Bn}~' {gn}~' 9-, {Un}~) 
where 

(i) Opt Min 

Max 

(ii) B = S xA 
n n n 

if Opt .. Max 

if Opt = Min 

B (r ) ={(s,a)1 s (uN- n+1)-l(r ), a E A (s ), 
n n n n n n n n n 

(f (sn,an»-l(r ) 
n n 

g (a ;s +1) 
-1 

(Hi) = (T ) (s +1) n n n na n n 

(iv) 9-(rN+1) 
-1 

= k (sN+1) 

(v) U (r ; s ,a ) = (f (sn,an»-l(r ). 
n n n n n n 

We call V-1 
the inveY'se DP. It represents the problem : 

0.1) 

E Rn+1 } 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Inverse Contra! and Inverse Allocation 

(3.2) subject to 

(ii) (s ,a ) C B (r ) 
n n n n 1 :;" n :;" N. 

Note that the objective function (3.1) does not depend on the sequenCE! 

of states {r Jr. On the other hand, the n-th action at the n-th state rn for 
n -1 

the inverse DP V is formally considered as a direct product (s ,a ). 
n n 

However, the first action sn has no freedom to be selected. That is, from 

the definition of B (r ), it is uniquely determined by the relation sn = 
N-n+l -1 n n 

(u ) (r). This notion is not applJ.ed to the previous "inverse DP" in 
n 

[5], [6], [8] and [9]. Only the second action a is to be controlled so as 
n 

to optimize (3.1). 

We have the following economic interpretations. The main DP V is, given 

5 

N an initial state sI' to choose the sequer:.ce of action~l {an}l so as to maximize 

a generalized total reward rI' while the inverse DP V is, given an initial 

reward rI' to ,;:hoose the sequence of acti.ons {sn,an}~ so as to minimize a 

generalized total state sI' Here state c.orresponds to cost, manpower, energy, 

position (in a negative sense), post (in a negative sense), and others. These 

are compatible with money in a sense. Both the interpretations above for !l 

and V-I follow directly from forward and backward recursive relations 

{ 
T (s ;a ) = sn+l' a E A (s ) 1 :;"n:;"N 

J1 n n n n n 

V k(sN+1) = r N+1 

f (s ,a ;r +1) r N~n~l n n n n n 
and 

{ 
U (r ;S ,a ) = r n+l , (s ,a ) E B (r ) 1 :;"n:;"N n n n n n n n n 

V-I R.(rN+1) = sN+1 

g (a ;S +1) = s N ~ n ~. 1 n n n n 

respectively, l.here N > n > 1 means that the time n runs backwards N+l, N, 

. . . , 2, 1 • 

The problem (301), (3.2) may also be expressed in terms of the components 

of V as follows : 

(3.3) Optimize 
-1 -1 -1 -1 (T

lal
) 0 (T

2a2
) o ••• 0 (T

NaN
) ok (r

N
+1 

subject to (i) (f
n 

(sn,an»-l(r
n

) = r
n

+
l 

1 :;" n ~ N 

(ii) a E A (s ), 
n n n 

1 :;" n < N. 
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6 S. iwamoto 

Similarly, the (N-n+l)-subproblem of (301), (3.2) is defined by the problem 

subject to 

(if) (s ,a ) E B (r ) 
m m m m n ~ ID ~ N, 

where rn ERn' 1 

(3.6). Further, 

N-n+1 < n < N+L Let v (r ) 
= = 0 n 
we define v (rN+l ) by 

be the optimum value of (3.5), 

o 
v (rN+1 ) = ~(rN+l) r N+l E ~+l' 

The function 
-1 

vN- n+1 : R ----+ S is called the (N-n+1) -st optimal reward func-
n n 0 1 N 

tion of V • Thus the fUllctions {v , v , ••• , v } are called the optimal re-
-1 ward functions of V • The recursive equation becomes as follows 

Theorem 2. (RECURSIVE FORMULA FOR V-I) 

(3.7) vN- n+1(r ) 
n 

-- N-n N-n+l -1 Opt g (a;v (U (r ; (u ) (r) ,a ») n n n n n n 
N-n+1 -1 

a EA «u ) (r» n n n 
N-n+1 -1 

U (r ; (u ) (r) ,a ).E:R +1 n n n n n 

Proof: Easy. 

4. Inverse theorem 

In order to state an inverse theorem describing the relationship between 
-1 

the main DP V and the inverse DP V ,let us now define an optimal policy for 

each DP. A policy of V is a sequence {TI
l

, TI2 , ••• , TIN} such that the mapping 

TI S 
n n 

A has the property TI (s ) E A (s ) for s E S , 1 < n < N. A 
n nn nn n n == 

* policy {rr 1 ' * * TI2 , ••• , TIN} is optimal for V if for each sn E Sn' 1 ~ n ~ N 

* TI (s ) attains the optimuIn value of (2.5). 
n n 

On the other hand, a policy of V-I is 

that the mapping 0 n : Rn -.- An has the 

a sequence {al , a2, ••• , aN} such 

N-n+1 -1 property a (r ) E A «u ) (r» 
n n n n 

N-n+l -1 U (r ;(u ) (r ),0 (r » E n n n n n and A policy {aI' a2 , 0 •• , 

is optimal for V-I if for each 
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Optimum value of (3.7). 

Our fundamental result is an inverse theorem in dynamic programming. 

The differences between the following INVERSE THEOREM and inverse theorems 

in [5], [6], [8], [9] and [10] are as follows. First, this paper, [5], [9] 

and [10] discuss sequential decision processes, while [6] and [8] do mathe

matical programming problems. Second, our theorem treats the case where the 

objective function is dependent on state sequence, while the others do the 

7 

case where it is not. Finally, our theorem, as will be shown, is only ap

plicable to control and allocation proce,3ses. The others are not. Furthermore 

both processes have been considered as typical sequential decision processes 

([1], [Z], [3] and [4]). These are main reasons why we are willing to esta.b

lish an inverse theory of sequential deci,sion process and apply it to both 

processes. 

Theorem 3. (INVERSE THEOREM) (i) If the main DP V has onto strictly 
o 1 N 

increasing optimal reward functions {u , u , ••• , u } and an optimal policy 

* * *} 1)-1 {TIl , TI Z' ••• , TIN ' then the inverse DP has onto strictly increasing opti-

o -1 1-1 
mal reward functions {(u) ,(u) ,'.', N -I} (u ) and an optimal policy 

* N -1 * N-l -1 * 1 -I} hlO(u) ,TIZO(u ) , ••• ,TIN°(u) • 

o 1 N (ii) Let {u , u , ••• , u } be onto strictly increasing optimal reward 

functions of the main DP V. If the inverse DP V-I has onto strictly increas-

o 1 
ing optimal re1Nard functions {v , v , ••• , 

A 

v
N

} and an optimal policy {ai' 0Z' 
A 

, ON}' then it holds that 

(vN- n+1)-l = uN- n+1 1 ,:;, n ,:;, N+1. 

V h 1 { A O( N)-l A O( N-l)-l Furthermore, the main DP as an optima policy 01 v ,0Z v , 

A 1 -1 
'ONO(v)'L 

Proof: The proof is by induction on n. It suffices to prove the theorem 

only for the case Opt = Max. (i) 

ing optimal re1Nard functions {un}~ 

Let the main DP have 

and an optimal policy 

(4.1) uN- n+1 (s ) = Max 
n 

N-n f (s ,a;u (T (s ;a ») nnn nnn 
a EA (s ) 

n n n 

* N-n * = f (s ,TI (s );u (T (s :TI (s »» n n n n n n n n 

onto strictly inereas

* N 
{TIn}l. Then we have 
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8 S.Iwamoto 

First, from the definition, we get 

o 0 -1 
v (rN+1) = (ll) (rN+1) r N+1 E ~+1. 

Second, let us consider the case n = N of (2.5). Fix sN E SN. 

* rN' TN(SN;TIN(SN» = sN+1 and k(SN+1) = r N+1 • Then rN E ~ and rN = fN(sN' 

* TIN(sN» (rN+l ). Therefore it holds that 

1 -1 
sN = (u) (rN) 

* rN+l (f
N

(SN,TIN(SN»)-l(r
N

) 

* uN(rN;SN,TIN(sN» 

-1 
sN = (TNTI:(sN» (sN+1) 

* (4.2) gN (TIN (SN) ;sN+1) 

1 Let us define w (rN) by 

1 
w (rN) = lnf gN(aN;~(rN+1». 

1 -1 
aNEAN« u) (rN» 

UN(rN;sN,aN) = r N+1 
1 -1 

sN = (u) (rN) 

H l( ) < If 1( ) < h h i co A
N
«u1)-1 ence we get w rN = sN' w rN sN' t en t ere ex sts an aN ~ 

(rN» such that 

where r N+1 
obtain 

(4.3) 

(4.4) 

and 

(4.5) 

sN+1 < TN(sN;aN) 

fN(sN,aN; r N+1) = 

1 
u (sN) = r N• 

SN+1' we in turn 

rN 

Therefore the strict increasingness of fN(sN,a N:.) and k, aN E ~(sN)' and 

(4.3), (4.4) imply that 
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Inverse Control and Inverse Allocation 9 

This contradicts (4.5). Hence we have w1(rN) = sN' Since sN E SN is arbitrary, 
1 1 -1 we get w = (u) • This equality together with (4.2) also implies that 

1 -1 * (u) (TIN(sN)) attains the minimum of (3.7) for n = N. Finally we get 

1 (1)-1 vu. 

In general, it is inductively shown that 

n = N-l, N-2, ••• , 1. 

N-n+l -1 * and that (u ) (TI (s )) attains the Jrinimum of (3.7) for n N-l, N-2, 
n n 

,1. This completes the proof of (i). 

(ii) Let the main DP V and the inverse DP V-I have onto strictly inc-reas-

{ n}N { n}N . ing optimal reward functions u 0 and '1 0' respect~vely. Then they satisfy 

the recursive formulas (2.5), (3.7), respectively. From the analysis in (i), 

{ n -l}N. 0 -1 0 it turns out that the functions (u) I) also sansfy (3.7) and (u) = v • 
N-n+l -1 N-n+l N-n+l -1 N-n+l This implies that (u ) = v namely (v ) = u for 1 ~ n ~ N. 

n}N n}N The similar argument as in (i) with the roles of {u 0 and {v 0 exchanged leads 

the equality 

vN-n+l(r ) 
n 

to the equality 

uN-n+l(s ) 
n 

''l-n N-n+l -1 Min g (a ;v- (U (r ;(u ) (r ),a ))) 
n n n n n n 

a EA «uN-n+l) -1 (r )) 
n n n 

A N-n N-n+l -1 
g (0 (r );v (U (r :(u ) (r ),0 (r )))) nnn nn n nn 

N-n Max f (s ,a;u (T (s ;a ))) nnn nnn 
a EA (s ) 

n n n 

= f (s ,~ O(vN-n+l)-l(s );uN-n(T (s ;~ O(vN-n+l)-l(s )))). 
nnn n nnn n 

V {oAno(vN-n+l)-l}Nl' Therefore the main DP has an optimal policy This completes 

the proof of (ii). 

The INVERSE THEOREM gives us useful informations on one DP, provided that 

the optimal behavior of the other DP is known. Let V have the desired optimal 

solutions {un}, in:}, Then the total re'.vard from state r
l 

for V-I is (uN) -l(r
l
). 

Further, an optimal action at state rn 

(uN-n+l)-l(r). Conversely, let V and 

-1 A * 
for V is a = TI (s ), where s 

n n n n 

n 
0-1 have the desired optimal solutions 

n {~*} n A {u}, " and {v }, -fa }, respectively. 
n n 

N-n+l . Then u ~s the inverse function of 
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10 S. Iwamoto 

vN- n+1 and vice versa. Further, an optimal action at state sn for V is 

* a = 0 (r ), where r 
n n n n 

* as well as a = TI (s ). 
n n n 

5. Inverse control process 

Throughout this section let b > 0 and N be a positive integer. First we 

consider the following linear equation and quadratic criterion, finite-stage 

and deterministic control process (see [2, p.116]) 

Minimize 

subject to 

N 2 2 2 
~ (x + Yn ) + xN+1 n=l n 

(i) bXn + Yn = xn+1 

(ii) _00 < Y
n 

< _00 c. 

It is 
N 2 

well-known that this. problem has a quadratic minimum value u (c) = PNc , 

where PN is determined by (5.2) which will be shown later. Note that the func-

N tion u : (_00,00) -- [0,00) is not strictly increasing on (-00,0). 

Therefore, we further assume the condition 0 ~ xn < 00 for 1 ~ n ~ N. This 

restricted problem is written in terms of state s and action a as follows : 
n n 

Minimize 
N 
~ (s 2 + a 2) + 2 

sN+1 n=l n n 

subject to (i) bSn + an = sn+1' sn ~ 0 1 ~ n ~ N 

(ii) 

sN+1 ~ 0 

-= < a < 00 1 ~ n ~ N, n 

Consider a simple inventry model with the following meanings 

1 - b = the deterioration rate of the goods, 0 ~ b < 1 

sn the stock level at: the n-th period subtracted by constant demand 

au the production quantity at the n-th period. 

Then the interpretations for system dynamics and objective function are straight

forward. 

This problem is represented by an N-stage main DP V (Min, {S }N+1 {R }N+1 
n1' n1 ' N N N 

{An}l' {fn}l' k, {Tn}l), where 

S = R = [0,00), 
n n 

A (s ) = [-bs ,00), 
n n It 

2 
k(sN+1) = sN+1 ' 

2 2 
f (s ,a ;r +1) = s + a + r n+1 n n n n n n 
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Inverse Control and Inverse Allocation 11 

The main DP V is called the main control process. The corresponding recursive 

formula 

(5.1) 

Min 

a >-bs 
IF n 

has quadratic optimal 
* ~, 

o 
reward functions {u , 

1 
u , ••• , uN} and a linear optimal 

policy {TIl , TIZ' ••• , * TIN} 

where 

(5.2) 

N-n+1( ) 
u ,sn 

et 
n 

* TI (s ) 
n n 

et s 
n n 

1 < n ~ N. 

Since eac:h uN- n+l : [0,(0) -- [0,(0) is onto strictly increasing, the in

verse DP V-I is specified by the following components : 

Opt = Max, R = S = [0 00) 
n n " 

B (r ) = {Cs ,a ) I-bs < a , n n n n = n s 
n 

The inverse DJ' V-I is called the inverse control process. It represents the 

problem : 

Haximize 

subject to (i) r -n 

(ii) s 
n 

(iii) 
2 

s n 

(s 
2 2 

+ an ) n 

rr:!PN- n+l 
2 

+ a ~ r n' n 

rn+l 1 ~ n ~ N 

1 < n < N 

-bs < a 
n= n 

1 ~ n ~ N. 

Then the recursive formula bec:omes as follows 

(5.3) 
N·-n+1 v (r ) 

n 
Max [i(-an 

s =v'r /PN +1 n n -n 

s 2+a 2<r 
n n=n 

-bs <a 
IF n 

N-n 2 + v (r - s 
n n 

a 2»] 
n 

r > 0 n = , 
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12 S.Iwamoto 

However, not solving this equation backwards, but applying the INVERSE THEO-

REM, we have onto strictly increasing optimal reward functions 
o 1 

{v , v , ... , 
A A A 

VN} and an optimal policy {a
1

, a
2

, ••• , aN} : 

A * N-n+1-1 
o (r ) = 11" 0 (u ) (r) = (Cl. 1IPN +1) fr. nn n n n -n n 

Of course these optimal solutions are obtained by solving directly the recur

sive equation (5.3). The reader will find that solving (5.3) is more diffi

cult than (5.1). Therefore the application of the INVERSE THEOREM is more 

effective than solving (5.3). 

In particular, two-stage main control process V and its inverse control 

process V-1 have 

0 
u (s3) 

1 
u (s2) 

2 
u (SI) 

and 

respectively. 

2 
s3 

1. 2 
(s + 2i' ) s2 

2 

2 + ~2 + ~4 
2 2 

=£ 
3 

2 +~2 
2 

= __ 1 __ £ 
r--;-- 2 

11 + ~2 

6. Inverse allocation process 

* 1 
11"2 (s2) - 2i's 2 

2 * 
b(l + ~2) 

2 
sl 1T1 (sl) 

2 + ~2 sl 
2 

Throughout this section let 0 ~ a < 1, 0 < b < 1, c1 ,c2,c3,d > 0 and N 

be a positive integer. Consider the following typical N-stage allocation 
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problem (see [1, p.44]) 

N d d d 
MaKimize l: [ clan + c2 (sn .. an) ] + c3s N+l 

n"'l 

subject to (i) aa + b(s - a ) 
n n n 

(ii) o < a < s 
= n = n 1 < n < N. 

The economic interpretation is stated in [1, p.4]. This problem is represented 

by an N-stage main DP V whose components are specified as follows : 

Opt'" Max, S 
n 

A (s ) = [0, s ] 
n n n 

We call V the main allocation process. It is easily shown that the main al-

V 
. 0 

location process has onto strictly inereasing optimal reward functions 1.u , 
1 N * * * u , ••• , u } and an optimal policy {nI' 7T

2
, ••• , 7T

N
} 

where 

(6.1) PN-n+l Max 
O~~l 

* 7T (s ) 
n n 

et s 
n n 

and a. is the value of x which attains the maximum of (6.1). 
n 
On the other hand, the components of the inverse DP V-I, called the in-

verse allocat~~on process, become as follows : 

Opt = Min, s = R = [0 (0) 
n n " 

gn (an ;sn+l) = (-(a - b)an + 

d U (r ·s ,a ) = r - c a 
n n' n n n 1 n 

Bn = [a,oo)x(a,oo) 

lid 
= (rn/PN-n+l) , 

-1 The inverse allocation process V represents the problem : 

Minimize 

subject to 
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(ii) s 
n 

S.lwamoto 

The corresponding recursive formula becomes 

(6.2) 

11 := 

Min 
11 

l/d 

d d 

1 
Sn = (rn/PN-n+1) 

c
1

a +c
2

(s -a ) <r n n n = n 

O<a <s 
= n== n 

1 ~ n ,~ N. 

-1 
The INVERSE THEOREM gives the inverse allocation process V and the follow-

ing optimal solutions : 

where 

(6.3) 

A () *O( N-n+l)-l() (/« )l/d) l/d an rn = TIn u rn = an PN- n+1 rn' 

Note that the recursive equation (6.2) has the solution 

vN-n+1(r ) l/d 
n = qN-n+l rn ' 

Min [_ (a-b) y 
b 

03.s.( __ 1 __ ) 1/ d 
- - PN-n+l 

1 l/d 
c y+c «--) -y).s.1 

1 2 PN--n+1 -

a (r ) 
n n 

S r l/d 
n n 

and S is the value of y ~Ihich attains the minimum of (6.3). Thus we obtain 
n 

l/d 
1/ «PN-n+l) ) , 

In particular, for the case a 0 and d 1/2, we have 
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and 

respectively. 

<X n 

1 
'10 = --2 

c
3 

<IN-n+l = 

H n 

Concluding remarks 

Inverse Control and Inverse Allocation 

l~n~N 

1 

1 ~ n ~ N, 

Eliminating the state variables s2' s3' ••• , sN+l' and identifying 

15 

sI' aI' a 2 , ••• , aN with c, xl' x2 ' .0. , xN we transform the problem repre

sented by the main control process in §S into an equivalent constrained mathe

matical programming problem : 

Minimize 

+ 

+ 

subject to 

(bNc + bN-lX
l + ••. + bX

N
_

l + x
N

) 2 

(bN-lc + bN- 2x
l 

+ + bX
N

_
2 + ~-l) 

2 2 + x
N

_
l 

(bN- 2c + bN- 3 + bX
N

_
3 

2 2 
xl + + x

N
_

2
) + x

N
_

2 

(1) 

(2) 

N N-l 
b c + b xl + ••• + bXN_l + ~ ~ 0 

bN- l + bN- 2, b > 0 c ,cl + ••• + x
N

_2 + x
N

_
l 

= 

(N) bc + xl ~ 0 

(N+l) -00 < xi < 00 
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16 S.Iwamoto 

where positive constant b is given and parameter c ranges on half line [0,00). 

Thus we have the following one-parametric, quadratic and multi-constrained 

problem 

Minimize (x,A(c)x) + 2(b(c),x) + d(c) 

subject to (i) B(c)x ~ e(c) 

(ii) 

where A(c) is positive definite and B(c) is upper-triangular and nonsingu1ar. 

Note that the original control process without nonnegativity of state variables 

represents the equivalent unconditional problem without constraint (i). Simi

larly, the main allocation process in §6 represents an equivalent, one-paramet

ric, and multi-constrained problem. These problems leave us an open problem 

of developing a general inverse theory for parametric multi-constrained mathe

matical programming problems. 

The inverse theory has generated a counterpart in dynamic programming pro

blem whose solution is obtained through inverse and composition from the solu

tion of the original dynamic programming problem. Furthermore, the theory 

generates a new class of dynamic programming problems whose solution is not 

charactized by the solution of the original porb1em. These problems are ob-
N-n+1 -1 tained from the inverse problem by exchanging the constraints s = (u ) 

n 
(r) 1 < n < N for another constraints. 

n 
Finally we remark that with appropriate modifications the preceding argu

ment will remain valid for a number of sequential decision processes on the one

dimensional state space. 
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