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Abstract This paper presents a way of formulating the problem of locating the origin of a system failure. A signed 

digraph is used for a mathematical model representing the innuences among elements of the system, and the concept of 

a pattern on the signed digraph is introduced for representing a state of the system. The representations are quit e rough 

and qualitative. The origin of a failure of the system can be l:Jcated in terms of these concepts. It is further pointed out 

that, even when the pattern can be observed partially, the assumption of a single origin of the failure enables us to 

restrict the possible range of the origin to some extent. 

1. Graphical Representation of a System and Its State 

In recent years, graphical representations have been proved to be useful 

for modelling and analyzing various kinds of systems in many fields of science 

and engineering. 

When a directed graph (or, for short, a digraph) is used as a mathemati­

cal model of a system, its nodes represent the elements of the system and its 

branches represent the immediate influences among the elements. In order to 

distinguish between positive and negativE influences (for instance, between 

reinforcement and suppression), a signed digraph is defined formally as fol­

lows. As for the terminology and notation about graphs, we shall largely 

follow [1]. 

Definition 1. A signed digraph S is the composite concept (G, l/J) of 

(i) a digraph G which is the quadruple (N, B, a+, a-) of 

(a) a set of nodes N = {nI' n
2

, "', n
M

}, 

(b) a set of branches B = {b
l

, b
2

, "', b
n

}, 
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(c) a couple of incidence relations a+: B .... Nand a-: B .... N which make 

each branch correspond to its initial node and its terminal node, 

respectively, 

(ii) a function ~ ': B .... {+, -}, where ~(b ) (b E B) is 
K K 

called the sign of 

branch b . ~ 
K 

Example 1. An illustrative example of a signed digraph: --- Let a branch 

with sign +(-) indicate the relation such that, if the value of the state 

variable represented by the initial node of the branch is greater than the 

normal value, the value of thE. state variable represented by the terminal node 

becomes greater (smaller) than the normal value. Then, the influences among 

the state variables of thE' water tank system of Fig. 1 are represented by the 

signed digraph of Fig. 2. 

level controller 

PI' P
2 

: Flows 

VI' V
2

: Apertures of valves 

L: Level of the water 
in the tank 

Fig. 1. Simple water tc.nk system 
as an illustrative example 

Fig. 2. Signed digraph for 
the water tank system 
of Fig. 1 

We shall assume that the state of the system is specified by whether the 

quantity associated with each element (to be called the state variable of the 

element) t,~Kes the "norma]" value, is greater or smaller than it. The three 

states of the quantity arE' designated, respectively, as "0", "+" and "-". 

Thus, the state of the system is described by assigning any of the three sym­

bols 0, + and - to each node of the signed digraph representing the str~cture 

of the sys tern. Formally, the "ta tes may be defined in terms of "pa t terns" as 

follows. 
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Defi niti on 2. A patter>n'on the signed digraph S = (G, 1jJ) is a function 

w N -+ {+, 0, -}. w(n ) (n E N) is called the sign of node n
N

• 00 a. a. u. 

Example 2.. In the water tank system of Fig. 1, a state of the system can 

be described by assigning the sign 0, +, or - to each node according as the 

value of the variable corresponding to the node lies within, above or below 

the prescribed interval of tolerance, respectively. If any node has a sign + 

or -, the system is in failure. 00 

For a given signed digraph and an observed pattern on it, it is natural 

to consider that the manner of propagation of the failure is represented by 

the cause-effeut graph (or, for short, the CE graph) defined as follows. 

Definition 3. Given a pattern w on a signed digraph S 
+ -b is said to be consistent (with w) if w(Cl b )1jJ(b )w(Cl "ID ) 

K K K K 

(G, 1jJ), a branch 

+, and a node nO. 

is said to be valid if w(no.) ! 0, where the operations on signs are defined as 

usual, Le., we assume (+) x (+) = (-) x (-) = + and (+) x (-) = (-) x (+) = -

The subgraph G~' of G which consists of all the valid nodes and all the con­

sistent branches is called the CE graph for the pattern w on the signed digraph 

S. 

When the CE graph is decomposed into strongly connected components with 

the partial order among them [1), the system failure is reasonably thought to 

originate from among the elements in those components of the CE graph which 

are maximal with respect to the partial order. (The node set of a digraph is 

classified intc equivalence classes with respect to the equivalence relation 

such that two nodes are equivalent, Le. they belong to the same class, if and 

only if there is a directed path from anyone of them to the other. A 

"strongly connected component" of the digraph is the subgraph consisting of 

all the nodes cf an equivalence class and of all the branches whose end nodes 

both belong to the class. The relation, defined among the strongly connected 

components by the stipulation that a component is in the relation to another 

if and only if there is a directed path from a node of the former component to 

a node of the latter, is a partial order. There is at least one strongly con­

nected component which is maximal with re'3pect to this partial order.) 

The CE graph can be considered to de:3cribe the way of propagation of the 

failure so long as the propagation is explicit on the pattern, i.e. there is 

no influence through a node with sign O. Unfortunately, however, if the sys­

tem has some controlled elements, it may happen that the failure propagates 
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through a node with sign 0, as is illustrated in the following example. 

Example 3. For the water tank system of Fig. 3, the influences among the 

state variables are represented by the signed digraph of Fig. 4. In case the 

observed signs of the variables (V
l

, F
l

, L, V2, F2, V3, F3) are (+, +, 0, +, +, 

0, +), the CE graph for this pattern would be a graph of Fig. 5(a) according 

to Definition 3. However, it is because the level controller suppresses the 

Lp 
Fl 

V 2 
2 

~J4.-.F3 
V 3 

Fig. 3. Another water tank system 

+V +F 
~l 

e+F 
3 

(a) G*l 

F2 

V 

Fi8. 4. Signed digraph for the 
water tank system of 
Fig. 3 

Fig. 5. CE graph for pattern (Vl , FI , L, V2 , F2, V3, F3) = 

(+, +, 0, +, +, 0, +) on the signed digraph of Fig. 4 

(a) Definition 3 (b) Definition 3' 

tendency of the water level L becoming greater than it is normally, that L has 

a normal value. The actual influences in this case should be described by the 

digraph G*2 of Fig. 5(b). 
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In order to take account of the spe,:ial roles of controllers and con­

trolled elements, it is necessary to distinguish some elements of the system 

as controlled elements, and to extend the formal definitions of a signed 

digraph, a pattern and a CE graph as follows. 

Definition 1'. A signed digraph S is the composite concept (G, 1jJ, C, T) 

of 

(i) a digraph G = (N, B, a+, a-), 

(ii) a function 1jJ : B .... {+, -}, 

and 

(iii) a set of controlled nodes C = {n ,n , "', n } (~ N) to each of which 
a l a 2 al 

a set of control-information carrying branches T)(n ) (~o+n ) (i = 1, ai ai 
"', l) is associated, where o+n a. 

'l-

denotes the set of branches whose 

initial node is n a. 
'l-

Defi ni ti on 2'. A pattern on a signed digraph S is a function 1jJ 

0, -, $, 9} such that wCN - C) 5 {+, 0, -}. 

N .... {+, 

/Xl 

Definition 3'. Given a pattern won a signed digraph S, a node is said 

to be valid if w(n ) f 0 and a branch b is said to be consistent if b a K K 

satisfies one of the following five conditions (i) ~ (v): 

(1) 

(ii) 

(iii) 

(iv) 

(v) 

W(a+b ) 
K 

W(a-b
K

) 

w(a-b ) 
K 

b is Cl 
K 

- + -+, w(a b ) = ±, and w(a b )1jJ(b )w(a b ) - K K K K 

$ and W(a+b
K

)1jJ(bK) +; 

9 and w(a+b )1jJ(b ) 
K K 

control-information carrying branch, Wca+b
K

) 

1jJ(bK)w(a-b
K

) = +; 

b is Cl control-information carrying branch, Wca+b
K

) 
K 

1jJ(b )w(a-b ) = -. 
K K 

+, , 

$ and 

9 and 

The subgraph G* of G which consists of all the valid nodes and all the 

consistt=nt branches is called the CE graph for the pattern w on the signed 

digraph S. 

In the above definition, sign $(9) might intuitively be interpreted as 

representing "the st-R.te of a variable which would have sign +(-) without c:on­

trol but which is not seen abnormal due to the operation of control". 
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2. Formulation of the Problem of Locating the Origin of a ,System Failure 

If the observed pattern is a failure pattern, Le. if there are some nodes 

with nonzero signs, the CE graph for the pattern can be used to describe the 

structure of the chain of propagation of the failure, and the problem of 

locating the origin of the failure is reduced to that of finding the maximal 

strongly connected components of the CE graph. 

However, it is usually the case that some of the signs of nodes cannot be 

measured or observed due to physical, technical and economical reasons, so that 

the set of nodes of the signed digraph should be partitioned into two subsets: 

one (to be denoted by NM) consisting of observed nodes whose signs are measured 

or observed, and the other (Le. N - N
M

) consisting of unobserved nodea whose 

signs are not known. 

A method which has been proposed to cope with this situation is found in 

[2]. By that method we eliminate unobserved nodes from S beforehand and con­

struct a signed digraph S' whose nodes are all observed nodes and whose 

branches represent indirect influences transmitted through unobserved nodes in 

S. Then, S' is regarded as the model of the system. Fig. 6 is an illustrative 

example of the elimination of unobserved nodes. 

+ 

S 

Fig. 6. Example of the elimination of unobserved 
nodes (e: observed, 0 : unobserved) 

However, this method has obvious disadvantages. In fact, the two signed 

digraphs S and S' of Fig. 6 give different interpretations to a sign pattern 

on the observed nodes, e.g. to w(n.) = + (i = 1, "',6). Starting from S we 
1.-

have G*l or G*2 of Fig. 7 as the CE graph according as we assume w(n
7

) = + or 

w(n
7

) = -, whereas from S' we have G*3' It is seen that this failure pattern 

has four or five independent origins on the basis of S on the one hand" and on 
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the other, it has three independent origins on the basis of S'. This evidences 

that the elimination of unobserved nodes generally results in loss of infor­

mation, which might cause the essential structure of the problem to be missed. 

Moreover, sinee the elimination of nodes of a graph increases, in general, the 

number of branches, it is not suitable for the treatment of large graphs from 

the point of view of computational complexity. 

-to 1 -+nZ -+n3 +n
l -+n Z -+n3 

f\ \J' )+D7 • • -DV 
7 • "'. • • • 

-t°4 -+nS -+n6 -+n4 -+nS -+n6 -+n4 

G* 1 G* 
2 

Fig. 7. CE graphs for a sign pattern on 
the signed digraphs of Fig. 6 

-+nS -+n6 

G* 3 

Therefore, we shall propose to deal with the given signed digraph and a 

partial pattern on it (partial in the sense that signs are assigned only to 

part of the nodes) with no modification, and to restrict the possible locations 

of the origin of the failure as far as possible. In general, any pattern 

obtained from a given partial pattern by supplementing in an arbitrary way the 

signs of the nodes to which the signs are not a priori given, may possibly take 

place. However, we must exclude from consideration most of those patterns 

which would not reflect practical situation. In so doing, the following fun­

damental presumption seems to be natural and it indeed works very effectively. 

Presumption of a single origin: 

There is a single origin of the system failure. 

The CE graph G* for the pattern corresponding to a system failure satis­

fying this presumption should be a rooted digraph, which is defined as follows. 

Defini ti on 4. + -We shall call a digraph G = (N, B, a , a ) a rooted d~~graph 

if G has a node l!Il such that t d th is at least one direcl_-ed I). 0 every no e Os ere 

path from 01).' (It is well known that a rooted digraph is a graph having only 

one maximal strongly connected component.) 

A "partial pattern" may be formally defined as follows. 
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Definition 5. + -Let S = (G, ~) (G = (N, B, a , a » be a signed digraph. 

A partiaZ pattern on S with domain N is a set of signs of the nodes in N, 
where N is a subset of the set N of nodes, i.e. it is a function w* : N .... {+, 

0, $, Q}. If w* is a partial pattern with domain N, an expanded pattern of 

w* is a pattern w : N .... 1+, 0, -, $, Q} such that wiN = w*. 

Then the problem of locating the origin of a system failure under the pre­

sumption of a single origin is formulated mathematically as follows. 

Problem. Given a signed digraph S and a partial pattern w* with domain 

NM of observed nodes, to enumerate the expanded patterns of w* which make the 

corresponding CE graphs rooted. 

3. An Algorithm for Locating the Origin of a Failure 

The solution of the problem formulated in the preceding section may be 

found in principle by enumerating the CE graphs for all the 3 1N - NMI possible 

expanded patterns and by testing whether each CE graph is rooted or not. 

However, such a primitive method would require a prohibitively long time if it 

were carried out on a computer, so that we have to devise a practically more 

efficient algorithm. 

For that purpose, we consider a partition of the set N - NM of unobserved 

nodes into two subsets: one being the set NA of nodes whose signs are tenta­

tively assumed (to be called assumed nodes), and the other being the set Ny 

of nodes whose signs are not yet assumed (to be called non-assumed nodes). 

We then ~onsider, for the partial pattern with the set of observed nodes 

and assumed nodes as the domain, the quasi-CE graph consisting of all those 

branches which may belong to the CE graph for at least one of the expanded 

patterns. 

Definition 6. Let S be a signed digraph and w* : NM uNA"" {+, 0, -, $, Q} 

be a partial pattern on S with the union of the set NM of observed nodes and 

the set N A of assumed nod,es as the domain. A vaZid node is a node DC( E NM uNA 

with W*(DC() = +, -, $ or Gl, and a semi-consistent branch is a branch which can 

be a consistent branch LUC at least one of the expanded patterns of w*, i.e. 

branch b
K 

is semi-consistent if b
K 

satisfies one of the following two 
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conditions: 

it is valid; 

(i) - (v) of Definition 3' in §l with w* in place of w. 

The sub graph G of G consisting of all the valid nodes and the non-assumed 

nodes and of all the semi-consistent branches is called the quasi-CE graph for 

partial pattern w* on signed digraph S. 

Definition 7. Let G be a quasi-CE graph. An essential component of (; 

is a strongly connected component containing at least one valid node. An 

unessential cornponent of G is a strongly connected component consisting of non-

assumed nodes only. 

The follo1,ling theorem is almost evident but useful for developing a plcac­

tical algorithm. 

Theorem 1. Let S = (G, 1jJ) be a signed digraph and G be the quasi-CE graph 

for a partial pattern w* with the set of observed nodes and assumed nodes as 

the domain. Furthermore, let G* be the CE graph for an arbitrary expanded pat­

tern w of w*. Then, the number m of max:~mal essential components of G does not 

exceed the number m* of maximal strongly connected components of G*. 

For the proof of Theorem 1, we may make use of the following two lemm~s 

which are easily proved. 

Lenma 1. Every strongly connected eomponent of a digraph remains to be 

a component or is divided into several components if some of the branches are 

removed (i.e. opened). 

Lemma 2. Let G = (N, B, a+, a-) be an acyclic digraph and N' a subset of 

N. If the set of branches from a node of N - N' to a node of N' is empty, Le. 

{b
K 

Ib
K 

E B, a-b
K 

EN', a+b
K 

E N - N'} = 0, then there is at least one node of 

I.J' which has no branch ending at it. 

Proof of Theorem 1: If m = 0, the theorem holds. In case m 2 1, let W 

be the set of all those nodes of any maximal essential component of G which are 

valid in G*. By thp definition of an eS.5ential component, W is not empty, and 

by the definition of a semi-consistent branch, expanding the pattern (i.e. 
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assigning new signs to nodes) does not give rise to new branches. Therefore, 

N is partitioned into strongly connected components of G* by Lemma 1. Let the 

partition be W = W
l 

U N2 U '" U Nk . 

Now, let us consider the digraph GO which represents the partial order 

among the strongly connected components of G*. Then, there exists no branch 

connected to the nodes of GO corresponding to Ni's (i 1, "', k) from the 

other nodes. Therefore, by Lemma 2, there is a node of GO corresponding to an 

N. at which no branch ends. Since the strongly connected component of G* 
1-

corresponding to this node is maximal, we have proved that, for each maximal 

essential component of G, there exist one or more maximal strongly connected 

components of G*, which are obviously disjoint. Hence follows the theorem. 

Q.E.D. 

Coro 11 a ry 1. Let m, G* be the same as in Theorem 1. If m '" 2, G* is not 

a rooted digraph. 

By means of this corollary we know that, if m ~ 2 for a partial pattern, 

none of the CE graphs for its expanded patterns can be a rooted digraph, with­

out examining all the expanded patterns. 

We shall propose an origin-locating algorithm using Corollary 1 combined 

with the depth-first search technique, as is outlined in the following. 

Origin-locating Algorithm: To begin with, set NA = 0. At each step of 

the iteration, two cases are possible. 

Case A: The quasi-CE graph for the current partial pattern has two or 

more maximal essential c::>mponents. In this case, we stop expanding the current 

partial pattern and examine the possibility of changing the assignment of a 

sign to one of the assum,=d nodes. 

Case B: The number of maximal essential components of the quasi-CE graph 

for the current partial pattern equals one or zero. This case is further 

divided into two subcasea. 

Case Bl: There are one or more non-assumed nodes. In this case we choose 

one of them to which we assign a sign. 

Case B2: There is ·:to non-assumed node. In this case we output the cur­

rent partial pattern (which is a (nonpartial) pattern) and the CE graph for it, 

and then go over to the possibility of changing the assignment of a sign to 

one of the assumed nodes. 

We repeat this process until all the possibilities are exhausted. 00 
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( STAR'Q 

01 Input S and w* I 

21 Pre-processing I 
+ 

31 
Generate quasi-CE graph G I 

(C It n ; P + 0 ; S + 0) 151 Sa+ O ; Modify G I a a a 

11 
for every node Da in the 

~ 
maximal unessential~ 
components; Modify G 

141 
S + +1 ; 

a 
~--- I10dify G 

=+1 
Decompose G into .-~o strongly connected 

4 components and 
determine the partial 
order among them 

(Pop up the 

+ element Dy 

Number of maximal 
on the top of 

=0 ~2 C ; Sy + ,~) -- \ 
essential ,:omponents 13 
of G? until Da with 

Pa = 1 is found 
=1 on the top of C 

Number of maximal C is enpty 
~l unessential components 6 

of G? 

C " Da ; ( STOP ) 
=0 

Pa +-1 ; 

Sa +--1 ; Assign the signs to the 
Modify G 7 nodes Da according to 

(where Da is (H) of Theorem 2; Pa +- 0 
any non-assumed 
node, in a 
maximal component 
if possible) ~~ .. Do there rE:main 9 

8 non-assumec: nodes? NO e-YES 

Fig. 8. Outline of the algorithm for locating 
the origin of a system failure 
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Since, in an acyclic graph, a node at which no branch ends forms by itself 

a maximal strongly connected component, we readily have the following theorem 

(Theorem 2), which is useful for making the algorithm more efficient. 

Theorem 2. Suppose that the quasi-CE graph G for a partial pattern on a 

signed digraph has a single maximal essential component. Then, the following 

two conditions must be satisfied by any expanded pattern to make the eorre­

sponding CE graph G* a rooted digraph. 

(i) Every node of any maximal unessential component of G is assigned sign 

o in the expanded pattern. 

(ii) For a strongly connected eomponent of G, if there is only one branch 

b
K 

which ends at a node in that component and starts from a node in 

another component, the deletion of b
K 

will make that component maxi­

mal. Hence, if one of the ends of b
K 

is a valid node and the other 

is non-assumed node, then the sign of the non-assumed node in the 

expanded pattern may be determined so as to make b
K 

consist!~nt. 00 

An outline of the "origin-locating algorithm", with the improvements sug­

gested by Theorem 2 incorporated, may be described as the flow chart of Fig. 8, 

where, for the sake of simplicity, all the controlled nodes are supposed to be 

observed. The roles played by the stacks and arrays in the flow chart are as 

follows. 

In the "pre-processing" block 121, when the value of a state variable cor­

responding to a controlled node is within the specified tolerance (i.e. its 

sign is either 0, $ or Q), we open all the branches starting from the node 

except those carrying control information, and then regard the controlled node 

as an unobserved one. 

C is a stack with the depth equal to the number of nodes. Assumed nodes 

are pushed down in C each time when a sign is assigned. S as well as P is a 

one-dimensional array with the size equal to the number of nodes. We put 

Sa = * if Ba is a non-assumed node, and Sa is equal to its sign if Da is an 

assumed node. 

In blocks [lJ and 121, we assign the signs to the relevant nodes according to 

(i), (ii) of Theorem 2, where we put P a = 0 for those nodes Da' In block lJ], 
we pop up the nodes in stack C until a node l!Il with P = I (Le. a node with an 

a a 
"arbitrarily" assigned sign)' appears on the top of C. 

Block [!jJ contains a routine to decompose a digraph into strongly connected 

components. The algorithm proposed by R. E. Tarjan [3] is now regarded as one 

of the most effi~i~nt. 
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It will not be difficult to see that we can enumerate all the possible 

sign-assignments by the help of the stack C together with the auxiliary arrays 

Sand P. 

Example 4. Let us take up again the system of Fig. 3 in Example 3, which 

is modelled into the signed digraph S of fig. 4. Furthermore, let us assume 

that nodes VI' Land FZ are observed, the other nodes being unobserved, and 

that node L is controlled where control information is carried by the branch 

to node VZ• Now, suppose pattern w* : (VI' L, F
Z

) r------+ (+, 0, +) is observed. 

After the preprocessing block ~, we have the initial quasi-CE graph shown in 

Fig. 9(a), where node L is regarded as an unobserved node. Since the digraph 

of Fig. 9(a) ha.s two maximal strongly connected components, Le. {VI} and {V
3
}, 

the former being essential and the latter not, node V3 is assigned sign ° 
in block [1/, and the quasi-CE graph is modified by removing node V 3 and the 

branch incident to it. In the resulting quasi-CE graph {F
3

} is again an 

unessential maximal component, so that it is removed together with the incident 

+ + 
(b) 

Fig. 9. Example of the algorithm 

+ 

(c) 

branch. Then ~le have the quasi-CE graph of Fig. 9 (b). This digraph has only 

one essential naximal component, so that we apply (ii) of Theorem Z in block 

I2l to assign + to node F l' and then $ to L. Then, the branch from node F 2 to 

L becomes inva:,id and is removed from the graph. Thus, by applying (ii) of 

Theorem Z again, we have the final CE graph shown in Fig. 9(c), which is unique 

in this case. The expanded pattern (uniquely determined in this case) is u) : 

(VI' L, FZ ; F
I

·, V
Z

' V
3

, F
3

) f---+ (+, $, +; +, +, 0,0). Thus, we can conclude 

that the abnornal phenomenon stems from the unexpected increase in the aperture 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



308 M. Iri, K. Aoki, £.0 'Shima and H. Matsuyama 

of valve V
l

. 

4. Related Problems 

An error-detecting or error-correcting code is famous in the context of 

error/failure detection and diagnosis. That is a code which is used for 

improving the reliability of the information transmission through a noisy chan­

nel. By taking advantage of a special algebraic structure of the code, under 

the asswnption that the Y!wnber of errors is within a specified bound, 'Ne can 

detect the existence of (,rrors or clarify their locations. 

Our problem has a common feature with an error-detecting (-correcting) 

code in that the location of the origin of a system failure is to be found on 

the basis of the information obtained by some observation (Le. a pattern of 

signs of observed nodes) under the asswnption of a single origin of failure. 

But there is a basic difference between the error-detecting (-correcting) code 

and our problem. In the former, it is possible --- and it is the most impor­

tant point of the theory --- to design an artificial structure which enables 

us to detect (correct) errors, whereas, in the latter, the structure oE the 

system as well as the observability/unobservability of the signs of nodes are 

a priori given. 

A fault diagnosis of a logical circuit is also well known. The location 

of fault is determined by means of a combination of many tests (each of which 

is an input-output sequence pair) [4]. Thus, the problem of fault diagnosis 

of a logical circuit and our problem have the same purpose, i.e. to determine 

the origin of a failure in a given system. However, there is much difference 

between the two problems. In our problem, only the information given in the 

form of cl pattern of the signs of observed nodes is available when a failure 

takes place, whereas, in the diagnosis of a logical circuit, arbitrary signal 

sequences (which are prepared especially for the purpose of diagnosis) may be 

input to the system in order to obtain useful information. 

5. Discussions on the Problems to be Solved 

In this paper we presented the concept of a signed digraph and a pattern 

on it as a mathematical model for describing roughly a system and its state, 

and formulated the problelTI of locating the origin of a system failure in terms 

of those concepts. A practical algorithm for the problem was also proposed. 
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The present formulation of the model is motivated through an attempt to 

establish a systematic approach to the automatic diagnosis of the failures of 

chemical plants. However, the model seems to be applicable to a wider vari.~ty 

of engineering as well as social systems. 

There remai.ns, of course, much to be further developed both from the 

mathematical and the practical points of view. 

Mathematically, the present version of origin-locating algorithm is rather 

primitive. For example, a part of a chemi.cal plant was modelled into a digraph 

with 21 nodes and 62 branches, of which 6 nodes are observed and 3 nodes are 

controlled. Th,= origin-locating algorithm generated about 20,000 quasi-CE 

graphs and examined their connectivity. It took about 20 minutes on FACOM 

230/45 operating under FORTRAN IV monitor. 

The necessary time will increase very rapidly, i.e. exponentially, as I:he 

size of the graph, especially the number of unobserved nodes and controlled 

nodes, increases. However, we can introduce various devices similar to those 

enunciated in Theorem 2 to greatly cut do.m the number of quasi-CE graphs to 

be examined. Designing such devices will afford interesting and useful resE~arch 

subjects in graph theory. In fact, by adding a few such devices to the algo­

rithm, we could solve the same problem in less than 10 seconds. For a given 

specific sys tern, the more of its special ~:truc tures we take advantage of, the 

more devices shall we be able to find to speed up the algorithm. 

There will be a number of problems when we make a model of a real system. 

For example, an implicit relation such as f(x, y, z) o among state variables 

x xwy 
y - + 

- + 

Z 
Z 

(a) (b) 

Fig. 10. Example of the digrc.phical representation 
of an implicit relation 

cannot be repreBented in the unique way by the branches which connect the nodes 

reprec;enting variahlAs x, y, z. However, if the signs of partial derivatives 

of f with respeet to the variables are kncwn, say, f > 0, f > 0 and f < 0, x y z 
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it may be possible to re:nesent the implicit relation by a bipartite graph 

with a dummy node as shO'.VIl in Fig. 10(a), and then by a signed digraph as 

shown in Fig. 10(b). 

In the case that thl~ method is applied to a continuous system such as a 

chemical process, the influence relations and the values of state variables 

are to be quantized into two or three levels. A standard method should be 

looked for for the quant:ization. 

It is clear that, the more nodes are observed, the smaller will be the 

part within Ivhich the or:igin of failure is confined and the faster will the 

algorithm run. However, in practice, the number of observed nodes is limited 

by physical, technological and economical reasons. Here arises the problem 

of establishing a criter:ion according to which observed nodes are to be dis­

tributed. This leads us to a problem of synthesis of a system in contrast 

with the problem of analysis considered in this paper. 

The authors are trying to implement the method presented in this paper 

in an actual chemical plant, where they are finding practical solutions to 

the problems discussed in this section. The theoretical results, as well as 

the practical, obtained in the course of the trial will be published elsewhere 

before long. 

The authors thank the referees for their valuable comments and sugges­

tions, by which the manuscript of the paper was substantially improved. 
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