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Abstract An approximate solution method for solving the optimization problem which contains semi-fixed costs
represented as a lower semicontinuous step function is developed. The fundamental idea of the algorithm is based
on the simplex procedure of linear programming. We define the decrease in the objective function considering twice
pivot calculations, and preparing two kinds of simplex tableau we propose the computational procedure to systemati-
cally obtain the approximate solution. Also some properties of the pivot calculations are theoretically analyzed.

Finally some numerical examples are solved to illustrate the procedure and to test the effectiveness of the algorithm.

1. Introduction

In this paper, we develop an algorithm for solving the optimization problem
which contains semi-variable costs represented as a piecewise linear function
shown in Figure 1 and semi-fixed costs represented as a lower semi-continuous

step function shown in Figure 2.
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The constraint (3) means that variable Eik (i=1,---,7-1) have to take the
value I if the variable gjk takes a positive value and gik (i=j+1,—-—,nk) have

to take the value 0 if Ejk takes 0. Also it is assumed that it holds

uijk ; al:j—lk (7:=1,———_,m s j=2,""3nk; k=1:___, Z)
(4) YJk 2 Yj-lk (J=2,—-—,7’lk,‘ k=1,---,1)

Sk 2 851k

(j=2,—--,nk; k=1,--=,1).
The prime represents the transposition of vectors.

Originally this problem appeared when determining the production planning
for the mixed-model assembly line production system [l]. 1In [1], the problem is
formulated as a kind of separable programming which minimizing the objective
function constructed from the sum of a convex function and a kind of step func-
tion under the constraints of linear inequalities. Approximating the convex
function as a piecewise linear function and generalizing the problem, we have
relations from (1) to (4). The problem of minimizing (1) subject to (2) and (3)
is considered to be a kind of the fixed charge problem and, introducing 0-I
variables, we can treat this problem as a mixed~integer programming problem [3].
Also an algorithm which is based upor. a branch and bound method is presented for
the general fixed charge problem [4].

In this paper, we will attempt to solve the problem (1)-(3) by means of the
simplex method. Though some approximate solution methods using the simplex
method have been proposed for the fixed charge problem [2,6,7], we will derive

an another approximate algorithm from the different point of view making use of
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following properties of the problem, that is,

(a) From the assumption (4), for the problem of minimizing only the first
term of the objective function (1) subject to (2) and (3), we can carry out the
ordinary calculations of the simplex algorithm without considering the restric-
tion (3) and, in optimal state, the restriction (3) is automatically satisfied
[5].

(b) From the restriction (3), for the problem (1)-(3), we know that if the

variable gjk is a basis and it holds 0 < Ejk < 1, then Ej is the only candi-

+1k
date variable which enters into the basis and Eik (i=j+2,——~,nk) must not enter

into the basis before § Also, if 0 < Ejk < 1, then gjk is the only candi-

J+1k’
date variable which moves to the nonbasis and gik (1=1,---,j-1) must not move
to the nonbasis before Ejk'
The algorithm proposed is essentially constructed with two phases.
(a) First, without considering fixed charges, ordinary simplex calculations
are carried out to obtain the initial feasible solution.
(b) Next, considering fixed charges, twice pivot calculations method are

carried out to search for a better extreme point assuring the feasibility and

monotone decreasing.

2. Preparations for the Algorithm

2.1 Definitions of the sets

Introducing slack variables y and = (k=1,---,1), we can represent inequali-

ties (2) as follows:

l
(3) T4 x, -y=0>b
g kK
(6) @ + 2 =u (k=lee, 1)
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Let define the function &G as follows:

L,

(8) G=Lec, x,.
k=1 k "k

We will call the linear programming problem of minimizing (8) subject to (5),
(6) and (7) Problem A and the fixed charge problem of minimizing (1) subject to
(5), (6) and (7) Problem B hereafter.

Let X be the set of gjk (j=1,---,nk; k=1,---,1), Y be the set of ns (i=1,
~—-,m) and Z be the set of Cjk (j=1,-~-,nk; k=1,---,1). At the any step of the

simplex iteration, we define the sets of variables as follows:

l —_— —
XB = {Ejkl gjk_ -Z, Ejk € X}’
z_ +
X3 = {Ejkl 0 <ty <1, b€ X},
v oyl g2

XN =X (XB U XB),

YB = the set of basic variables of n; € Y,
YN =Y - YB’

+ 1If there exists a basic variable which takes gjk= 0 (that is, in the presence
of degeneracy), we replace it by the nonbasic variable ni € YN' This pivot
calculation is always attainable. Let proof this fact. Denote the coefficient
matrix for the set of nonbasic variable YN as Y,_.. Since the inverse

N

-1 . . . . .
matrix A of the coefficient matrix A for the basic variable vector wB

defined as (1l1) is represented as (12) mentioned in chapter 3, the coefficient

*
matrix YN of the current simplex tableau becomes as follows: ~
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ZB = {C,jkl cjk= 1, CJk € Z},
2 _ . .
ZB = the set of basic variables which take 0 < Cjk < 1, cjk e L,

_ 1, 2
Z,=1- (2 U Zp),

-yl 2 1 2
XB U XB U YB U ZB U ZB’

=
1

and W

XN u YN U ZN.

2.2 Definitions of the decrease in the objective function
Let denote the variable which enters into the basis as wi € WN and the

variable which moves to the nonbasis as wi € WB. Then from the theory of linear
programming, the variation AHI in the objective function of Problem B becomes
as follows:

* *
9) sy = (v - w8l oit + (8] - si),

A
where (Yi - ﬂi) is the simplex criterion of the nonbasic variable wl B; is the

t’

7%
value of the basic variable wi, and OS is the value of the pivot element. The

t

. . 1
asterisk represents the value of the current simplex tableau. 61 and 63 are

¢
N
~ . - -
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Hence we know that there exists at least one nonzero element for ni € YN

corresponding to the basic variable which takes Ejkz 0.
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fixed charges of wl

+ and wi, respectively. Let assume that, after we replace

1 1
wy € NB by Wy
wi € NN - {wi} and the variable which moves to the nonbasis as wi € WB - {wi}.

€ WN, we choose the variable which enters into the basis as

Then the variation AH, in the objective function becomes as follows:

2

@)y = am + (- 12 88 6P 4 62 6
2~ A Yt t’ s at t g
2 2 2% 2* . . Z 7 1*
where (Yt - ﬂt), Bs and 0y are defined as similar values as (Yﬁ - ﬂt), Ss

*
and Git corresponding to wi and wi. We can easily calculate AH, and AH, if
wé, wi, wi and wi are determined. Then we define the decrease in the objective

function of Problem B as follows:

Definition. We define that the objective function of Problem B decreases
if it holds either
(a) AHy <0 or

(b) A,

v

J and AH, < 0.

3. Meaningful Pivit Calculations

When we choose the variable which enters into the basis as wi € WN and the

variable which moves to the nonbasis as wi € WB for the first pivot calculation,

. . 1 1 .
we can formally consider fifteen cases as the combination of ws and wt, that is,

1. wi € X;, wi € XN’ 2. wi € X;, wi € XN’ 3. wi € YB’ wi £ XN’
4, wi € Z%, wi £ XN’ 5 wi € Zé, wi € XN’ 6 w; € X%, wi € YN’
7 wi € X;, wi € YN’ 8. wi € YB’ wi € YN’ 9 mi € Zi, wi € YN’
10. wi € ZE, wi € YN’ 11. wi € Xé, wi € ZN’ 12. wé € Xﬁ, wi 3 ZN’
13. wi € YB’ wi € ZN’ 14. wi € Z;, wi € ZN’ 15. wi € Zﬁ, wi € ZN'
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Also we can formally consider fifteen cases as the combination of wi and wi for
the second pivot calculation for each case of the first pivot calculation. But
as soon seen, those combination mentioned above contain the cases which need not

consider. The cases 1, 6, 9 and 14 never occur. Let proof these facts. Let

denote the vector of variable gjk which belongs to the set X; as X;. Also we
define the vectors xg, yB, Z; and Zg as the same manner as x%. Let define the
vector wB as follows:
(2
Xe™
X m
3 2
_E )
(11) Wy = min, Yg | ) m=mys where n, = Zlnk.
v =
zo | )m
Z%‘ no—ml—mz

Then the coefficient matrix A for the vector wB can be represented as follows:

\
|
/

[ H i i i ]
P @ ! 0 1 0 0 m
_____ LI i —
0V E Q1 0} 0 0 my
[ L S denaaa Am————
A = ming Ry 8 4y-E } 0 0 m-my ,
SRR S SN SO B
E { 0% 0\ E {0 m
I 1 i ]
e qe———- pr———— Fo——— wm————
oY ot o) o }VE No-my-Mz
3 | 1 ' i J
mi ma m-mj mp no-my-mz

where E and 0 represent the unit matrix and the zero matrix, respectively.
Assuming that the squar matrix P is regular, we have the inverse matrix A-l of

A as follows:
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From (12), we know that there exist no nonzero elements for ”i € YN correspond-
ing to gjk € X;. Also there exist no nonzero elements for n; € YN corresponding
to Cjk € Z; and for Cjk €ZN corresponding to Ejk £ Z;. Hence we cannot replace
gjk I3 X; by n; € YN (the case 6), Cjk € Z; by n; € YN (the case 9) and ij € Z;
by Cjk € ZN (the case 14). For the purpose of proving that the case 1 never
occurs, let denote the column vector of coefficients of the variable gjk € XN

as P,,. Then P,, 1is represented as follows:
Jk Jk

. N
P my
0 m,
ij=m+n0 q m- m,
0 m,
r mg= M~ m,
L J

4 - *
As the column vector ij of the current simplex tableau becomes A lek, ij

is represented as follows:
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-~ N
P_lp my
0 m,
I T Sl
(13) E3k= A ij =m + n, REP p - g m- m,
"P_lp m,
r Nog=— M- My
~ P

From (13), we know that there exist no nonzero elements for gjk SXN correspond-
ing to Ejk £ Xé. Hence we cannot replace gjk 3 X; by gjk € XN. Thus we know
that the cases 1, 6, 9 and 14 never occur.

And yet, for the case 7, 11 and 12, we know that it is enough to investigate
the value AH,. Therefore we may consider the combinations of remaining eight
cases for the twice pivot calculations. But if the basic variable which moves to
the nonbasis in the second iteration does not concern the fixed charge, it is
meaningless for the purpose of decrease in the objective function. After the
consideration of these facts, meaningful twice pivot calculations in our algori-

thm become as Table 1.

Table 1. Meaningful pivot calculations

the first pivot calculation the second pivot calculation
1. wy € Xﬁ, wy € XN 1. w e X2, wy € XN
2. Wy € YB’ Wy € XN 2. wg e X;, wy € YN
3. Wwg € Z;, wp € XN 3. wg € Xl, wy € ZN
4. wg € ZE, w, € Xg 4. wg e X;, w, < Ly
5. wy € YB’ wy € YN

6 wg € Zg, w, € YN

7 wy € Yo wy € Ly

8 wy € Z;, w, € ZN
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In Table 1, when we choose the variable w, € XN to enter the basis for rhe

t
first or the second pivot calculation, it is apparent that we should only

consider gj*+1k € XN as the candidate variable of w, for each k (k=1,---,1),

t
where we assume that gj*k € (X; U Xé) (k=1,---,1). Also, when we choose the
variable w, € ZN to enter the basis, we should only consider Cj*—lk € ZN as the

candidate variable of w, for each k (k=I1,---,1), where we assume that Cﬁ*k 3
1 2 . . 1 2 i
(ZB U ZB)(k=1,———,Z). Moreover, if a basic variable gj*k* £ (XB U XB) is chosen

to be replaced by Ehk* € XN (h=j *+1,~--,n,), it is apparent that the objective

k
function does not decrease. So we may delete such cases in the pivot calcula-

tions. Also we may delete to replace a basic variable Cj*k* € (Z; U Zg) by

Chk* € ZN (hzl,———,j*"l).

4. Algorithm

In this section, we will propose the computational procedure to solve the
fixed charge problem defined as Problem B. The fundamental idea is based on
the simplex method of linear programming. Though this algorithm seems to re-
semble the heuristic method proposed by Steinberg [6] and Walker [7], it is
slightly different from [6] and [7] in respect of selecting the pivot element by
utilizing properties of the problem. We prepare two kinds of simplex tableau
for the algorithm, that is, Simplex Tableau 1 (ST1) and Simplex Tableau 2 (ST2).
We use ST1 for the pivot calculations when variables to enter the basis and
move to the nonbasis are determined. On the other hand we use STZ only for the
purpose of calculation of AHZ. The basic computational procedure is constructed
from Step 1 to Step 14. We use STI1 from Step 1 to Step 6 and Step 13 to Step 14,
ST2 from Step 7 to Step 12 in the algcrithm.

Step 1. Solve Problem A by using ordinary simplex method.
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Step 2. Set j « 1, F <+ o, and u < 1.
Step 3. 1f wj € WB, g0 to Step 13. Otherwise determine the basic variable
w, € W_ according to (1l4),
11 B

{6 1% 14 1*

(14) 6. = min ; = B; / 0y, for 02> 0)

YU Igigmeng

*
where Oij is the (i,j) element of current STI.

Step 4. Calculate the value AH, by (15), that is,

1 1 1 1
AH, = .- m.) 8. + (&, - 6. ).
(15) 1 (yJ ﬂJ) iy ( ; 11)

Step 5. For AH):
a) if AH; < 0, themn go to Step 6,
b) if AH, > 0, ther go to Step 7.
Step 6. Compare AH; with F:
a) if F > AH,, set F <« AHy, s1« 11, t1< g, W <« 2 and go to Step 13,
b) if F < AH;, go to Step 13 at once.
Ust ST2 from Step 7 to Step 12.
Step 7. Set each element of ST2 as the same value as STI.
Replace wil € WB by wj € NN and set k <« 1.
Step 8. If w, € WB, go to Step 12. Otherwise determine the basic
variable w,, € WB according to (16).

. _ 8% 24 2%
(16) 6., = min {ei =85 / 0y fOr Oy > 0},

T . T
z 1<i<m+ng

*
where Oik is the (7,k) element of current ST2.

Step 9. Calculate the value of AH; by (17):

an B, 72;2)'

AH, + (yi - wi) eiz + (Bi -8

Step 10. For AHa:

a) if AH, < (0, then go to Step 11,
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b) if AH, > 0, then go to Step 12,
Step 11. Compare AH, with F:
a) if F > AHp, set F « MNH,, sy« 11, t1%« J, 82¢ 12, to* Kk,
U < 3 and go to Step 12,
b) if F < AH;, go to Step 12 at once.
Step 12. Set k < k+1:
a) if k < m+2n,, then go to Step 8,
b) if k > m+2ny, then go to Step 13.
Step 13. Set j <+ j+1:
a) if j < m+2n,, then go to Step 3,
b) if j > m+2n,, then go to Step 14.
Step 14. TFor u:

a) if u

1, the algorithm is terminated,

. . 1*
by pivoting on term Osltl and

b) if u

2, replace wsl by wtl

return to Step 2,

*
by pivoting on term Oi for the

c) if y = 3, replace ws; by w L)

t1

first pivot calculation and then replace wy by w, by pivoting on
2

t2
*

2
term O
sat2

for the second pivot calculation. Return to Step 2.

If various methods are contrived under the consideration of the properties

mentioned in chapter 3, we can improve the efficiency of the algorithm. Let

1
B

u Xg) for each kX and define J*(X) = {j;(X),---,j;(X)}. Also let j;(Z} (k=1,---,

ji(X) (k=1,---,1) be the maximum number of subscript of Ejk such that gjk e (X

1) be the minimum number of subscript of Cjk such that Cjk € (Z% ] Zg) for each
k and define J*(Z) = {j;(Z),—--,ji(Z)}. Store the current J*(X) and J*(Z)
after solving Problem A and at any step of the pivot calculation, that is, at

Step 1 and Step 14. Then we can contrive the algorithm as follows:

a) It is enough to investigate only 5j*+1k £ XN for each k and only Cj*—lk
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€ ZN for each k at Step 3 and Step 8.

b) When determining the basic variable which moves to the nonbasis by using
eq. (14) in Step 3, we only consider such subscript that 7 € J*(X) for w, € (Xé
] Xﬁ) and 7 € J*(Z) for w, € (Z% 1] Zg). Also when determining the basic vari-
able which moves to the nonbasis by using eq. (16) in Step 8, it is enough to
investigate such variable that w; € (X% U Xg) and 7 & J*(X).

5. Numerical Experiments
5.1 Numerical example
To illustrate the algorithm mentioned in chapter 4, we show a simple
numerical example. Let consider the problem of minimizing
1 3 5 7 1 3 5 1 3 5 B
Pl 5 5 51 15|t % % & B2t U 5 5 | s
g2.Z €22 E23
£3; €39 £33
g4.Z
-
+ [10 15 20 25} [Ell] + [6 10 15} [512] + [10 10 10] [513]
[£,,] (£, (£,
£, [£5,] [£55])
£,
subject to
2 2 2 2 511 3 3 8 512 1 1 1 ng 10
3 3 3 8 521 + 2 2 2 £22 + 5 &5 6 525 > 18
4 4 4 4 531 1 1 1 532 3 3 3 €33 16
E41
. . if £.,>0, then§, =1 for i=1,---,j-1
0 < gjk <1 (J—l,-——,nk, { Jk ik (k=1,---,3),
k=1,--~,3) if Ejk=0, thenﬁik=0 for L=J+1,——-,nk
1 if &.k >0
where n, =4, n, =n, = 3 and £E. = J (j=1,---,n,5 k=1,---,3).
1 2= "3 Jk i - k
0 if Ejk =0

The optimal state of Problem A is shown in Table 2 and Figure 3.
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Table 2. Optimal tableau of Problem A‘n

4 10! 15| 20| 251 5| 10| 15| 10| 10| 10
2y 381 S8 7y 1| 3, 5| 1] 3| &
Yik 5| 5| 5| 5 6 6| € 3| 3 3
dg| cg| Wp | 2 |611|621|551|%41|512(%22|532(513| 5235335 M1 M2 |Ms |%11|%01 (%51 |%a1|%12|%22|%32|%13|%23|%33
7
P 1 1
3 2 Z71] -2 7
10\ 5l%22 |75 11 30| 73] 30 -1
7
10| e, i1 7 1
10, Lig
55211 1 7
3
151 Fibsy | g 1 1
5 7 ~1l 413
20) 2le,, o7 1l 1l e
tyy | 1 1 1
3, 12 FEI _
10| 21593 | 3 oI 4 73 & 1
73 717 1] =7
S22 |15 -1 30| 15| 30 Il
Tyo | 1 7 1
8 71 —4| 13
31 |15 -1 30 75 30 Y 1] 1
7 a0 1] -1
%93 | & -1 75 73§ 11
Loy | 1 1 1
B F) 1 I T 71 7
Yo~ Tk 5 3 3| 20| 70| 20, 5| 5 3 3
389 227 4| 13| 1|347| 32| 16 13 2
AHy | 82.5 75 45 3| 770! 70|=35| 75| 75 75 3

1 We assume that each empty element in the tableau takes the value zero.
Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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054 813 3
i 54

S W———

|
§,.=15| |
| 327, I
| i | |
| |
I Jﬁ—f ’F+ (
| _ ! |
| 855714 ! !
| , § 13
1 —]-Z— 612=5' 751! | 8
i * . | 1 | -
b31 41 §5jz L12 fo2 B3 §5j2

Fig.3 Optimal state of Problem A
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The value of the objective function iz F = 82.5. According to the algorithm,

we have the values of AH, and AH, as Table 3.

Table 3. Values of AH; and AH, for Table 2

the first the second .
pivot calculation pivot calculation values of Ady and Al
1 X 1 2 2

Wg Wy Wg W A, Ad,
€93 E29 13/110 -95/22

oo ny €37 Ny 13/110 -97/10
o3 g 13/110 -97/10
€37 £33 1/10 -229/24

oz Ny €37 n, 1/10 -197/10*
€0 Ng 1/10 -97/10

PP Nz -1045/105

*# Minimum value of AH, and AH,.

From Table 3, we know that we should replace QZS £ Zi by Ny € YN for the first
pivot calculation and then 531 € Xg by nl £ YN for the second pivot calculation.
After these pivot calculations we have the state shown in Table 4 and Figure 4.
The value of the objective function is F = 62.8. For Table 4, we have the
values of AH; and AH, as Table 5. As there exists no AH; or AH, which takes

the negative value, we know that Table 4 shows the terminal state of Problem B.
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Table 4. Terminal tableau of Problem Bﬂ

Six 10| 15| 20| 25| | 10| 15| 10| 10| 10
I 30 &) 70 1l 3] 5} 11 3| &
Yik 5| 5 5| 5| 6 8| 6! 3 3| 3
cg| @5 P 18171857(8571%47 /5121502 65215131523 |853 N1 M2 M5 |C11|%01 (%57 |%a1
7
5519] ! 1
3
10| 2lg,,| 1 4| 4 1] 1 3 -1] -4| -4
7
100 ZE,] 1 1
w0 Le, | 1] 2 1
< 14
3. ; ]
15 fQZJ I y) 1
n, |2 5 5 1 1| -2| -5| =5
1
bagy 1 . R 0
3
10| SEy i 1 1
n, | 2 10| 10 gl 1 -3|-10|-10
39 1 ! -
!
SR | 1 1
Cop| 0 . -4| -4 -1 -3 ! 1| 4] 4
i
33| 1
-3 1 1 1l 9| 7 1
Vi~ Tk | 208 -5 ¥ 3 2 5 5 3
ro p 991622 16 241 " " fi " " n
AHI O4.0C _5-75‘ _—'3‘ 7&' [ v v [} (V3 v

1 We assume that each empty element in the tableau takes the value zero.
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Fig.4 Terminal state of Problem B
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Table 5. Values of AH; and AH, for Table 4

the first the second
pivot calculation pivot calculation values of AH, and M,
1 1 2 2
Wy wy W, wy AH, AH,
533 531 8/81 1207/60
n g 1
1 33
522 Nz 8/81 5/4

5.2 Results of numerical experiments

In order to test the effectiveness of our algorithm mentioned in this paper,
we prepare some numerical examples with the following properties:
(L L=5,m=25, = 5 (k=1,---,1), hence ng= 25, m + n, = 30 (the number of
inequalities) and m + 2n¢ = 55 (the number of variables including slack),
2) a1k T %5k (i=1,-==,m; j=2,-——,nk; k=1,---,1)
and 0 < ook <9 (i=1,---,m; k=1,---,1),

(3) Bik are given about 0.6 times as many as I % ik for all < and k (i{=I,---,m;

J
k=1,---,1), and

4) ajk 2 YJk (j=1,———,7lk,' k=1,---,1).

Table 6 shows the input data we used. For each coefficients matrix and
vector LAk,b) of Table 6 (a), we examined all the cases of the cost and the fixed
charge vector (ck,dk) of Table 6 (b), that is, we solved 5 x 4 = 20 cases.

Table 7 shows the results of numerical experiments. 1In Table 7, cagse 1-2, for

example, implies that data no. 1 of Table 6 (a) and data no. 2 of Table 6 (b)

are combined.
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Table 6.

(a) Coefficients matrix and vector (A’(’b)

Input data for the numerical experiments

263

i~
S

data no. 1 P

43

i~

hS

[N
DWW RO HWHDN OCOHN NN WWORD® v de
SR DM THWMNHMN OCORNODN WWOHRD Gt
M OTNWDD UTTOWMDN OO O WWOHRDD gy
MO OHNR W LTHIWMHOMN OORN O WRNWOKROD O trvondo o
W NOWOULHAR T WMDY OOMPOUDN NWWOHRSD OBy
DN OND OO OCOR O N WORNY BN NWHW®
QUNOHRNMD® VTR OR® PORID RHWORN AN N
QU OO RO ® CORMROD RKWORN AR NKRWO ®W
QUNON® LEHEONW ©CORDOD® RMWORHRNT N NVTWOE®
QNN ORNR O RN CORNDO RMWOLRNT AW W®W

T e

DN oD M COHRN WD DD
QO OWMHMO MV NMNWAHADDDM WODORMDD OO XD
DOV MV NONMD N OAHBADN WSO OO D
QO WM MMNVNNVOTM NRODBADBD WOORDDD OO
QOO N NVNDODNM NRODIARADD WOORDMND OO ®WDN

IO D

FHMMOWO VRN NW OONORN HTWAUWNN MO NO DD
FHMOWH Nk NNW ONORN W AUWN AO NSO N
FHMOWO VR NNW ONORNYN WO ANONO N
MMOWD VNN W ONORN TN RO NO
MMOWH VNN W BDNORMNT W WND AN M

RO ®® VNOAINDL DUDDMDIUW DUV D® NWNHNDI®HD

FRH OO NVNOHIND DUAMOIDAW DN DODD LB O
M OO DW NVNOVHINVND TUDIW DN IORD NWGLHOHIO
M UOOHHID®W VDAV ODOWHDOW LD OD® WO D

(b) Cost and fixed charge vector (ck,dk)

date no. e, e, cg ey e d1 d2 d3 d4 d5
25 20 60 80 60 100 150 200 250 300

30 26 65 85 65 110 160 210 260 310

1 38 30 70 90 70 120 170 220 270 320
40 35 75 95 76 130 180 230 280 330

45 40 80 100 80 140 190 240 290 540

60 80 60 20 25 100 150 200 250 300

65 85 65 25 30 110 160 210 260 310

2 70 90 70 30 36 120 170 220 270 320
75 95 75 35 40 130 180 230 280 330

80 100 80 40 45 140 190 240 290 240

26 20 60 80 60 300 250 200 150 100

30 25 66 85 65 310 260 210 160 110

3 36 30 70 30 70 320 270 220 170 120
40 35 75 95 75 330 280 230 180 130

45 40 80 100 80 340 290 240 190 140

60 80 60 20 25 300 250 200 150 100

65 85 66 25 30 310 260 210 160 110

4 70 a0 70 30 35 320 270 220 170 120
76 95 75 36 40 330 280 230 180 130

80 100 80 40 45 340 290 240 190 140
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*
Table 7. Results of numerical experiments

T values of the number of pivot decrease in .
data objective function calculations after | the objective time

Problem AT| Problem B |solving Problem At function (sec.)
case 1-1 2924.44 2878.33 1 (0, 1) 46.11 20.7
case 1-2 4324. 44 4095. 95 3 (0, 3) 273.49 34.9
case 1-3 4413.96 4097 .38 1 (0, 1) 316.58 21.0
case 1-4 4113. 96 3997.38 1 (0, 1) 116.68 21.1
case 2-1 3633.33 3456.67 1 (1, 0) 176.66 20.3
case 2-2 3480. 00 3480. 00 0 (0, 0) 0.00 16.2
case 2-3 3633.33 3318.33 1 (1, 0) 316.00 21.2
case 2-4 3280.00 3186.87 3 (0, 3) 93.13 37.8
case 3-1 3538. 67 3275.00 1 (0, 1) 263.67 23.5
case 3-2 4881. 97 3743.00 7 (0, 7 ) 1148.97 57.8
case 3-3 4738.67 4216.00 5 (0, 85) 523.67 47.0
case 3-4 4391. 97 4085.00 4 (1, 3) 306.97 43. 5
case 4-1 4181.19 3930. 00 2 (0, 2) 251.19 az.7
case 4-2 4620. 96 4083. 94 4 (2, 2) 537.02 40.5
case 4-3 4181.19 3739. 04 4 (1, 3) 442.15 42.1
case 4-4 4220. 96 37065.00 2 (0, 2) 516.96 37.1
case 5-1 3671.26 3422.50 1 (o0, 1) 248.75 6.5
case 5-2 4708.75 3703.00 9 (1, 8) 1006.75 16.7
case 5-3 4571. 25 3790.00 6 (0, 6) 781.25 13.6
case 5-4 3708.76 3635.00 1 (0, 1) 73.75 J 6.6

* The computer used is the HITAC 8700 with 0S/7 at the Computer Center of
Hiroshima University except for the case 5.

f The value of the objective function eq. (1) for the solution of Problem 4.

T Total number of pivot calculations (the number of once pivot calculation
(the case U = 2), the number of twice pivot calculations (the case u = 3)).

§ The computer used for the case 5 is the HITAC M~180 with VOS3.
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6. Conclutions

We propose an approximate solution methéd for the problem defined in the
introduction. As the algorithm mentioned in chapter 4 is based on the simplex
procedure, we can easily treat our problem. If we are in the situation in
which the more precise solution must be determined, we will prepare three kinds
of simplex tableau for the algorithm and define the decrease in the objective
function after three times of the pivot calculations. But it is apparent that
the more the pivot calculations increase, the more the computational time and

the computer memory required increase.

Acknowledgements

The author wishes to thank Professor Kenichi Aoki of Hiroshima University
for his helpful comments, and to the referees for their kind and useful comments.

This work was supported by the Zaidan Hojin Keiei Kagaku Shinko Zaidan.

References

[1] Aoki, K. and Hiraki, S.: A Study on Production Schedule for the Conveyer
Line System. Transactions of the Japan Society of Mechanical Engineers,
Vol. 40, No. 340(1974), 3542-3553 (in Japanese).

[2] Cooper L. and Drebes, C.: An Approximate Solution Method for the Fixed
Charge Problem. Naval Research logistic Quarterly, Vol. 14, No. 1(1967),
101-113.

[3] Hadley, G.: Nonlinear and Dynamic Programming. Addison-Wesley, 1964.

[4] James, A. P. and Soland, R. M.: A Branch-and-Bound Algorithm for Multi-
level Fixed Charge Problems. Management Science, Vol. 16, No. 1(1969),

67-76.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



266 S. Hiraki

[5] Mine, H.: Operations Research (Vol. 1). Asakura Shoten, 1966, 134-142
(in Japanese).

[6] Steinberg, D. I.: The Fixed Charge Problem. Naval Research Logistic
Quarterly, Vol. 17, No. 2(1970), 217-235.

[7] Walker, W. E.: A Heuristic Adjacent Extreme Point Algorithm for the Fixed

Charge Problem. Management Science, Vol. 22, No. 5(1976), 587-596.

Shusaku HIRAKI: Department of Systems
and Industrial Engineering, Faculty
of Engineering, Hiroshima University,
Senda-machi, Naka-ku, Hiroshima, 730,

Japan.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.





