A SIMPLEX PROCEDURE FOR A FIXED CHARGE PROBLEM

Shusaku Hiraki
Hiroshima University

(Received August 16, 1979; Final May 6, 1980)

Abstract An approximate solution method for solving the optimization problem which contains semi-fixed costs represented as a lower semi-continuous step function is developed. The fundamental idea of the algorithm is based on the simplex procedure of linear programming. We define the decrease in the objective function considering twice pivot calculations, and preparing two kinds of simplex tableau we propose the computational procedure to systematically obtain the approximate solution. Also some properties of the pivot calculations are theoretically analyzed. Finally some numerical examples are solved to illustrate the procedure and to test the effectiveness of the algorithm.

1. Introduction

In this paper, we develop an algor:thm for solving the optimization problem which contains semi-variable costs represented as a piecewise linear function shown in Figure 1 and semi-fixed costs represented as a lower semi-continuous step function shown in Figure 2.

Fig. 1 Semi-variable costs

Fig. 2 Semi-fixed costs

Consider the problem of minimizing
(1)

$$
F=\sum_{k=1}^{l} c_{k}^{\prime} x_{k}+\sum_{k=1}^{l} d_{k}^{\prime}\left[x_{k}\right]
$$

subject to
(2) $\quad \sum_{k=1}^{\eta} A_{k} x_{k} \geqq b, \quad 0 \leqq x_{k} \leqq u \quad(k=1,---, 2)$, and
(3) $\left\{\begin{array}{llll}\text { if } & \xi_{j k}>1, & \text { then } \xi_{i k}=1 & \text { for } \quad i=1, \ldots, j-1 \\ \text { if } & \xi_{j k}=0, & \text { then } \xi_{i k}=0 & \text { for } \quad i=j+1,---, n_{k}\end{array} \quad(k=1,-\cdots, \imath)\right.$,
where

$$
A_{k}=\left(\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
a_{1 k}^{1}-1 & \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right), a_{j k}=\left(\begin{array}{c}
\alpha_{1}, \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
\alpha_{m j k}
\end{array}\right), b=\left(\begin{array}{c}
\beta_{1} \\
1 \\
\vdots \\
1 \\
1 \\
1 \\
\beta_{m}
\end{array}\right), c_{k}=\left(\begin{array}{c}
\gamma_{1 k} \\
1 \\
\vdots \\
1 \\
\vdots \\
1 \\
\gamma_{n_{k} k}
\end{array}\right), d_{k}=\left(\begin{array}{c}
\delta_{1 k} \\
\vdots \\
\vdots \\
1 \\
1 \\
1 \\
\delta_{n_{k} k}
\end{array}\right), u=\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right),
$$

$$
x_{k}=\left(\begin{array}{c}
\xi_{1 k} \\
\vdots \\
1 \\
1 \\
\xi_{n_{2 k}}
\end{array}\right), \quad\left[x_{k}\right]=\left(\begin{array}{c}
{\left[\xi_{1 k}\right]} \\
\vdots \\
1 \\
\vdots \\
{\left[\xi_{n_{k} k}\right]}
\end{array}\right), \text { and }\left[\xi_{j k}\right]=\left\{\begin{array} { l l l }
{ 1 } & { \text { if } } & { \xi _ { j k } > 0 } \\
{ 0 } & { \text { if } } & { \xi _ { j k } = 0 }
\end{array} \left(j=1, \ldots, n_{k} ;\right.\right.
$$

The constraint (3) means that variable $\xi_{i k}(i=1,---, j-1)$ have to take the value 1 if the variable $\xi_{j k}$ takes a positive value and $\xi_{i k}\left(i=j+1,---, n_{k}\right)$ have to take the value 0 if $\xi_{j k}$ takes 0 . Also it is assumed that it holds

$$
\begin{array}{ll}
\alpha_{i j k} \geqq \alpha_{i j-1 k} & \left(i=1,---, m ; j=2,---, n_{k} ; k=1,---, \tau\right) \\
\gamma_{j k} \geqq \gamma_{j-1 k} & \left(j=2,-\cdots, n_{k} ; k=1,---, \tau\right) \tag{4}\\
\delta_{j k} \geqq \delta_{j-1 k} & \left(j=2,---, n_{k} ; k=1,-\cdots, \tau\right) .
\end{array}
$$

The prime represents the transposition of vectors.
Originally this problem appeared when determining the production planning for the mixed-model assembly line production system [1]. In [1], the problem is formulated as a kind of separable programming which minimizing the objective function constructed from the sum of a convex function and a kind of step function under the constraints of linear inequalities. Approximating the convex function as a piecewise linear function and generalizing the problem, we have relations from (1) to (4). The problem of minimizing (1) subject to (2) and (3) is considered to be a kind of the fixed charge problem and, introducing $0-1$ variables, we can treat this problem as a mixed-integer programming problem [3]. Also an algorithm which is based upor a branch and bound method is presented for the general fixed charge problem [4].

In this paper, we will attempt to solve the problem (1)-(3) by means of the simplex method. Though some approxinate solution methods using the sinplex method have been proposed for the fixed charge problem [$2,6,7$], we will derive an another approximate algorithm frou the different point of view making use of
following properties of the problem, that is,
(a) From the assumption (4), for the problem of minimizing only the first term of the objective function (1) subject to (2) and (3), we can carry out the ordinary calculations of the simplex algorithm without considering the restriction (3) and, in optimal state, the restriction (3) is automatically satisfied [5].
(b) From the restriction (3), for the problem (1)-(3), we know that if the variable $\xi_{j k}$ is a basis and it holds $0<\xi_{j k}<1$, then $\xi_{j+1 k}$ is the only candidate variable which enters into the basis and $\xi_{i k}\left(i=j+2,---, n_{k}\right)$ must not enter into the basis before $\xi_{j+1 k}$. Also, if $0<\xi_{j k}<1$, then $\xi_{j k}$ is the only candidate variable which moves to the nonbasis and $\xi_{i k}(i=1,---, j-1)$ must not move to the nonbasis before $\xi_{j k}$.

The algorithm proposed is essentially constructed with two phases.
(a) First, without considering fixed charges, ordinary simplex calculations are carried out to obtain the initial feasible solution.
(b) Next, considering fixed charges, twice pivot calculations method are carried out to search for a better extreme point assuring the feasibility and monotone decreasing.
2. Preparations for the Algorithm

2.1 Definitions of the sets

Introducing slack variables y and $z_{k}(k=1,---, z)$, we can represent inequalities (2) as follows:

$$
\begin{equation*}
\sum_{k=1}^{2} A_{k} x_{k}-y=b \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
x_{k}+z_{k}=u \quad(k=1, \cdots, z) \tag{6}
\end{equation*}
$$

(7)

$$
x_{k}, y, z_{k} \geq 0 \quad(k=1,--\cdots, z)
$$

where $y=\left[\begin{array}{c}n_{1} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \eta_{m}\end{array}\right]$, and $z_{k}=\left[\begin{array}{c}\zeta_{1 k} \\ 1 \\ 1 \\ 1 \\ 1 \\ \zeta_{n_{k}}\end{array}\right]$.
Let define the function G as follows:

$$
\begin{equation*}
G=\sum_{k=1}^{l} c_{k}^{\prime} x_{k} \tag{8}
\end{equation*}
$$

We will call the linear programming problem of minimizing (8) subject to (5),
(6) and (7) Problem A and the fixed charge problem of minimizing (1) subject to
(5), (6) and (7) Problem B hereafter.

Let X be the set of $\xi_{j k}\left(j=1,-\cdots, n_{k} ; k=1,---, \eta\right), Y$ be the set of $r_{i}(i=1$, $---, m)$ and Z be the set of $\zeta_{j k}\left(j=1, \ldots, n_{k} ; k=1, \ldots, \eta\right)$. At the any step of the simplex iteration, we define the sets of variables as follows:

$$
\begin{aligned}
& X_{B}^{1}=\left\{\xi_{j k} \mid \xi_{j k}=1, \xi_{j k} \varepsilon X\right\} \\
& X_{B}^{2}=\left\{\xi_{j k} \mid 0<\xi_{j k}<1, \xi_{j k} \varepsilon X\right\}, \dagger \\
& X_{N}=X-\left(X_{B}^{1} \cup X_{B}^{2}\right) \\
& Y_{B}=\text { the set of basic variables of } \eta_{i} \in Y \\
& Y_{N}=Y-Y Y_{B}
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& Z_{B}^{1}=\left\{\zeta_{j k} \mid \zeta_{j k}=1, \zeta_{j k} \varepsilon Z\right\}, \\
& Z_{B}^{2}=\text { the set of basic variables which take } 0 \leqq \zeta_{j k}<1, \zeta_{j k} \varepsilon Z, \\
& Z_{N}=Z-\left(Z_{B}^{1} \cup Z_{B}^{2}\right), \\
& W_{B}=X_{B}^{1} \cup X_{B}^{2} \cup Y_{B} \cup Z_{B}^{1} \cup Z_{B}^{2},
\end{aligned}
$$
\]

and $\quad W_{N}=X_{N} \cup Y_{N} \cup Z_{N}$.

2.2 Definitions of the decrease in the objective function

Let denote the variable which enters into the basis as $\omega_{t}^{1} \varepsilon W_{N}$ and the variable which moves to the nonbasis as $\omega_{s}^{1} \varepsilon W_{B}$. Then from the theory of linear programming, the variation $L H_{1}$ in the objective function of Problem B becomes as follows:

$$
\begin{equation*}
\Delta H_{1}=\left(\gamma_{t}^{1}-\pi_{t}^{1}\right) \beta_{s}^{1^{*}} / \sigma_{s t}^{1^{*}}+\left(\delta_{t}^{1}-\delta_{s}^{1}\right), \tag{9}
\end{equation*}
$$

where $\left(\gamma_{t}^{1}-\pi_{t}^{1}\right)$ is the simplex criterion of the nonbasic variable $\omega_{t}^{1}, \beta_{s}^{1^{*}}$ is the value of the basic variable ω_{s}^{1}, and $\sigma_{s t}^{1 *}$ is the value of the pivot element. The asterisk represents the value of the current simplex tableau. δ_{t}^{1} and δ_{s}^{1} are

Hence we know that there exists at least one nonzero element for $\eta_{i} \in Y_{N}$ corresponding to the basic variable which takes $\xi_{j k}=0$.
fixed charges of ω_{t}^{1} and ω_{s}^{1}, respectively. Let assume that, after we replace $\omega_{S}^{1} \in W_{B}$ by $\omega_{t}^{1} \varepsilon W_{N}$, we choose the varjable which enters into the basis as $\omega_{t}^{2} \varepsilon W_{N}-\left\{\omega_{s}^{1}\right\}$ and the variable which moves to the nonbasis as $\omega_{s}^{2} \varepsilon W_{B}-\left\{\omega_{t}^{1}\right\}$. Then the variation ΔH_{2} in the objective function becomes as follows:

$$
\begin{equation*}
\Delta H_{2}=\Delta H_{1}+\left(\gamma_{t}^{2}-\pi_{t}^{2}\right) \beta_{s}^{2 *} / \sigma_{s t}^{2 *}+\left(\delta_{t}^{2}-\delta_{s}^{2}\right) \tag{10}
\end{equation*}
$$

where $\left(\gamma_{t}^{2}-\pi_{t}^{2}\right), \beta_{s}^{2 *}$ and $\sigma_{s t}^{2^{*}}$ are defined as similar values as $\left(\gamma_{t}^{1}-\pi_{t}^{1}\right), \beta_{s}^{1^{*}}$ and $\sigma_{s t}^{1 *}$ corresponding to ω_{t}^{2} and ω_{s}^{2}. We can easily calculate ΔH_{1} and ΔH_{2} if $\omega_{s}^{1}, \omega_{t}^{1}, \omega_{s}^{2}$ and ω_{t}^{2} are determined. Then we define the decrease in the objective function of Problem B as follows:

Definition. We define that the objective function of Problem B decreases if it holds either
(a) $\Delta H_{1}<0$ or
(b) $\Delta H_{1} \geqq 0$ and $\Delta H_{2}<0$.

3. Meaningful Pivit Calculations

When we choose the variable which enters into the basis as $\omega_{t}^{1} \varepsilon W_{N}$ and the variable which moves to the nonbasis as $\omega_{S}^{1} \varepsilon W_{B}$ for the first pivot calculation, we can formally consider fifteen case:s as the combination of ω_{s}^{1} and ω_{t}^{1}, that is,

1. $\quad \omega_{S}^{1} \varepsilon X_{B}^{1}, \quad \omega_{t}^{1} \varepsilon X_{N}$,
2. $\quad \omega_{s}^{1} \varepsilon X_{B}^{2}, \quad \omega_{t}^{1} \varepsilon X_{N}$,
3. $\omega_{s}^{1} \varepsilon Y_{B}, \quad \omega_{t}^{1} \varepsilon X_{N}$,
4. $\quad \omega_{s}^{1} \varepsilon Z_{B}^{1}, \quad \omega_{t}^{1} \varepsilon X_{N}$,
5. $\omega_{s}^{1} \varepsilon Z_{B}^{2}, \quad \omega_{t}^{1} \in X_{N}$,
6. $\omega_{S}^{1} \varepsilon X_{B}^{1}, \quad \omega_{t}^{1} \varepsilon Y_{N}$,
7. $\omega_{s}^{1} \varepsilon X_{B}^{2}, \quad \omega_{t}^{1} \varepsilon Y_{N}$,
8. $\omega_{S}^{1} \varepsilon Y_{B}, \quad \omega_{t}^{1} \varepsilon Y_{N}$,
9. $\omega_{S}^{1} \varepsilon Z_{B}^{1}, \quad \omega_{t}^{1} \varepsilon Y_{N}$,
10. $\omega_{s}^{1} \varepsilon Z_{B}^{2}, \quad \omega_{t}^{1} \varepsilon Y_{N}$,
11. $\omega_{s}^{1} \varepsilon X_{B}^{1}, \quad \omega_{t}^{I} \varepsilon Z_{N}$,
12. $\omega_{s}^{1} \varepsilon X_{B}^{2}, \quad \omega_{t}^{1} \varepsilon Z_{N}$,
13. $\omega_{S}^{1} \varepsilon Y_{B}, \omega_{t}^{1} \varepsilon Z_{N}$,
14. $\quad \omega_{S}^{1} \varepsilon Z_{B}^{1}, \quad \omega_{t}^{1} \varepsilon Z_{N}$,
15. $\quad \omega_{s}^{1} \varepsilon Z_{B}^{2}, \quad \omega_{t}^{1} \varepsilon Z_{N}$.

Also we can formally consider fifteen cases as the combination of ω_{s}^{2} and ω_{t}^{2} for the second pivot calculation for each case of the first pivot calculation. But as soon seen, those combination mentioned above contain the cases which need not consider. The cases $1,6,9$ and 14 never occur. Let proof these facts. Let denote the vector of variable $\xi_{j k}$ which belongs to the set X_{B}^{1} as X_{B}^{1}. Also we define the vectors $X_{B}^{2}, y_{B}, z_{B}^{1}$ and z_{B}^{2} as the same manner as x_{B}^{1}. Let define the vector W_{B} as follows:

Then the coefficient matrix Λ for the vector W_{B} can be represented as follows:

where E and 0 represent the unit matrix and the zero matrix, respectively. Assuming that the squar matrix P is regular, we have the inverse matrix Λ^{-1} of Λ as follows:

$$
\begin{aligned}
& \text { (12) } \Lambda^{-1}=m+n_{0}
\end{aligned}
$$

From (12), we know that there exist no nonzero elements for $\eta_{i} \varepsilon Y_{N}$ corresponding to $\xi_{j k} \varepsilon X_{B}^{1}$. Also there exist no nonzero elements for $\eta_{i} \varepsilon Y_{N}$ corresponding to $\zeta_{j k} \in Z_{B}^{1}$ and for $\zeta_{j k} \in Z_{N}$ corresponding to $\zeta_{j k} \in Z_{B}^{1}$. Hence we cannot replace $\xi_{j k} \varepsilon X_{B}^{1}$ by $\eta_{i} \in Y_{N}$ (the case 6), $\zeta_{j k} \in Z_{B}^{1}$ by $\eta_{i} \in Y_{N}$ (the case 9) and $\zeta_{j k} \varepsilon Z_{B}^{1}$ by $\zeta_{j k} \varepsilon Z_{N}$ (the case 14). For the purpose of proving that the case 1 never occurs, let denote the column vector of coefficients of the variable $\xi_{j k} \varepsilon X_{N}$ as $P_{j k}$. Then $P_{j k}$ is represented as follows:

$$
P_{j k}=m+n_{0}\left(\begin{array}{c}
p \\
-\cdots \\
0 \\
-\cdots \\
\varphi \\
-\cdots \\
-\cdots
\end{array}\right) \begin{aligned}
& m_{1} \\
& m-m_{1} \\
& m_{1} \\
& m_{0}-m_{1}-m_{2}
\end{aligned}
$$

As the column vector $P_{j k}^{*}$ of the current simplex tableau becomes $\Lambda^{-1} P_{j k}, P_{j k}^{*}$ is represented as follows:

$$
P_{j k}^{*}=\Lambda^{-1} P_{j k}=m+n_{0}\left(\begin{array}{c}
P^{-1} p \tag{13}\\
------ \\
0 \\
-------- \\
R P^{-1} p-q \\
-------- \\
-P^{-1} p \\
------- \\
r
\end{array}\right) m_{1} m_{2} m_{1}
$$

From (13), we know that there exist no nonzero elements for $\xi_{j k} \varepsilon X_{N}$ corresponding to $\xi_{j k} \varepsilon X_{B}^{1}$. Hence we cannot replace $\xi_{j k} \varepsilon X_{B}^{1}$ by $\xi_{j k} \varepsilon X_{N}$. Thus we know that the cases $1,6,9$ and 14 never occur.

And yet, for the case 7,11 and 12 , we know that it is enough to investigate the value ΔH_{1}. Therefore we may consider the combinations of remaining eight cases for the twice pivot calculations. But if the basic variable which moves to the nonbasis in the second iteration does not concern the fixed charge, it is meaningless for the purpose of decrease in the objective function. After the consideration of these facts, meaningful twice pivot calculations in our algorithm become as Table 1.

Table 1. Meaningful pivot calculations

the	first pivot	alculation	the second pivot calculation	
1.	$\omega_{s} \varepsilon X_{B}^{2}$,	$\omega_{t} \in X_{N}$	1. $\omega_{s} \varepsilon X_{B}^{2}$,	$\omega_{t} \in X_{N}$
2.	$\omega_{S} \in Y_{B}$,	$\omega_{t} \in X_{N}$	2. $\omega_{s} \in \mathrm{X}_{\mathrm{B}}^{2}$,	$\omega_{t} \varepsilon Y_{N}$
3.	$\omega_{s} \in Z_{B}^{1}$,	$\omega_{t} \in X_{N}$	3. $\omega_{s} \in X_{B}^{1}$,	$\omega_{t} \in Z_{N}$
4.	$\omega_{s} \in Z_{B}^{2}$,	$\omega_{t} \in X_{N}$	4. $\omega_{s} \varepsilon X_{B}^{2}$,	$\omega_{t}=Z_{N}$
5.	$\omega_{s} \varepsilon Y_{B}$,	$\omega_{t} \varepsilon Y_{N}$		
6.	$\omega_{s} \varepsilon Z_{B}^{2}$,	$\omega_{t} \varepsilon Y_{N}$		
7.	$\omega_{s} \varepsilon Y_{B}$,	$\omega_{t} \in \mathrm{Z}_{\mathrm{N}}$		
	$\omega_{s} \in Z_{B}^{1}$,	$\omega_{t} \varepsilon \mathrm{Z}_{\mathrm{N}}$		

In Table 1, when we choose the variable $\omega_{t} \varepsilon X_{N}$ to enter the basis for the first or the second pivot calculation, it is apparent that we should only consider $\xi_{j *+1 k} \varepsilon X_{N}$ as the candidate variable of ω_{t} for each $k(k=1,-\cdots, l)$, where we assume that $\xi_{j * K} \varepsilon\left(X_{B}^{1} \cup X_{B}^{2}\right)(k=1,---, Z)$. Also, when we choose the variable $\omega_{t} \in Z_{N}$ to enter the basis, we should only consider $\zeta_{j}^{*}-1 k \in Z_{N}$ as the candidate variable of ω_{t} for each $k(k=1, \ldots, \eta)$, where we assume that $\zeta_{i j * k} \varepsilon$ $\left(Z_{B}^{1} \cup Z_{B}^{2}\right)(k=1, \ldots, l)$. Moreover, if a basic variable $\xi_{j * K^{*}} \varepsilon\left(X_{B}^{1} \cup X_{B}^{2}\right)$ is chosen to be replaced by $\xi_{h k^{*}} \varepsilon X_{N}\left(h=j^{*}+1, \cdots, n_{k}\right)$, it is apparent that the objective function does not decrease. So we may delete such cases in the pivot calculations. Also we may delete to replace a basic variable $\zeta_{j * K^{*}} \varepsilon\left(Z_{B}^{1} \cup Z_{B}^{2}\right)$ by $\zeta_{h k^{*}} \varepsilon Z_{\mathrm{N}}\left(h=1, \ldots, j^{*}-1\right)$.

4. Algorithm

In this section, we will propose the computational procedure to solve the fixed charge problem defined as Problem B. The fundamental idea is based on the simplex method of linear programming. Though this algorithm seems to resemble the heuristic method proposed by Steinberg [6] and Walker [7], it is slightly different from [6] and [7] in respect of selecting the pivot element by utilizing properties of the problem. We prepare two kinds of simplex tableau for the algorithm, that is, Simplex Tableau 1 (ST1) and Simplex Tableau 2 (ST2). We use ST1 for the pivot calculations when variables to enter the basis and move to the nonbasis are determined. On the other hand we use $S T 2$ only for the purpose of calculation of ΔH_{2}. The basic computational procedure is constructed from Step 1 to Step 14. We use ST1 from Step 1 to Step 6 and Step 13 to Step 14, ST2 from Step 7 to Step 12 in the algcrithm.

Step 1. Solve Problem A by using ordinary simplex method.

Step 2. Set $j \not 1, F \leftarrow \infty$, and $\mu \leftarrow 1$.
Step 3. If $\omega_{j} \in W_{B}$, go to Step 13. Otherwise determine the basic variable $\omega_{i_{1}} \varepsilon W_{B}$ according to (14),
$\theta_{i_{1}}=\min _{1 \leq i \leq m+n_{0}}\left\{\theta_{i}=\beta_{i}^{1 *} / \sigma_{i j}^{I^{*}}\right.$, for $\left.\sigma_{i, j}^{I^{*}}>0\right\}$
where $\sigma_{i j}^{1 *}$ is the (i, j) element of current $S T 1$.
Step 4. Calculate the value ΔH_{1} by (15), that is,

$$
\begin{equation*}
\Delta H_{1}=\left(\gamma_{j}^{1}-\pi_{j}^{1}\right) \theta_{i_{1}}+\left(\delta_{j}^{1}-\delta_{i_{1}}^{1}\right) \tag{15}
\end{equation*}
$$

Step 5. For ΔH_{1} :
a) if $\Delta H_{1}<0$, ther go to Step 6 ,
b) if $\Delta H_{1} \geqq 0$, then go to Step 7 .

Step 6. Compare ΔH_{1} with F :
a) if $F>\Delta H_{1}$, set $F \leftarrow \Delta H_{1}, s_{1} \leftarrow i_{1}, t_{1} \leftarrow j, \mu \leftarrow 2$ and go to Step 13,
b) if $F \leqq \Delta H_{1}$, go to Step 13 at once.

Ust ST2 from Step 7 to Step 12.
Step 7. Set each element of $S T 2$ as the same value as $S T 1$.
Replace $\omega_{i_{1}} \varepsilon W_{B}$ by $\omega_{j} \varepsilon W_{N}$ and set $k \leftarrow 1$.
Step 8. If $\omega_{k} \in W_{B}$, go to Step 12. Otherwise determine the basic variable $\omega_{i_{2}} \varepsilon W_{B}$ according to (16).
(16) $\quad \theta_{i_{2}}=\min _{1 \leq i \leq m+n_{0}}\left\{\theta_{i}=\beta_{i}^{2^{*}} / \sigma_{i k^{\prime}}^{2^{*}}\right.$ for $\left.\sigma_{i k}^{2^{*}}>0\right\}$,
where $\sigma_{i k}^{2 *}$ is the (i, k) element of current $S T 2$.
Step 9. Calculate the value of ΔH_{2} by (17):
(17) $\quad \Delta H_{2}=\Delta H_{1}+\left(\gamma_{k}^{2}-\pi_{k}^{2}\right) \theta_{i_{2}}+\left(\delta_{k}^{2}-\delta_{i_{2}}^{2}\right)$.

Step 10. For ΔH_{2} :
a) if $\Delta H_{2}<0$, then go to Step 11,
b) if $\Delta H_{2} \geq 0$, then go to Step 12.

Step 11. Compare ΔH_{2} with F :
a) if $F>\Delta H_{2}$, set $F \nleftarrow \Delta H_{2}, s_{1} \leftarrow i_{1}, t_{1} \leftarrow j, s_{2} \leftarrow i_{2}, t_{2} \leftarrow k$, $\mu \leftarrow 3$ and go to Step 12,
b) if $\mathrm{F} \leqq \Delta \mathrm{H}_{2}$, go to Step 12 at once.

Step 12. Set $k \leftarrow k+1$:
a) if $k \leqq m+2 n_{0}$, then go to Step 8 ,
b) if $k>m+2 n_{0}$, then go to Step 13 .

Step 13. Set $j \not j+1$:
a) if $j \leqq m+2 n_{0}$, then go to Step 3 ,
b) if $j>m+2 n_{0}$, then go to Step 14.

Step 14. For μ :
a) if $\mu=1$, the algorithm is terminated,
b) if $\mu=2$, replace $\omega_{s_{1}}$ by $\omega_{t_{1}}$ by pivoting on term $\sigma_{s_{1} t_{1}}^{I^{*}}$ and return to Step 2,
c) if $\mu=3$, replace $\omega_{s_{1}}$ by $\omega_{t_{1}}$ by pivoting on term $\sigma_{s_{1} t_{1}}^{1^{*}}$ for the first pivot calculation and then replace $\omega_{s_{2}}$ by $\omega_{t_{2}}$ by pivoting on term $\sigma_{s_{2} t_{2}}^{2 *}$ for the second pivot calculation. Return to Step 2.

If various methods are contrived under the consideration of the properties mentioned in chapter 3, we can improve the efficiency of the algorithm. Let $j_{k}^{*}(X)(k=1,-\ldots, 2)$ be the maximum number of subscript of $\xi_{j k}$ such that $\xi_{j k} \varepsilon\left(X_{B}^{1}\right.$ $U X_{B}^{2}$) for each k and define $J^{*}(X)=\left\{j_{1}^{*}(X), \cdots, j_{Z}^{*}(X)\right\}$. Also let $j_{k}^{*}(Z)(k=1,---$, 2) be the minimum number of subscript of $\zeta_{j k}$ such that $\zeta_{j k} \varepsilon\left(Z_{B}^{1} \cup Z_{B}^{2}\right)$ for each k and define $J *(Z)=\left\{j_{1}^{*}(Z), \cdots, j_{2}^{*}(Z)\right\}$. Store the current $J^{*}(X)$ and $J *(Z)$ after solving Problem A and at any step of the pivot calculation, that is, at Step 1 and Step 14. Then we can contrive the algorithm as follows:
a) It is enough to investigate only $\xi_{j *+1 k} \varepsilon X_{N}$ for each k and only $\zeta_{j}{ }^{*}-1 k$
εZ_{N} for each k at Step 3 and Step 8.
b) When determining the basic variable which moves to the nonbasis by using eq. (14) in Step 3, we only consider such subscript that $i \in J *(X)$ for $\omega_{i} \varepsilon\left(X_{B}^{1}\right.$ $U X_{B}^{2}$) and $i \varepsilon J^{*}(Z)$ for $\omega_{i} \varepsilon\left(Z_{B}^{1} \cup Z_{B}^{2}\right)$. Also when determining the basic variable which moves to the nonbasis by using eq. (16) in Step 8 , it is enough to investigate such variable that $\omega_{i} \varepsilon\left(X_{B}^{1} \cup X_{B}^{2}\right)$ and $i \varepsilon J^{*}(X)$.

5. Numerical Experiments

5.1 Numerical example

To illustrate the algorithm mentioned in chapter 4 , we show a simple numerical example. Let consider the problem of minimizing

$$
\left.\begin{array}{rl}
F= & {\left[\begin{array}{llll}
\frac{1}{5} & \frac{3}{5} & \frac{5}{5} & \frac{7}{5}
\end{array}\right]\left[\begin{array}{l}
\xi_{1.1} \\
\xi_{2.1} \\
\xi_{3.1} \\
\xi_{4.1}
\end{array}\right]+\left[\begin{array}{lll}
\frac{1}{6} & \frac{3}{6} & \frac{5}{6}
\end{array}\right]\left[\begin{array}{l}
\xi_{12} \\
\xi_{22} \\
\xi_{32}
\end{array}\right]+\left[\frac{1}{3}\right.} \\
\hline & \frac{3}{3} \\
\frac{5}{3}
\end{array}\right]\left[\begin{array}{l}
\xi_{13} \\
\xi_{23} \\
\xi_{33}
\end{array}\right]
$$

subject to

$$
\begin{aligned}
& {\left[\begin{array}{llll}
2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4
\end{array}\right]\left[\begin{array}{l}
\xi_{11} \\
\xi_{21} \\
\xi_{31} \\
\xi_{41}
\end{array}\right]+\left[\begin{array}{lll}
3 & 3 & 3 \\
2 & 2 & 2 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\xi_{12} \\
\xi_{22} \\
\xi_{32}
\end{array}\right]+\left[\begin{array}{lll}
1 & 1 & 1 \\
5 & 5 & 5 \\
3 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
\xi_{13} \\
\xi_{23} \\
\xi_{33}
\end{array}\right] \geqq\left[\begin{array}{c}
10 \\
18 \\
16
\end{array}\right]} \\
& 0 \leqq \begin{array}{l}
\left(j=1, \ldots, n_{k} ;\right. \\
k=1, \ldots, 3)
\end{array} \quad\left\{\begin{array}{l}
\text { if } \xi_{j k}>0, \text { then } \xi_{i k}=1 \text { for } i=1, \ldots, j-1 \\
\text { if } \xi_{j k}=0, \text { then } \xi_{i k}=0 \text { for } i=j+1,--, n_{k}
\end{array}(k=1,---, 3),\right. \\
& \text { where } n_{1}=4, n_{2}=n_{3}=3 \text { and } \quad \xi_{j k}=\left\{\begin{array}{ll}
1 & \text { if } \xi_{j k}>0 \\
0 & \text { if } \xi_{j k}=0
\end{array} \quad\left(j=1,--1, n_{k} ; k=1,-1,3\right)\right. \text {. }
\end{aligned}
$$

The optimal state of Problem A is shown in Table 2 and Figure 3.

Table 2. Optimal tableau of Problem A^{π}

		$\delta^{j k}$		10	15	20	25	5	10	15	10	10	10													
		$\gamma_{j k}$		$\frac{1}{5}$	$\frac{3}{5}$	$\frac{5}{5}$	$\frac{7}{5}$	$\frac{1}{6}$	$\frac{3}{6}$	$\frac{5}{6}$	$\frac{1}{3}$	$\frac{3}{3}$	$\frac{5}{3}$													
\bar{d}_{B}	c_{B}	${ }^{\omega}$ B	b	ξ_{11}	ξ_{21}	${ }^{\xi_{31}}$	${ }_{4}{ }_{41}$	${ }^{\xi_{12}}$	ξ_{22}	ξ_{32}	ξ_{13}	ξ_{23}	ξ_{33}	η_{1}	η_{2}	7_{3}	ζ_{11}	${ }^{\text {¢ }} 21$	${ }^{\zeta} 31$	ζ_{41}	${ }^{1} 12$	ζ_{22}	ζ_{32}	${ }^{13}$	${ }^{5} 2$	${ }^{5} 33$
5	$\frac{1}{6}$	ξ_{12}	1					1													1					
10	$\frac{3}{6}$	ξ_{22}	$\frac{2}{15}$						1	1				$\frac{-11}{30}$	$\frac{-2}{3}$	$\frac{7}{30}$					-1					
10	$\frac{1}{3}$	ξ_{13}	1								1													1		
10	$\frac{1}{5}$	ξ_{11}	1	1													1									
15	$\frac{3}{5}$	ξ_{21}	1		1													1								
20	$\frac{5}{5}$	ξ_{31}	$\frac{7}{15}$			1	1							$\frac{-1}{30}$	$\frac{4}{15}$	$\frac{-13}{30}$	-1	-1								
		ζ_{41}	1				1													1						
10	$\frac{3}{3}$	ξ_{23}	$\frac{2}{3}$									1	1	$\frac{1}{6}$	$\frac{-1}{3}$	$\frac{1}{6}$								-1		
		ζ_{22}	$\frac{13}{15}$							-1				$\frac{11}{30}$	$\frac{1}{15}$	$\frac{-7}{30}$					1	1				
		ζ_{32}	1							1													1			
		ζ_{31}	$\frac{8}{15}$				-1							$\frac{1}{30}$	$\frac{-4}{15}$	$\frac{13}{30}$	1	1	1							
		ζ_{23}	$\frac{1}{3}$										-1	$\frac{-1}{6}$	$-\frac{1}{3}$	- $\frac{1}{6}$								1	1	
		ζ_{33}	1										1													1
	-		2.5				$\frac{2}{5}$			$\frac{1}{3}$			$\frac{2}{3}$		$\frac{1}{10}$	$\frac{3}{20}$	$\frac{4}{5}$	$\frac{2}{5}$			$\frac{1}{3}$			$\frac{2}{3}$		
	ΔH_{1}		82.5				$\frac{389}{75}$			$\frac{227}{45}$			$\frac{4}{9}$	$\frac{13}{110}$	$\frac{1}{10}$	$\frac{347}{-35}$	$\frac{32}{75}$	$\frac{16}{75}$			$\frac{13}{45}$			$\frac{2}{9}$		

Fig. 3 Optimal state of Problem A

The value of the objective function is $F=82.5$. According to the algorithm, we have the values of ΔH_{1} and ΔH_{2} as Table 3 .

Table 3. Values of ΔH_{1} and ΔH_{2} for Table 2

the first pivot calculation	the second pivot calculation		values of ΔH_{1} and ΔH_{2}		
ω_{s}^{1}	ω_{t}^{1}	ω_{s}^{2}	ω_{t}^{2}	ΔH_{1}	ΔH_{2}
ζ_{22}	η_{1}	ξ_{23}	ξ_{32}	$13 / 110$	$-95 / 22$
ζ_{23}	η_{2}	ξ_{31}	η_{2}	$13 / 110$	$-97 / 10$
	ξ_{23}	η_{3}	$13 / 110$	$-97 / 10$	
ξ_{22}	η_{3}	ξ_{31}	ξ_{33}	$1 / 10$	$-229 / 24$

* Minimum value of ΔH_{1} and ΔH_{2}.

From Table 3, we know that we should replace $\zeta_{23} \varepsilon Z_{B}^{2}$ by $\eta_{2} \varepsilon Y_{N}$ for the first pivot calculation and then $\xi_{31} \varepsilon X_{B}^{2}$ by $\eta_{1} \varepsilon Y_{N}$ for the second pivot calculation. After these pivot calculations we have the state shown in Table 4 and Figure 4. The value of the objective function is $F=62.8$. For Table 4, we have the values of ΔH_{1} and ΔH_{2} as Table 5. As there exists no ΔH_{1} or ΔH_{2} which takes the negative value, we know that Table 4 shows the terminal state of Problem B.

Table 4. Terminal tableau of Problem $B^{\text {II }}$

		$\delta^{j k}$		10	15	20	25	5	10	15	10	10	10													
		$\gamma_{j k}$		$\frac{1}{5}$	$\frac{3}{5}$	$\frac{5}{5}$	$\frac{7}{5}$	$\frac{1}{6}$	$\frac{3}{6}$	$\frac{5}{6}$	$\frac{1}{3}$	$\frac{3}{3}$	$\frac{5}{3}$													
$d_{\text {B }}$	c_{B}	ω_{B}	b	ξ_{11}	ξ_{21}	ξ_{31}	ξ_{41}	ξ_{12}	ξ_{22}	ξ_{32}	ξ_{13}	ξ_{23}	ξ_{33}	η_{1}	η_{2}	η_{3}	ζ_{11}	ζ_{21}	ζ_{31}	ζ_{41}	${ }^{5} 12$	ζ_{22}	${ }_{5} 32$	ζ_{13}	${ }^{5} 23$	${ }^{5} 33$
5	$\frac{1}{6}$	ξ_{12}	1					1													1					
10	$\frac{3}{6}$	ξ_{22}	1			4	4		1	1			3			-1	-4	-4			-1			-3	-3	
10	$\frac{1}{3}$	ξ_{13}	1								1													1		
10	$\frac{1}{5}$	ξ_{11}	1	1													1									
15	$\frac{3}{5}$	ξ_{21}	1		1													1								
		η_{2}	2			5	5						1		1	-2	-5	-5						-1	-1	
		ζ_{41}	1				1													1						
10	$\frac{3}{3}$	ξ_{23}	1									1													1	
		n_{1}	2			10	10						8	1		-3	-10	-10						-8	-8	
		ζ_{32}	1							1													1			
		ζ_{31}	1			1													1							
		ζ_{22}	0			-4	-4			-1			-3			1	4	4			1	1		3	3	
		ζ_{33}	1																							1
	$k^{-\pi}$		2.8			-1	$\frac{-3}{5}$			$\frac{1}{3}$			1			$\frac{1}{2}$	$\frac{9}{5}$	$\frac{7}{5}$			$\frac{1}{3}$			$\frac{7}{6}$	$\frac{1}{2}$	
	ΔH_{1}		62.8			$\frac{99}{5}$	$\frac{622}{25}$			$\frac{16}{3}$			$\underline{241}$			0	0	0			0			0	0	

\| We assume that each empty element in the tableau takes the value zero.

Fig. 4 Terminal state of Problem B
Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Table 5. Values of ΔH_{1} and ΔH_{2} for Table 4

the first pivot calculation		the second pivot calculation		values of ΔH_{1} and ΔH_{2}	
ω_{s}^{1}	ω_{t}^{1}	ω_{s}^{2}	ω_{t}^{2}	ΔH_{1}	ΔH_{2}
η_{1}	ξ_{33}	ξ_{33}	ξ_{31}	$8 / 81$	$1207 / 60$

5.2 Results of numerical experiments

In order to test the effectiveness of our algorithm mentioned in this paper, we prepare some numerical examples with the following properties:
(1) $\quad Z=5, m=5, n_{k}=5(k=1,-\cdots, Z)$, hence $n_{0}=25, m+n_{0}=30$ (the number of inequalities) and $m+2 n_{0}=55$ (the number of variables including slack),
(2) $\quad \alpha_{i j-1 k}=\alpha_{i j k} \quad\left(i=1,---m ; j=2,-\cdots, n_{k} ; k=1,-\cdots, i\right)$
and $0 \leq \alpha_{i 1 k} \leq 9 \quad(i=1,-\ldots, m ; k=1, \ldots, i)$,
(3) $\beta_{i k}$ are given about 0.6 times as many as $\sum_{j} \alpha_{i, j k}$ for $a 11 i$ and $k(i=1,--, m$; $k=1,-\cdots, 2)$, and
(4) $\delta_{j k} \geqq \gamma_{j k}\left(j=1,-\cdots, n_{k} ; k=1,-\cdots, \imath\right)$.

Table 6 shows the input data we used. For each coefficients matrix and vector $\left(A_{k}, b\right)$ of Table 6 (a), we examined all the cases of the cost and the fixed charge vector $\left(c_{k}, d_{k}\right)$ of Table $6(\mathrm{~b})$, that is, we solved $5 \times 4=20$ cases.

Table 7 shows the results of numerical experiments. In Table 7, case 1-2, for example, implies that data no. 1 of Table 6 (a) and data no. 2 of Table 6 (b) are combined.

Table 6. Input data for the numerical experiments
(a) Coefficients matrix and vector $\left(A_{k}, b\right)$

data no.	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	b
1	22222	$\begin{array}{lllll}3 & 3 & 3 & 3\end{array}$	22222	22222	00000	30
	22222	66666	99999	00000	66666	70
	55555	33333	88888	77777	00000	70
	55555	77777	00000	00000	55556	50
	66666	44444	66666	44444	33333	60
2	66666	77777	22222	55555	88888	80
	44444	11111	11111	77777	99999	60
	99999	99999	00000	$\begin{array}{lllll}3 & 3 & 3 & 3\end{array}$	00000	60
	$\begin{array}{lllll}3 & 3 & 3 & 3\end{array}$	33333	00000	33333	5555	40
	33333	44444	33333	66666	88888	70
3	22222	88888	22222	77777	33333	70
	99999	00000	44444	11111	00000	40
	44444	11111	36666	00000	22228	40
	88888	00000	99999	77777	33330	80
	99999	99999	44444	88888	00000	90
4	77777	99999	22222	33333	22220	70
	22222	44444	88888	77777	7777 \%	80
	$\begin{array}{llll}3 & 3 & 3 & 3\end{array}$	66666	77777	77777	66666	80
	66666	111111	77777	11111	99999	70
	555555	55555	22222	77777	7777	80
5	01234	88888	00000	66666	88888	70
	12345	44444	22222	33333	66666	50
	56789	99999	88888	99999	66666	120
	34567	55555	00000	22222	5555	50
	00123	00000	00000	11111	1111	10

(b) Cost and fixed charge vector $\left(c_{k}, d_{k}\right)$

date no.	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
1	25	20	60	80	60	100	150	200	250	300
	30	25	65	85	65	110	160	210	260	310
	35	30	70	90	70	120	170	220	270	320
	40	35	75	95	75	130	180	230	280	330
	45	40	80	100	80	140	190	240	290	340
2	60	80	60	20	25	100	150	200	250	300
	65	85	65	25	30	110	160	210	260	310
	70	90	70	30	35	120	170	220	270	320
	75	95	75	35	40	130	180	230	280	330
	80	100	80	40	45	140	190	240	290	240
3	25	20	60	80	60	300	250	200	150	100
	30	25	65	85	65	310	260	210	160	110
	35	30	70	90	70	320	270	220	170	$\underline{20}$
	40	35	75	95	75	330	280	230	180	130
	45	40	80	100	80	340	290	240	190	140
4	60	80	60	20	25	300	250	200	150	100
	65	85	65	25	30	310	260	210	160	110
	70	90	70	30	35	320	270	220	170	120
	75	95	75	35	40	330	280	230	180	130
	80	100	80	40	45	340	290	240	190	140

Table 7. Results of numerical experiments *

data	values of the objective function		number of pivot calculations after solving Problem A \dagger	decrease in the objective function	
	Problem AT	Problem B			
case 1-1	2924.44	2878.33	$1(0,1)$	46.11	20.7
case 1-2	4324.44	4095.95	3 (0,3)	273.49	34.9
case 1-3	4413.96	4097. 38	$1(0,1)$	316.58	21.0
case 1-4	4113.96	3997.38	$1(0,1)$	116.58	21.1
case 2-1	3633.33	3456.67	$1(1,0)$	176.66	20.3
case 2-2	3480.00	3480.00	$0(0,0)$	0.00	16.2
case 2-3	3633.33	3318.33	$1(1,0)$	315.00	21.2
case 2-4	3280.00	3186.87	$3(0,3)$	93.13	37.3
case 3-1	3538.67	3275.00	$1(0,1)$	263.67	23.5
case 3-2	4891.97	3743.00	7 (0, 7)	1148.97	57.8
case 3-3	4738.67	4215.00	$5 \quad(0,5)$	523.67	47.0
case 3-4	4391.97	4085.00	4 (1, 3)	306.97	43.5
case 4-1	4181.19	3930.00	$2(0,2)$	251.19	27.7
case 4-2	4620.96	4083.94	4 (2, 2)	537.02	40.5
case 4-3	4181.19	3739.04	$4(1,3)$	442.15	42.1
case 4-4	4220.96	3705.00	$2(0,2)$	515.96	27.1
case 5-1	3671.25	3422.50	$1(0,1)$	248.75	6.5
case 5-2	4708.75	3703.00	$9(1,8)$	1005.75	16.7
case 5-3	4571.25	3790.00	$6(0,6)$	781.25	13.5
case 5-4	3708.75	3635.00	$1(0,1)$	73.75	6.6

* The computer used is the HITAC 8700 with $0 S / 7$ at the Computer Center of Hiroshima University except for the case 5 .
π The value of the objective function eq. (1) for the solution of Problem A.
+ Total number of pivot calculations (the number of once pivot calculation (the case $\mu=2$), the number of twice pivot calculations (the case $\mu=3$)).
\S The computer used for the case 5 is the HITAC M-180 with VOS3.

6. Conclutions

We propose an approximate solution method for the problem defined in the introduction. As the algorithm mentioned in chapter 4 is based on the simplex procedure, we can easily treat our problem. If we are in the situation in which the more precise solution must be determined, we will prepare three kinds of simplex tableau for the algorithm and define the decrease in the objective function after three times of the pivot calculations. But it is apparent that the more the pivot calculations increase, the more the computational tine and the computer memory required increase.

Acknowledgements

The author wishes to thank Professor Kenichi Aoki of Hiroshima University for his helpful comments, and to the referees for their kind and useful comments. This work was supported by the Zaidan Hojin Keiei Kagaku Shinko Zaidan.

References

[1] Aoki, K. and Hiraki, S.: A Study on Production Schedule for the Conveyer Line System. Transactions of the Japan Society of Mechanical Engineers, Vol. 40, No. $340(1974), 3542-35!3$ (in Japanese).
[2] Cooper L. and Drebes, C.: An Approximate Solution Method for the Fixed Charge Problem. Naval Research logistic Quarterly, Vol. 14, No. 1(1967), 101-113.
[3] Hadley, G.: Nonlinear and Dynamic Progromming. Addison-Wesley, 1964.
[4] James, A. P. and Soland, R. M.: A Branch-and-Bound Algorithm for Multileve1 Fixed Charge Problems. Management Science, Vo1. 16, No. 1(1969), 67-76.
[5] Mine, H.: Operations Research (Vol. 1). Asakura Shoten, 1966, 134-142 (in Japanese).
[6] Steinberg, D. I.: The Fixed Charge Problem. Naval Research Iogistic Quarterly, Vol. 17, No. $2(1970), 217-235$.
[7] Walker, W. E.: A Heuristic Adjacent Extreme Point Algorithm for the Fixed Charge Problem. Managenent Science, Vol. 22, No. 5(1976), 587-596.

Shusaku HIRAKI: Department of Systems and Industrial Engineering, Faculty of Engineering, Hiroshima University, Senda-machi, Naka-ku, Hiroshima, 730, Japan.

[^0]: \dagger If there exists a basic variable which takes $\xi_{j k}=0$ (that is, in the presence of degeneracy), we replace it by the nonbasic variable $\eta_{i} \varepsilon Y_{N}$. This pivot calculation is always attainable. Let proof this fact. Denote the coefficient matrix for the set of nonbasic variable Y_{N} as Y_{N}. Since the inverse matrix Λ^{-1} of the coefficient matrix Λ for the basic variable vector: W_{B} defined as (11) is represented as (12) mentioned in chapter 3, the coefficient matrix Y_{N}^{*} of the current simplex tableau becomes as follows: \rangle

