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Abstract For independent nonnegative continuous random variables Xl, ... , Xb Z = min (Xl, ... , Xk) and 

fj;(i=1, ... , k), where fji = 1 if Z = Xi and fji = 0 otherwise, are statistically independent random variables if and only 

if the distribution of Xi is written as Fi(X) = 1 - exp(-piQ(X)) (i=1, ... , k). From this characterization theorem for 

the random variable Xi, an unbiased estimate for failure rate of distribution function is presented using reliability data 

in random life testing. A saving of time in a life testing experiment by allowing random censoring is also discussed. 

1. Introduction 

In reliability analysis, it is practically important to know the failure 

characteristics of the components which compose the system, either as a "se­

ries system" (where the system fails if any component fails), or a "parallel 

system" (where the system fails only F all components fail). Usually they 

may be estimated properly from the component test data and, therefore, a great 

number of papers have been devoted to ·:he matter. 

In some cases, however, the serieB system data are available for estimat­

ing the probability of failure for each of the components. Here, the system 

data may be consist of two kinds of sel:S: one is the time-to-failure of the 

system and the other the cause of the Bystem failure, which implies that the 

system failure is occured by the failure of the one of k independent, but dif­

ferent components. 

To illustrate the situation, we consider an integrated circuit (IC) in 

the area of a semi-conductor. When the IC is connected with an external ter-

minal, the surface of the alminum electrode is contacted with the external 

gold line by the method of thermal compression. In this life test, the gold 

line is pulled for the purpose of measuring the strength of contactness (de-
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192 T. Miyamura 

noted by Xl)' and then the value of Xl is observed if X1~ the strength of the 

gold line (denoted by X2): otherwise, just the information that X
l

>X
2 

is pro­

vided. After all we observe Z=min(X1.X
2

) and the cause of the breakdown, 

which means that our observation is based upon either Xl or X2 . 

In this article, estimation of the failure characteristics of the compo­

nent under random censorship will be considered. Random censorship means that 

the observable value is restricted to (Z = min(Xl' ..•• X7<.)' Z = Xi) = (age of fail­

ure, cause of failure) where X1 •...• X7<. are independent nonnegative continuous 

random variables. The model arises from many practical situations such as 

medical follow-up studies, competing risks except life testing stated as above. 

Notations and assumptions are stated in Section 2. In section 3 a chara-

cterization of distribution function is constructed: the characterization theo-

rem is related to the theorem due to Berman[2]. Section 4 contains applica-

tions of the characterization theorem. An unbiased estimate for failure rate 

of distribution function is presented and some comparisons of efficiency of 

this estimate with the minimum variance unbiased estimate under Type n censored 

data are made. These comparisons show that randomly censored life testing 

gives much more information per unit time than Type n censoring when underlying 

distribution is Weibull with the shape parameter m~ 1. 

to related works. 

2. Notations and Assumptions 

Section 4 is devoted 

It is assumed that a system is composed of 7<. independent, but non-identi­

cal components in a series. If X .(i= 1 •...• 7<.) is a nonnegative continuous 
"/.. 

random variable indicating the life of the ith component, the life of the se-

ries system is represented by the following way: that is, 

Z = min(X
1 

• .•.• X7<.). 

For i= 1 •••.• 7<., denote 

F.(x) = P(X.?x) 
"/.. "/.. 

Conveniently we put 

R.(x) = 1 - F.(x) 
"/.. "/.. 

(i=1 •...• 7<.) 

and define a new measure Q.(x) by the relation 
"/.. 

R .( x) = exp { -Q. (x) } 
"/.. "/.. 

(i= 1.··· .7<.) 

It is obvious that there exist one-to-one correspondence between Q.(x) and 
"/.. 

R.(x). 
"/.. 

Then 
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F(x) = NZ~x) 
k 

1- exp{- E li.(x)} 
i=l "Z-

R(x) = 1- F(x) = exp{-Q(x)} 

k 
Q(x) = E Q.(x). 

i=l "Z-

1- exp{-Q(x)} 
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Suppose that observations are to be taken from the distribution of Z with 

the restriction that the value of X. can be observed if and only if X.~Z; 
"Z- "Z-

otherwise just information that Xi >;~ is provided. From a sample of observa-

tions with this sort of random censo::ing, it is required that an inference be 

made about the parameters of each of the random variables X1.···.Xk. 

The details of observations are represented in the following way. We as-

sume that the series systems have bel!n subjected to life test until the time of 

the 1'th failure with Type :n: censoring at l' out of n. For the system, we ob-

serve 

Zl<Z2<"'<Z1" (1' > 2) 

where z. is the jth smallest failure time of the l' failures of the system. To 
J 

apply a binomial sampling plan to this situation, define the random variable 

1 

o 
• if Xi~ Z 

if x. > Z 
"Z-

for i=l ... ·.k. and the joint distribution function of O. and Z 
"Z-

G.(x) = No.=l. Z~x) 
"Z- "Z-

Clearly, the random variable O. has a binomial distribution with the parameter 
"Z-

p. = P(o.=l) = P(X.2:Z) 
"z-"z- "Z- = J'" 

c' 
IT {l-F,{t)}dF.(t) 

#i J "Z-

For a given, positive integer 1', it i.s assumed that the failures of the ith 

component are observed 1'. times: that: is, 
"Z-

where 

0 .. 
"Z-J 

l' 

Eo .. 
j=l "Z-J 

1 
{ 

o • 

• l' 

if Xij~ Zj 

if x . . > Z. 
"Z-J J 

k 
E 1', 

i=l 2, 

Remark 1. In the life table, let Xl denote the true survival time for an 

individual and X
2 

the period of obser'vation, or follow-up, for the individual. 
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194 T. Miyamura 

That is, the Xl is censored on the right by the X
2 

since one observes only 

and 6 

where 6 indicates whether Xl is censored (6= 0) or not (6= 1). 

Remark 2. Considering a competing risks study in which it is presumed 

that there are k risks of death competing for the life of an individual. Upon 

death, the age and cause of death are recorded (Z= min(X
1
,··· ,X

k
), Z= Xi)' 

Based on these data one wishes to examine and predict the mortality pattern 

under the hypothetical conditions when certain risks of death are e1minated. 

3. Fundamental Theorem 

We will be concerned with the case where 6. (i = 1, •.. , k) and Z are inde-
1.. 

pendent random variables. Although the set {6.} and Z are not independent in 
1.. 

general, Theorem below shows that {6.} and Z are independently distributed if 
1.. 

and only if F.(x) is written as F.(x) = 1-exp{-p.Q(x)} for i= 1,···,k 
1.. 1.. 1.. 

Lemma due to Berman[2] is needed for the proof of Theorem. 

Lemma. (Berman[2]) The set of functions {F.(x)} is given by 
1.. 

F.(x) = 1-exp{-f
x
(l- ~ G.(t))-ldG .(t)} 

1.. 0 j=l J 1.. 

using the set {G.(x)}. 
1.. 

(3.1) 

If {6.} and Z are independent, then G.(x) is written as 
1.. 1.. 

G.(X) = P(6.=l)·P(Z~x) 
1.. 1.. 

= p.{l-exp{-Q(x)}} 
1.. 

for i= 1,· .. ,k . 

be constructed. 

Applying Equation (3.1) and Lemma the following theorem can 

Theorem. A necessary and sufficient condition for {6.} and Z to be inde-
1.. 

pendent is that F.(x) is given by F.(x)=l-exp{-p.Q(x)} for i=l, ... ,k. 
1.. 1.. 1.. 

Proof: To see that the condition is necessary, we assume {6.} and Z to 
1.. 

be independent, that is, G.(x)=p.F(x) for i=l,···,k. 
1.. 1.. 

lemma, 

F .(x) 
1.. 

r
x k 1 

1-exp{- (1- L G.(t))- dG.(t)} 
10 j=l J 1.. 

PidF(t) 
-----} 

k 
.1- L p .F(t) 

j=l J 

Then we have, from 
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f
x dF(t) 

l-exp{-p. __ } 
'/; 0 R(t) 

By applying Q(x) = J: dF(t)/R(t) , we have 

F.(x) = l-exp{-p.Q(x)} 
'/; '/; 

Now consider the sufficiency. 

i=l, ... ,k, then we have 

Assuming that F. (x) = l-exp{-p .Q(x)} for 
'/; 1.-

and 

dG.(x) = P(o.=l, zr.dx) 
'/; '/; 

= P(X .r.dx, min{ X.} > x) 
1.- #i J 

= dF. (x)· IT {l-F .(x)} 
1.- #i J 

= p.Q'(x)exp{-Q(x)}dx 
'/; 

= p.dF(x) 
'/; 

= P(o. = 1) P( Z r. dx) 
'/; 

p(c.=o, Zr.dx) = P(c.=O) F(Zcdx) 
1.- '/; 

in a similar way. Hence the proof is completed. 

Remark. The assumption that {c.} and Z are independent means that there -z. 
is no loss of information included in the data even though the age and cause of 

failure are recorded individually. Theorem above, therefore, enables the re-

duction of efforts required to record and analyse the data when F.(x) is writ­
'/; 

ten as F.(x)=l-exp{-p.Q(x)} for i=l, .. ·,k. 
'/; '/; 

4. Applications to Life Testing under Random Censorship 

4.1 Unbiased estimate of failure rate 
In this section it is assumed that Q.(x) is written as Q.(x)= A.H(:J.:) and 

'/; k '/; '/; 
H(x) is known. Then, Q(x)=AH(x) where A= l: A., and p.= A./A. Practically 

i=l '/; '/; '/; 

important cases are the exponential and the Weibull distribution, which satisfy 

H(x) =x and H(x) =xm respectively. 

We consider estimation of A. under random censorship. 
'/; 

defined as 

l' 
U = 2: H(z.) + (n-1')H(z ) 

i=l '/; l' 

The statistic u is 
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196 T. Miyamura 

which has the sampling distribution such as 

r r-1 f(t} = (\ t /r(r)}exp(-\t} 

From this result, it is found that an unbiased estimate for \ is given by 
A 

A = (r-l) /u 

and this variance equals 

A 2 
Var(\} = \ /(r-2) 

On the other hand, it is easily shown that the random variable (r
1
,···,r

k
) 

has a multinomial distribution with the parameter (P1", ',Pk) = (\1/\""'\/\)' 

and an unbiased estimate for \./\ is 
1-

~ 
(A ./\) = r ./r 

1- 1-

Since Theorem shows that the random variables r. and u are independently 
1-

distributed, an unbiased estimate for \. is given by 
1-

A A 

\. = (r./r)\ = (r./r)· ((r-l}/u) 
1- 1- ~ 

Under random censorship the unbiased estimate for \. is gained combining the 
1-

statistics u and r. for i = 1,· .. , k • 
~ 

In the next, let us compare the estimate ~. with the minimum variance unbi-- ~ 
ased estimate \. for \. from the ith component test data which is given by 

1- 1-

r 
(r-1)/( E H(x .. } + (n-r}H(x. )} 

. 1 1-J 1-r 
J= 

where x . . < x. . l' j=l, ... ,r, is the observable failure time for the jth proto-
1-J 1-,J+ 

type of the ith component tested, with life testing of the ith component termi-

nated at the observed time x. of the rth failure. 
1-r 

equals 

Var(~.} = \.2/(r_2} 
~ ~ 

A 

the variance of \. can be written as the following: 
~ 

Var6.} = {1 + U-1/r}cp .}Var6.} 
1- ~ ~ 

Since the variance of ~. 
~ 

where cp.= (\-\.}/\. The derivation is in Appendix. 
~ ~ ~ 

From this, it is seen, 

as is now supposed, to be 

A -

Var(\.) > Var(\.} 
1- 1-

Efficiency is a measure intended to provide a convenient standard of com-

parison for estimates. This is done for two estimates to be compared by di-
A 

viding the variance of \. into the variance of \. 
1- ~ 

That is, Eff1 is defined 
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as the following: 

Eff1 var6 .)/Var6.) 
'Z- 'Z-

1/U + {l-l/r)<p.} 
'Z-

Table 4.1 shows the efficiency values so obtained, for the case r=3,5,10,20,00, 

as regards the parameter <p.=0.2, O.~l, 0.5,1.0,1.5,2.0,3.0. 
'Z-

These values 

show that the efficiency is above 50 percent for all the values of rwhen <p. 
'Z-

is less than or equal to 1. 

is below 50 percent. 

However, if <p. is greater than 1, the efficiency 
'Z-

A 

The estimate Ai is not so efficient as Ai when <Pi is greater than 1, since 

r. the number of the observed failures for the ith component decreases with 
'Z-

increasing <p .• 
'Z-

However, the time rE!quired for randomly censored life testing 

A 

Table 4.1 Efficiency of the Estimate A for A 

r Eff1(%) 

0.2 1.5 3 50.0 

5 45.5 

10 42.6 

20 41.2 

00 40.0 

3 42.9 

5 38.5 

10 35.7 

20 34.5 

00 33.3 

0.5 3.0 3 33.3 

5 29.4 

10 27.0 

20 26.0 

00 25.0 

1.0 
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198 T. Miyamura 

is less than that needed for theAith component life testing, because min(X
1
,·· 

• ,X
k

) ~ Xi. The efficiency of Ai will be investigated in the next section 

considering both the variance of the estimate and the time required for life 

testing. 

Remark 1. (Another derivation of \.) It can be shown that the maximum 
A ~A 

likelihood estimate ~. of A. is given by ~. =r./u and this estimate is not un-
~ ~ ~ ~ ~ ~ 

biased (E(A.)=rA./(r-1)). The estimate A. is also derived changing A. into 
~ ~ ~ ~ 

an unbiased estimate noting that {6.} and Z are independent. 
~ 

Remark 2. It may be unrealistic assuming that H(x) = x
m

, that is, the 

time-to-failure of each of the components in the system is Weibull distributed 

with the same shape parameter m. However, there are many cases in which the 

unknown parameter A. must be infered conducting life test of the component when 
~ 

m is known. In this situation, Randomly censored life testing is recommended. 

The details are stated in the next section. 

4.2 Time saving in random censorship 
In order to plan an experiment in which individual components are observed 

until failure we need to consider not only sample size but also test time. 

If we insist on observing all individuals until failure we may need to wait un-

acceptably. If, however, we are willing to accept a randomly censored life 

testing we may save a large proportion of the time until the last failure. 

Let X1j (j=1, ... ,n) be the survival time for the jth prototype of the com­

ponent having a distribution function F/X) = 1-exp{-A
1
H(x) L The period of 

observation for the jth prototype will typically be limited by an ammount X2j . 

Formally speaking, the X
1j 

is censored on the right by the X2j since one ob­

serves only 

1 
{ 
o 

if X1j~ x2j 

if X1j > X2j 

where 6
1j 

indicates whether X
1j 

is censored (6
1j

= 0) or not (6 1j = 1). Under 

the randolli censorship model the censoring variable X2j is also assumed to be a 

random sample, drawn independently of the X1j , from a distribution F2 (x) = 1-

exp{-A2H(x)}. For the Z's, it is assumed that we observe r ordered values 

with Type IT censoring at r out of n: that is, 

Zl < z2 < ••• < zr 

The ratio c= E(z )/E(x
1 

) is the proportion of expected time we must wait 
r r 

if the Xl's are not randomly censored. The ratio c is evaluated as the fol-
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lowing way: 

c 
E(z ) 

r 

E(x
1r

) 

Statistical Analysis of Randomly Censored Data 

n(n-l )fooXAH ' (x)e-AH(x) U-e ->..H(x) )r-l (e -AH(x) )n-r dx 
r-l 0 

ne;:;) [XA
1
H' (x)e -A1H(x) (1-e -A1H(x) )r-l (e -A1H(x) )n-r dx 

o 

r:H- 1 (x/A)e -x (l-e -x )r-l (e-x )n-r dx 

(H-1 (x/A
1

)e -x {1-e -x)r-l (e -x)n-r dx 

where 1..= 1..1 + 1..2 . 

m 
Thus, if H(x) =X , we obtain 

c (A /A)l/m 
1 

since H- 1 (x) = xl/m. The quantity 0/1..) < 1 shows that the time saving in-

crease with decreasing m. 

Furthermore, the comparison of t::J.e variance of test time says that the 

variance of that for random censoring can be reduced, that is, 

d = Var(z )/Var(x
1 

) < 1 
r r 

If H(x) = xm , d is given by 

d = (1+4> ;-2/m 
1 

199 

m=0.5, 0.8,1.0,1.5,2.0 are presented in Table 4.2. Table 4.2 shoTMS that 

c and d decrease for fixed m as the value of 4>1 increases. Especially ran-

domly censored life testing can reduce the variance of test time comparing 

Type rr censoring very much. 

The result above shows that, for the purpose of comparing the random cen­

soring with Type rr censoring, it is necessary to take both the variance of the 

estimate for 1..1 and the mean test tim'~ into consideration, espesially in the 

area of reliability theory. Conside-.cing both them, the efficiency for com-

parison of the two life testing methods may be defined as 

var- 16
1

) -1 -

Eff2 / Var (Al~. 

E(z ) E(x1) 
, 

r 
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which denotes the ratio of the information per unit time obtained for random 

censoring and that for Type n censoring. 

If H (x) = x
m

, tha t is, Xl' s and X 2' s are Weibu11 dis tribu ted wi th the same 

shape parameter m, then Eff2 is given by 

Eff2 = (l+~l)l/m/{l+(l-l/r)$l} 

Table 4.3 gives the numerical results of the calculations of Eff2 for $1=0.2, 

0.4,0.5,1.0,1.5,2.0,3.0, for r=3, 5, 10, 20.,00, and for m=0.5, 0.8, 1.0, 

1.5, 2.0. The numerical results show that Random censoring gives much more 

information per unit time than Type n censoring when m 2, 1 and the relative ef-

ficiency increases with decreasing m and P. Hence it may be said that Random 

censoring can be used in place of Type n censoring when the time required for 

life testing is limited. 

$1 

0.2 

0.4 

0.5 

1.0 

1.5 

2.0 

3.0 

Table 4.2 Ratios of the Mean and the Variance of the 

Relative WaLting Time for Weibu11 Distribution with 

the Shape Parameter m and Various Choices of $1 and m 

rn=0.5 m=O.B m=1.0 m=1.5 rn=2.0 

c 0.694 0.796 0.833 0.866 0.913 

d 0.482 0.634 0.694 0.784 0.833 

c 0.510 0.657 0.714 0.799 0.845 

d 0.260 0.431 0.510 0.639 0.714 

c 0.444 0.602 0.667 0.763 0.817 

d 0.198 0.363 0.444 0.582 0.667 

c 0.250 0.420 0.500 0.630 0.707 

d 0.063 0.177 0.250 0.397 0.500 

c 0.160 0.318 0.400 0.543 0.632 

d 0.026 0.101 0.160 0.295 0.400 

c 0.111 0.253 0.333 0.481 0.577 

d 0.012 0.0645 0.111 0.231 0.333 

c 0.063 0.177 0.250 0.397 0.500 

d 0.004 0.031 0.063 0.157 0.250 
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Finally, it is important that the choice of the parameter A2 must be done 

taking both the variance of the estimate and the time needed for life testing 

into consideration. 

Remark. The result that Eff2~.1 when H(x) =xm and m2, 1 can be shown in 

the following way. Let m~ 1, then (1+4>l)l/m ~ 1+4>1' Therefore, 

A _ 

Table 4.3 Efficiency of the Estimate A for A for 

Weibu11 Distribution Considering the Test Time (%) 

4>1 r m=O.5 m=O.B m=1.0 m=1.5 m=2.0 

-
0.2 3 127.1 110.8 105.9 99.6 96.7 

5 124.1 108.3 103.4 97.3 94.4 
10 122.0 106./1 101. 7 95.7 92.8 
20 121.0 105.5 100.8 94.9 92.1 

00 120.0 104.7 100.0 94.1 91. 3 

0.4 3 172.9 120.2 110.5 98.8 93.4 
5 169.0 115.il 106.1 94.8 89.6 

10 166.1 112.0 102.9 92.1 87.0 
20 164.7 110./1 101.4 90.7 85.7 

00 163.3 108.8 100.0 89.4 84.5 

0.5 3 168.8 124. ~i 112.5 98.3 91. 9 
5 160.7 118.6 107.1 93.6 87.5 

10 155.1 114.5 103.4 90.4 84.5 
20 152.5 112.5 101. 7 88.8 83.0 

00 150.0 110.7 100.0 87.4 81.6 

1.0 3 240.0 142.7 120.0 95.2 84.8 
5 222.2 132.1 111.1 88.2 78.6 

10 210.5 125.2 105.3 83.5 74.4 
20 205.1 122.0 102.6 81.4 72 .5 

00 200.0 118.9 100.0 79.4 70.7 

1.5 3 312.5 157.2 125.0 92.1 79.1 
5 284.1 142.9 113.6 83.7 71.9 

10 266.0 133.8 106.4 78.4 67.3 
20 257.7 129.6 103.1 76.0 65.2 

00 250.0 125.7 100.0 73.7 63.2 

2.0 3 385.7 169.2 128.6 89.1 74.2 
5 346.2 151.9 115.4 80.0 66.6 

10 321.4 141.0 107.1 74.3 61. 9 
20 310.3 136.1 103.4 71. 7 59.7 

00 300.0 131. I) 100.0 69.3 57.7 

3.0 3 533.3 188.6 133.3 84.0 66.6 
5 470.6 166. /1 117.6 74.1 58.8 

10 432.4 152.9 108.1 68.1 56.1 
20 415.6 146.9 103.9 65.5 51. 9 

00 400.0 141. /1 100.0 63.0 50.0 

- -
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Eff2 
(1+4>1) l/m 

1+(1-1/r)4>1 

5. Related Works 

> 

T.Miyamura 

1+4>1 
---=--- > 1 
1+(1-1/r)4>1 

Under random censorship Kaplan and Meier[5] give the product-limit (PL) 

estimate and reduced-sample (RS) estimate for the proportion P(t) of items in 

the population whose lifetimes would exceed t, without making any assumption 

about the form of the function P(t). PL estimate is the distribution, unre-

stricted as to form, which maximizes the likelihood of the observations. 

Breslow and Crowley[3] give a necessary and sufficient condition for the con­

sistency of the standard (actuarial) life table estimate of P(t) and asymptotic 

normality of this estimate, using the model of random censorship. Abe[l] giv­

es a non-parametric estimate for the life time distribution from observations 

of an aggregate of renewal processes. 

determined by 

Since the life time Xo of each unit is 

where Xl and X2 are mutually independent random variables with continuous dis­

tribution functions, Abe's model is considered as one of the random censorship 

models. 

Elveback[4] discusses a simple frequency estimate assuming that the sur­

vivorship function is approximated by the polygonal function and shows that the 

method proposed is appropriate and highly efficient for large scale follow-up 

studies. Yang[7] deals with estimation of life expectancy used in survival 

analysis and competing risk study under the condition that the data are random­

ly censored by k independent censoring variables and shows that the estimate 

converges weakly to a Gaussian process. 

Muenz and Green[6] studies time savings in Type II censored life testing. 

Their measure of time savings is t(r)/t(n) which is the proportion of time we 

must wait if failures r+l through to n are not observed. They give numerical 

results and outline the application of this approach to the evaluation of early 

stopping procedures. 

Acknowledgement. The author wishes to thank Professor Hajime Makabe. Tokyo 
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A 

Appendix. Derivation of the Variance of Ai. 

A 

Noting that the random variables 1'. and u are independent. the variance 
'Z-

of A. is computed as the fllowing way: 
'Z-

Var(L) 
'Z-

Ai 2 2 
~( l-A./A) +1' rAjA} 2 2 

'Z- 2 " {1/(1'-2J+l}A -\ 
l' 

2 2 
(1'-1) {1+((A-L}/A.) (1/1')}L /(1'-2) - L 

'Z- 'Z- 'Z- 'Z-
~ 2 

(1'-1) (l+<p./1'}Var(A.) - A. 
'Z- 1, 'Z-
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