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Abstract We present a procedure for constructing a group theoretic dual problem with no duality gap to a given 

bounded integer programming problem. An optimal solution of this dual problem is easily determined and an optimal 

solution of the integer programming problem can be obtained by solving only one group optimization problem. 

Introduction 

Since Held and Karp [.11,12] reported a very promising result about their 

algorithm for the travelling salesman problem, their approach, which is now 

interpreted as a dual method, has been extended to general integer programmings 

(see [8]). Especially Fish,~r and Shapiro [5] combined the dual method with the 

relaxation of linear constraints into a group congruence (see also [6]). They 

showed that their dual problem provides a better bound than the ordinary linear 

programming relaxation. HO'I.\fever it can be seen that there generally exist 

duality gaps. Bell [1,2], and Bell and Shapiro [3] have proved that duality 

gaps can be closed up by introducing increasingly stronger group congruence 

conditions in finit'e Abelian groups. 

In the subsequent sections of this paper we shall propose a procedure to 

construct a dual problem for bounded integer programmings, and show that duality 

gaps are eliminated and an optimal solution is easily obtained in this dual 

problem. 
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1. Lagrangean dual problem 

We consider the following integer programming problem: 

(1-1) 
z* = minimize cx. 

subject to x E X= {x I Ax~b. O~x~M. x E Zn}. 

where A = (a .. ) E zmxn, b = (b
l

.b
2 
•... ,bm)t E zm. M (M

l
,M

2 
•...• M

n
)t E Zn and 

L] n 
c = (c l .c2 •...• cn) ER. Without loss of generality we assume that the region 

{ x I Ax __ < b. 0 __ < x } is bounded (e.g., add L~ 1 x. < L~ 1 M
j
.). By relaxing the 

]= j = ]= 

inequality constraints Ax ~ b in X. we define the set 

i = { x I 0 ~ x ~ M. x E Zn }. 

which we shall also write as i = { x S I s E S}. Putting nonnegative multipliers 

u = (u l .u2 ••••• um) on the constraints Ax ~ b. we define 

L(u.s) = - ub + ( c + uA ) X
S 

and call 

L(u) = min { L(u.s) I s E S } 

the Lagrangean function for the problem (1-1). It is known and easily shown 

that L(u) ~ z* for any nonnegative multiplier vector u. Thus the problem to 

find the best of these lower bounds is formulated as 

(1-2) 
L* = maximize L(u), 

subject to u ~ O. 

This problem. a maximization problem of the piecewise linear concave fUIlction 

L(u). is called the Lagrangean dual problem of (1-1) [8]. Although several 

algorithms have been proposed for this problem [5.6.10]. the optimal multiplier 

vector is not easy to obtain and there is no guarantee that L* = z*, Le .• 

duality gaps generally exist. 

For a positive integer vector d = (d l .d 2 •...• dm)t define the sets 

{ (x,y) 
y + Ax ~ b. y + Ax = b (mod d). } 

o ~ x ~ M, 0 ~ Y < d. x E Zn. y E Zm • 

Xd '" { x I (x.y) E Yd for some y }. 

then we obtain Lemma 1, where a = b (mod d) means that a. = b. (mod d.) for 
1 1 :L 

i = 1,2 •... ,m. Though the proof of the following lemma can be found in [1]. we 

shall give the proof for consistency. 
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Lemma 1. 

X Xd for any positive integer vector d. 

proof. 

in X, y 
It is sufficient to show that X C X

d
. For an arbitrary vector x 

b - Ax is a nonnegative integer vector. Then there uniquely exists 

a pair of vectors y and y such that y = /',.y + y, 0 ~ y, 0 ~ y < d, where 

Hence b - ( y + Ax ) /',.y > 0 and - 0 (mod d), i.e., x is in X
d

. o 

Relaxing again the inequality conditions in Yd and Xd defines 

-
{ (x,y) I 

y +Ax:::b (mod d) , 
zm} , 

Yd 0 ,:S x ~ M, o ~ Y < d, x E: Zn, y E: 

Xd { x I (x,y) E: Yd for some y }, 

It is seen that X = Xd for any positive integer vector d in the same way as in 

the proof of Lemma 1 and for any x E: Xd the vector y such that (x,y) E: Yd is 
- s s uniquely determined. Hence lye also denote Yd = { (x ,y ) I s E: S}. Therefore 

the problem (1-1) may be written equivalently as 

z* = minimize s ex , 
(1-3) s + Axs subject to y ~ b, s E: S. 

For any nonnegative multiplier vector u, define 

Ld(u,s) - ub + ( c + uA) xS + uys, 

Ld(u) = min {Ld(U,s) I SE S }, 

then the problem (1-3) is dualized as 

(1-4) 
L~ = maximize Ld(u), 

subject to u ~ O. 

t It should be noted that if d = (1,1, ... ,1) then Ld(u,s) = L(u,s) for any s E: S. 

In the next section we shall show that there exists a finitely large d 

for which an optimal multiplier vector u* is easily determined and it is 

sufficient to solve only one group optimization problem to obtain an optimal 

solution of the problem (1-1). 
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2. Resolution of the duality gap 

Let D =, (D
l 

,D2 , ... ,Dm) t be defined such that for i 1,2, ••• ,m 

(2-1) Di = max { b i - Aixs I s E: S }, 

where Ai is the i-th row of the constraint matrix A. Note that Di > 0 if (1-1) 

has a feasible solution. 

Lemma 2. 

(i) 

(ii) 

Let d :> D 

Y~ + ALx
s 

Y~ + ALx
s 

be a positive integer vector. 

- b. = 0 if A.xs 
< b., 

1 1 = 1 

- b. > d. otherwise. 
1 = 1 

proof. (i) Suppose that A.xs 
< b., 

1 = 1 
then by (2-1) and 0 ~ Y~ < d i 

Hence 

(ii) 

some 

- d. 
1 

< s + AS. b < d Yi i X - i i· 

it follows s s - b. () from Yi + Aix -
1 

For 
s 

such that 
s 

> b
i

, 0 
s x A.x < Y:L 1 

positive integer k, s + A.x s b. Yi 1 1 

(mod d i ) that s s - b. o. Yi + A.x = 
1 1 

+ A.x 
s 

- b. 0 (mod d i )· Then -
1 1 

k·d. which is not less than d .. 
1 1 

for 

0 

Lemma :2 reveals that if X
S is feasible in (1-1) then the value of Ld (u ,s) 

is independent of the amount of u, while if x S is infeasible, i.e., A.xs > b. 
1 1 

for some i, then Ld(u,s) ascends in the i-th coordinate direction (see Fig.l). 

Define 

z = min { cx
s I s E S }, 

and z as an upper bound on z*. 

Theorem 3. 

Let U
i 

= ( z - z ) I d i for an arbitrarily fixed d > D. If (1-1) has a 

feasible solution, then (i) and (ii) hold for any u* > U = (Ul ,U2 , ... ,Um). 

Ld(u*) = L~ = z*, 

xS is an optimal solution of (1-1) for any s E Sd(u*) { s I s E S, 

Ld(u*,s) }. 

proof. For an infeasible solution xS of (1-1), define the nonempty set 

I = { i I A.x
s 

> b. }, 
1 1 

then by Lemma 2, we have 
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(2-2) 
s s 

ut ( Yi + Aix - b. ) 
l. 

u~.d. 
l. l. 

(by Lemma 2 and u* > 0) 

( Z - ~ (by the choice of u*) 

- z ) 

(by the definition of ~) 

Let s* be any index in Sd(u*). Since yS + Axs _ b = 0 for any feasible 

solution X
S of (1-1), we have 

(2-3) s cx 

for any feasible solution x
S 

of (1-1), which implies that 

(2-4) Ld(u*,s*) < z. 
= 

Then by (2-2) and (2-4) we have that 
s* 

is feasible in (1-1) , x 

(2-5) Ld(u*,s*) 
s* 

cx 

Comparing (2-3) and (2-5) gives the desired result (ii). 

thus 

(i) follows directly from the weak duality L~ ~ z* and z* s* cx 

Note that if x
S* is infeasible in (1-1), then (1-1) has no feasible 

solution. Also note that ~ = LjEJ cjM~ and Di = b i - LjEJ . aijMj , i = 1,2, ... , 

m, where J O = { j I c. < 0 }, J. =O{ j I a < 0 } and the ~ummation is assumed 
J l. ij 

to be zero if J i is empty. 

It follows from Theorem 3 that an optimal solution of (1-1) is obtained 

by solving the group optimization problem with the additional bounded-variable 

constraints: 

minimize - u*b + ( c + u*A ) x + u*y, 

(2-6) subject to y + Ax = b (mod d), 

o ~x ~M, 0 ~y < d, x E Zn, yE Zm, 

where the upper bound constraints on y might be deleted since u* > 0 and Y i - d
i 

= Yi (mod d i )· 

For group optimization problems several algorithms have been proposed [4, 

7,10], and some of those are applicable to the bounded-variable case [9]. Al­

though most of the algorithms for group optimazation problems require the non­

negativity of the objective function coefficients, it -is not necessary in (2-6) 

since the bounded-variable constraints serve to make the number of possible 
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solutions finite. It is preferable, h01,yever, to make the objective function 

coefficients nonnegative from the computational point of view. 

Lemma 4. 

If the bounded region { x I Ax ~ b, 0 ~x is nonempty, then there, 

exists a multiplier vector u* satisfying both c + u*A ~ 0 and u* ~ V for a 

given V. 

proof. Suppose on the contrary no such u* exists, then by Gale's alternative 

theorem there exist nonnegative vectors z and y such that Az + y = 0 and cz - Vy 

= -1. Then z 1 0 for otherwise cz - Vy 0, which is a contradiction. 1berefore 

we obtain that z ~ 0 and Az = -y ~ 0 which contradicts to the assumption that the 

region is bounded and nonempty. o 

It is known that the problem (2-6) can be considered as a shortest: path 
m problem on a network having TIi=l d i number of nodes. The edges of the network 

are classified into n+l groups and it is required that the number of edgE!S of the 

same group contained in the path must not exceed the bounded constant value. 

Hence it is desired from the computational point of view in solving (2-6) that 

each component d
i 

is as small as possible. But if d
i 

is smaller than thE! value 

presented in Lemma 2, we must solve a maximization problem (1-4) of the piecewise 

linear concave function Ld(u) to find an optimal multiplier vector. Furthermore 

there is no guarantee that the duality gap is closed up. Thus further investi­

gation and computational experiments are required in order to find the way of 

deciding "optimal" value of d. 

3. Illustrative example 

Consider the following knapsack problem: 

minimize -( l2xl + 7x2 + 6x
3

), 

subject to 3x
l 

+ 2x
2 + 2x3 :: 4, 

x. is ° or 1 for j = 1,2,3 
J 

with an optimal solution x (0,1,1) and the optimal value -13. By the 

definition we have d = 5 and z = -25. since x (0,0,0) is a trivial feasible 

solution, z =, 0 is an upper bound on Z1:. Then U = 25/5 = 5 and u* = 6 is 

sufficient to make the objective functi.on coefficients nonnegative. The group 

optimization problem is as follows: 
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152 Y. Yamamoto 

minimize -24 + 6xl + 5x2 + 6x3 + 6y, 

subject to 3xl + 2x2 + 2x3 + Y = 4 (mod 5), 

Xj is 0 or 1 for j = 1,2,3, 

o ,:: y integer. 

To illustrate how d and u* work, Ld(u,s) are depicted for all possible solutions 

xS and for d = 1,3,5 in Fig. 2 where darkened lines represent Ld(u). 
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