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Abstract In this paper, an optimal allocation problem (APQ) with a quadratic objective function, a total resource 

constraint and an upper and lower bound constraint is considered. The APQ is a very basic and simple model but it 

can serve as a sub problem in the solution of the generalized allocation problem. 

Applying the Lagrange relaxation method, an explicit expression of the dual function associated with the APQ 

and an equation which the optimal dual variable must satisfy are derived first. Then, some properties of the equation 

are discussed. Finally, three algortihrns for solving the equation are proposed, and some computational results for the 

APQ are given. These results reveal the effectiveness of the algorithm. 

1. Introduction 

The allocation problem to be considered in this paper. which we shall 

call the APQ. is to minimize the quadratic objective function 

(1) F(x) = l: fi (xi) == L (ai+bixi)xi iE:M iEM 

subject to 

(2) 

where 

L x 
iEM i 

B. 

M ={1.2 •.•.• m}. x = (xl •...• xm) and XiECi = [li.diJ with O<li<di • bi>O for all 

iEM. 

The APQ is a very basic and simple model but it can serve as a subproblem 

in the solution of the generalized allocation or transportation problems which 

have quadratic objective functions. From the standpoint of the mathematical 

programming theory. the APQ is a strictly convex separable programming problem 

and is a special class of quadratic programming problem: Therefore. its global 

optimality is guaranteed. 
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Optimal Allocation Problems 65 

Our paper was directly influenced by Takahashi's "A method for solving 

network transportation problems with quadratic cost functions." [6] Takahashi 

proposed the algorithm based on the separation principle in which the APQ plays 

a central role. However, he did not give the systematic algorithm for the APQ, 

and his variables were not restricted from the upper bound, that is, only non­

negative constraints were considered. Our treatment is an extension upon which 

the upper bound constraint on the variables is imposed. This constraint is 

essen tial for practical applications. 

Other problems in which the APQ plays an important role are the resource 

allocation problems with integrality condition on the variables. [5] One of the 

efficient algorithms for this problem requires to solve the APQ as a relaxed 

subproblem which is obtained from the problem by dropping the integrality 

condition on the variables. 

Furthermore, the APQ itself is an important problem in electrical power 

network systems. The problem of how to dispatch the load for each generator 

to minimize the generation cost under the constraint of each generator output 

limitation is called the economic load dispatch problem (ELD).[2] The ELD 

is the same as the APQ and is one of the most basic problem for power dispatch 

operations. 

As mentioned above, the APQ is a worthwhile problem to study in detail. 

In this paper, we would like to consider the algorithm for solving the APQ. 

Although we can apply general quadratic programming algorithms to the APQ, 

we will apply the Lagrange relaxation method to the APQ. We can take the 

advantage of the problem structure, sinc,~, there is only one complicating 

constraint in the sense that the problem 'Nould be much easier if it were not 

present. [3] For example, Wolfe's method EoI' the quadratic programming problems 

uses the simplex method to solve the syst,~m of equations with complementary 

condi tions which represents the Kuhn-Tuck·cr' s condi tions as applied to 

quadratic programming problems. [4] But our approach should lead us to a simple 

result that we only solve an equation wiLl one variable. So even small 

computers may be used to implement the algorithms. 

In section 2, we obtain an explicit 'cxpression of the dual function 

associated with the APQ by applying the Lagrange relaxation method. In section 

3, we derive some properties of the derivative of the dual function. Algorithm 

using these properties are described in s,~c tion 4. Remarks for implementing 

the algorithms and computational results are shown in section 5 and section 6, 

respec ti vely. 
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66 A. Ohuchi and I. Kaji 

2. Preliminary 

In this section the Lagrange relaxation method is applied to the APQ as 

preliminary to the following sections 

Define the Lagrange function L(X,A) associated with the APQ and lts dual 

function D(A) as follows. 

(3) 

or 

(4) 

L(X,A) = L fi(xi)+A(B- LX.) 
iEM iEM 1 

L(X,A) 2 
L {(a.-A)x.+b.x.}+AB, 

isM 1 1 1 1 

(5) D(A) = min L(X,A) . 
xsC=IIC. 

1 

Let X denote A maximizing D(A), then an XEC minimizing (4) for A = X is 

an optimal solution for the problem, and is denoted x. It can be shown 

(6) D(X) = F(x) 

unless D(X) = 00, in which case the problem is infeasible. Feasibility, 

however, can be easily checked by whether L 1.~B~ L d. holds or not. 
isM 1~ -iEM 1 

Since the Lagrange function L(X,A) is separable, the xsC minimizing the 

L(X,A) is given by 

(7) X.(A) = «A-a.)/2b.> 
1 1 1 

and the dual function D(A) is written as 

D(A) = L {(a.-A)X.(A)+b
i
X.(A)2}+AB, (8) 

isM 1 1 1 

where brackets symbol <Y.(A» means 
1 

(9) (1. ,Y . (A», d.} 
1 1 1 

Y
i 

(A)';;;'\ 

1. <Y . (A) <d . 
1= 1 = 1 

Y. (A) >d. 
1 = 1 

The algorithm for the APQ is summarized as follows: 

begin 

find a maximal point X of D(A); 
-substitute X into (7) to obtain the optimal x; 

end 

The main part of the algorithm is to find the maxilnal point of D(A). 

We shall show some properties for the derivative of D(A) in the next section. 
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3. Properties of derivative of n(A) 

Let a i = lli +2b i l i , f\ = a
i

+2b i d
i 

for all iEM and a = ~x ai'S = min f3i, 
1. i 

and define a new sequence {Y
j 

IY
j 

=a
i 

or ~'i} out of a's and S's such that 

Y
l

<Y2< •.. <Y
p

' (p,;;;,2m) and if one or more c~i and Sj are same values, they are 

considered as identical. Note that since, O,;;;,li <d
i

, a
i 

<Si holds for all i, and 

that p = 2m if all the a's and S's are di.fferent. 

Put fj = [Yj,Y
j

+l ), then there are three possible cases in relation w:Lth 

[ai,Si l . 

(10) 

We define the index set A. associated with f., 
J J 

(11) A. = {i I [a. ,So ]:=Jf.}. 
J 1. 1. J 

Lemma 1. 

(12) Aj+1 

or 

(13) A. 
J 

where 

I 
a 

IS 

Proof: 

some 

{A.UI }-I
S J a 

{A.-IS}UI , 
J a 

l, ... ,p-l, 

{J\j+1- Ia}UI
s 

= {AJ +1UI S}-Ia , j p-l, .•. ,l. 

hlai Yj +1} A;n\+1 ' 

{:L Is. Yj +1} A nAc 
1. j j+1. 

Note that fj = [Yj 'Y j +1] 

If iEr then iEA~nA. 1 
a J J+ 

ana. Y
j

+
l 

corresponds to some 

c 
If iEIQ then iEA.nA. 1. 

I-' J J+ 

Conversely, if 'e'cn , th < d > l.c.Hj Hj +l , en ai=Y j +l arc ai=yj +l . Hence, iEla 

If iEAlA~+l' 
Therefore, la 

then Si';;;'Yj +1 and Si2Yj+1. Hence iE:IS. 

-- ,cn ' d I "c -- Hj Hj +l an S HjrlH j +l 

On the other hand, 

Aj +l {AjnAj+l}U{A~nAj+l} 

{A.-A.nA~+l}U{A~nA·+l} 
J J J J J 

{A.-IQ}UI 
J I-' a 

{A I} I (" .. I~n IQ ~) j a - S· ~ I-' 

'\. or/and 
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Aj {AjnAj+1}U{AjnA~+1} 

{Aj+1-A~nAj+1 }U{AjnA~+1} 

{Aj+I-Ia}UIS 

Q.E.D. 

Our next task is to determine the index set A" that is, to find all the 
J 

i's for which AE[ai,Si] for a given A. One method is to compute all (~i and 

Si' then to see whether AE[ai,Si] holds for each i. The second is to compute 

° ° x.(A) = (A-a,)/Zb. for A and test l,<x.(A)<d,. The second takes advantage of 
1. 1. 1. 1.= 1. = 1. 

the fact that xi(A) defined in (7) is a linear function of A on [ai,Si]' It 

is obvious that the index set obtained above is the A. associated with r, 
J J 

which contains A. 

From the definition of bracket symbol and (8), existense of the partial 

derivative of D(A) is guaranteed. ([3], [6], [7]) Then the maximal point X 
of D(A) can be obtained as a solution to the equation dD(A)/dA = 0, 

(14) dD(A)/dA = - L «A-a,)/Zbi>+B = O. 
iEH 1. 

Thus the following equation (15) is obtained on referring to (7). 

(15) L x.(A) = L «A-a,)/Zb,> = B. 
iEM 1. iEM 1. 1. 

Let 0(1..) be the left hand side of (15) and define the linear function 

00 (A) by deleting the brackets in the right hand of (15), i. e. , 

(16) 0(1..) = L x.(A) = L «A-a.)/Zb,> 
iEM 1. iEM 1. 1. 

(17) 0°(1..) = L x?(A) = L (A-a,)/Zb, 
iEM 1. iEM 1. 1. 

where 

kO=L1/Zb" 
iEM 1. 

c
O
=- L a./Zb,. 

iEM 1. 1. 

As it is easily seen that the function 0(1..) is a non-decreasing line­

segment function with vertices {Y.,o.}. we write the equation of the 1ine­
J J 

segment on r. as y. = k.A+c,. k, and c. are uniquely determined from the fact 
J J J J J J 

that Yj passes through the points (yj,Oj) and (y j +1 ,Oj+1)' that is, 

kj (OJ+1-~)/(Oj+1-0j)' 
(18) 

c j 0j-Yj (OJ+l-0j)/(Yj +1-Yj), 
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6 (y.) is used. 
J 

69 

On the other hand, k. and c
J
' are determined by the index sets A., A and 

J J a 
i.e. , 

(19) 

k. = :~ 1/2b., 
J ]. 

il~/\j 

c
J
' -- l.: a ./2b . + l.: 1 i + l.: d . , 

iEA.]. ]. iEA iEA]. 
J a 13 

where Aa = {hl(l~Yj+l} and 11.13 = {hIS~Yj}' 

Note that A.nA nAa= ~, A.uA uAa= M. 
J (X f.l J a f.l 

Lemma 2. 

(20) k
O

> rnax kj 
l<j<p-l 

Proof 

k. = l.: 1/2b. and A
J
. is a subset of M 

J iEA. ]. 
{l, ... ,m}, and bi>O, we have kO>k

j
, 

j 

(21) 

J 

l, .•• ,p-l. Hence, kO>max k
j

• 

Def ine ~ (A) as follows. 

l.: { ( A-a. ) /2b . -< (A -a . ) /2b . > } . 
iEM ]. ]. ]. ]. 

Then we have L,=a 3. (Illustrated in Fi.g. 1) 

Lemma 3. 

Q.E.D. 

If a<l3, th':!n there exis ts a single subin terval r k = la, SJ such tha t 

~ (A) = 0, for all Ad k' If a~, then there exists a single point A such 

that ~(A) 0, S;SA,:sa. 

Proof: 

We first note that ~(A) is also a non-decreasing continuous line-segml~nt 

function on -,x><A<+OO since kO-k.>O for all sub interval r. from Lemma 2 and 
J= J 

both OOU) and O(A) are continuous. It is also easily seen that ~(A)<O for 

some A<mina. and CP(A»O for some A>max S. 
i ]. i l. 

Applying the intermediate value theorem we can obtain the result that 

there exists at least a point at which ~(A) = O. 

The case a</3. 
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From the definitions of a,S and the assumption a<S, we can write all 

subintervals as fj = [ai:O~] or [Si,Sl] except fk = [a,S]. By noting that 

ai~a<S~i' we obtain Ak M bacause fk = [a,S]c[ai,Si] for all i. 

From (21), we have ~(A) ° for As[a,S]. 

On all other sub intervals f., jlk, 
J 

I 1/2b,< Il/2b, 
'EA ~ "EM ~ ~ j .l 

Therefore, the sub interval [a,S] is the only subinterval where ~(A) ° 
occurs. 

The case a;;:S. 

To prove the latter part of Lemma 3, we assume that a = a
k

, S Sh' 

Then, 

Each fj is either contained in [ah,Sh] or not. If the former is the case, 

fj n[ak , Sk] c[ah , 1\] n [ak , Sk]c{a} or {S}, 

that is, fj~[ak,Sk]' If the latter is the case, it is trivial that fjq[ah,Sh]' 

Therefore, there exists at least an interval [a"Si] such that f,~[ai'S,] for 
~ J ~ 

any j. Hence, IA,I<IMI for all j, which means that there exists no interval 
J 

fj such that ~(A) = ° for AEf, by the non-decreasing property of ~(A), Thus 

we conclude that there exists
J 
only one point AD where ~(AO) = O. 

Such a point AD lies in the interval [S,a] if ~(S)~O and ~(a)29, which 

will be shown to be the case in the following. 

Define index sets N(A) and peA) as 

N(A) {iIA~ai}' 

peA) {iIA;;:Si}' 

if isN(A) ... (a) 

0, if isA, 
J 

if isP(A) ... (b) 

In particular, if A = S, then N(S) = {iIS~ai} and peS) = {ils;;:Si}' and from 

the definition of S, S ~ min Si' peS) has only elements Si ~ S, and for 

which (b) vanishes. On the other hand, N(S) is not empty since a;;:S from 

the assumption, furthermore, 
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(S-ai)/2bi-li~0, for ie:N(S), 

the equality holds only for a
i 

= S. Thus we have 

cj>(S) == L {(S-a.)/2b.-1.}S.0, 
ie:N(S) ~ ~ ~-

the equality holds only if a. = S for all ie:N(S). 
~ 

Similarly,. it can be proved that cp(a)~O and the equality holds only if 

Si a for all ie:P(a). Q.E.D. 

Ld. 
~ 

I 
I 
I 
I 

H. I 
~ I 

I 

i 
a S 

Ca) Case a<S Yl Yj Yj +1 Yp 

0(,\),0°(,\) 

I 
I 
I 
I 
I 
I 
I 
I 
I 

1 
S a 

Cb) Case fs~a 
Yh Yk .. , Yp 

Fig. 1 Relation of 0('\) and 0°(,\) 
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Lemma 4. 

0(1..) is a monotone increasing line-segment convex function for Yl~A~ 

and 0 (A) is a monotone increasing line-segment concave function for et':;;A':;;Y p' 

Proof: 

Asswne that a. 

Yj Cli . ' j 

Y
k

, S = Yh' than we can suppose that Y
j 

corresponds to 

1" ... ,h-1 
J 

Yk+j 
S , 
n. 

J 

j = 1, ... ,p-k. 

Then each index set 11.., j 
J 

1, ... ,h-1 and j k, ... ,p-1 are determined as 

follows: 

Set 11.0 = {(jJ}, then from (12) and (13) in Lemma 1, 

II.
J
' 11.. lUI , j " 1, ... h-l 

J- a. 

and 

1, ... ,p-k-l. 

Hence, 

and 

Therefore, from (19), 

k <k < ... <k 
1 2 -11-1 

and 

4. Algorithms 

Q.E.D. 

We shall propose three algorithms for finding the optimal A; (i) 

polynominal approximations (PA), (H) sequential search (SS) and (Hi) hybrid 

of (i) and (ii) (HB). All algorithms are described by PASCAL-like language. 

4.1 Algorithm PA 

By Lemma 4 the function 0(1..) can be generally divided into three parts, 

convex part for A<S, concave part for A>a. and neither convex nor concave part 

for S<A<et. Theoretically, any convenient convex (cancave or linear) function 
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may be available as an approximation function for the convex (concave or 

neither convex nor concave) part. For paractica1 purpose a function which is 

a monotone increasing part of convex (concave) quadratic function for 1..<13 

(for A>a) is quite sufficient. 

When a linear approximation function is used for all A, the algorithm 

is just the a1g,orithm so called regula falsi method which computes the root 

of monotone functions. 

If quadratic functions are used, the approximating function can be 

determined by t.he information that it passes through the two points 
o 1 

(A ,00)and(A '01) and its tangent at 1..0 or Al. We can use the line-segment 

° 1 on the subinterva1 containing A or A as the tangent of the approximating 

function. As noted in section 3, this line-segment can be determined by A., 

° ° J which can be determined by xi(A), and x i (\) have been already computed when 

00 or 01 were evaluated. 

begin 

° ° compute ° (A) = B and let A be the ,301ution; 

if ° (A O)fB then 

begin 

end 

end 

compute a = max a i and 13 

if 1..°<13 then compute the solution by using convex approximating 

functions; 

else 

begin 

end 

if 1..°>0. then compute the solution by using concave approximating 

functions; 

else compute the solution by using linear approximating functions; 

4.2 Algorithm SS 

The initial A, 

equation 0°(\)= B. 
° A , can be easily obtained from the solution to the 

° Then the subinterva1 r., r.~A • and index set A., 
J J J 

Aj = {il [ai,Si]}::>r j , can be determined, furthermore, r j +1 and Aj +1 , r
j
+2 and 

A·+2,···, or r. 1 and A. l' r. 2 and A. 2"'" are sequentia11y determined J J'- J- J- J-
by Lemma 1. If we find the interval [ok,Ci

k
+1 ]~B, then the optimal A can be 

computed form the equation Yk = ~A+Ck = H, where Yk is the equation of the 
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line-segment on the subinterval fk . 

begin 

end 

given initial Aa; 

determine the sub interval fj and corresponding index set Aj such that 

f "'A
a' j , 

if O(AO) <B then search fk by increasing k until [ok,ok+l]3B is found; 

else search fk by decreasing k until [Ok,ok+l]3B is found; 

solve the equation ~A+ck = B; 

4.3 Algorithm HB 

The algorithm PA is efficient for the global estimation of the optimal 

A. On the other hand, the algorithm SS is efficient for the local computation 

of the optimal A. The hybrid of these two leads to a very efficient algorithm. 

The algorithm HB perforn~ the algorithm PA r times, then uses the algorithm SS 

by starting from Aa which has been ob tained by the algorithm PA. 

begin 

Execute algorithm FA r times and let Aa be the current solution; 

Execute algorithm SS starting from Aa; 

end 

5. Remarks for implementing the algorithms 

We shall point out a few important points about implementing the above 

algorithms. 

(1) Algorithm PA 

We shall consider the case of using quadratic functions as an approximat­

ing function. First, we will show how to obtain the points through which the 

initial quadratic approximating 

° of the equation 6 (A) = B, then 
° function passes through. Let A be the root 

° (A ,00) can be used as one of the points. 

The other point can be determined by the non-decreasing property of O(A) as 

follows: 

min u
i 

else Al = max Si; 
i i 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Optimal Allocation Problems 75 

Secondly, we consider the roots of the quadratic equation. If we write the 
- 2 

quadratic approximating function as O(A) = PA +qA+r, the equation O(A) = B 

has two roots, say Aa and Ab. However, it is sufficient to take only one root 

by the non-decreasing property of 0(>--) as follows: 

begin 

if 0 (A 0) <B then 

begin 

if p>o 

if p<o 

end 

if 0 (A 0) >B then 

begin 

if p>o 

if p<o 

end 

end 

(2) Algorithm SS 

then 

then 

then 

then 

A: 

A: 

A: 

A: 

a b 
max{A ,A }; 

min{Aa,Ab }; 

min{A a ,Ab}; 

max{Aa,Ab }; 

An important part of algorithm SS is to determine the linear functions on 

the sub intervals f. 's by Lemma 1 and eq. (12) or (13). That is, when searehing 
J 

for subintervals f. -+ f .+1 -+ ••• or f. -+ f. 1 -+ ••• , we must determine coefficients 
J J J]-

k. and c. of the linear function y. = k.~.+c. define on the subinterval f .. 
J J J J J J 

As noted in section 4.1, k
j 

and c
j 

can be determined by the index sets Aj' \x 
and AS in eq. (19). We can reduce the amount of computer storage required to 

store the index sets by providing three lists L
1

, L2 and L3 consisting of 

m-bits corresponding to the index sets Aj' Aa. and AS' respectively. We set 

i-th bit in the list L. as follows: 
J 

if index i is in A., then i-bit of L. is set to 1, otherwise O. This requires 
J J 

only 3m bits to store the index sets. Furthermore, we can compute one list 

from two other lists by using the property that the index sets A.., A. and A.3 
J a. 

are the mutually exclusive and co11ective,ly exhaustive sets of M. For example, 

we can get L3 by taking a compliment of the Boo1ean sum of L1 and L
2

; i.e., 

L3 = L
1
eL Z' where ~ means m-bitswise Boolean sum and is a compliment. 
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6 • Compu ta tional res ul t:3 

In order to test the relative efficiency of the algorithms, 200 randomly 

generated problems were solved by each algorithm. The results are shown in 

Figure 2 and Table 1. Figure 2 shows the computer times in milli-seconds and 

Table 1 shows the number of searched subintervals in algorithms SS and HB. 

The following observations were made on their performance: 

1. The computer times, of algorithm PA and HB appeared to be proportional to 

the number of m variables. On the other hand, algorithm SS looked like the 

order of logarithm computer times because it contained a part that arranged 

all a.i's and Si's in increasing order to make the sequence {Y
j
}. This sorting 

needed an average of 0(2mcLog 2m), c>O, comparisons.[l] However, when we 

already had the sequence {y.} and only the total amount of resource B was 
J 

changed, only Log 2m comparisons by the binary search algorithm were needed in 

order to find the interval [ok' 0k+l] such that [ok,ok+l]3B 

2. It is clear from Table 1 that algorithm HB needs much less interval 

search than algorithm SS. Generally speaking, as the number of variables 

increased, the function 5(A) became a smooth logistic curve rather than line­

segments and the quadratic function gave a fairly good approximate solution in 

one or two iterations. 

Summarizing the comparisons of the algorithms, it can be seen that 

algorithm HB is efficient when the APQ must be solved for many data sets of 

coefficients or constants. On the other hand, algorithm SS is useful for 

problems when only the right hand quantity B is changed. 

Table 1 

Number of searched intervals 

Number of variables 
Algorithms 

10 20 30 40 50 60 70 80 90 100 
------1----

SS 3 4 6 9 11 14 16 19 21 21 
--

HB 1 1 1 2 3 3 3 3 3 4 
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7. Conclusion 

We have discussed some properties of the dual function D(A) associated 

with the APQ and have given three algorithms for finding the optimal ;\ with 

remarks for implementing the algorithms. 

TIle important properties are that the root of the equation <j>(A) ,= 0 is 

characterized by the magnitude of a and S, and that the function 8(A) can be 

divided into three parts: convex for A<S; concave for A>a; and neither convex 

nor concave for S<A<a. 
Our computational results show that algorithm HB is very efficient and suggest 

that this algorithm can be applied to more complicated allocation type 

problems, for example, to transportation network problems having the quadratic 

objective function. 

Some properties obtained here will be applied to general differentiable 

strictly convex objective function cases and reported on in a subsequent paper. 
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