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Abstract In this paper, we consider the procedure to zstimate the various effects of the design factors in the two-
stage series lines in which the first stage has an arbitrary service time. First, the system states are represented by the
imbedded Markov chain and the steady state probabilities are solved by the Laplace transform with respect to the
arbitrary service time distribution. Next, the efficiency, the idling time distribution, the blocking time distribution
and the number of in-process works distribution are considered from the system states. Moreover the relations between

the dual models are discussed.

1. Introduction

Many papers have been published concerning the two-stage series lines.

Hunt and others estimate the efficiencies and the mean number of in-process
works for the lines with exponential or erlang service times by the Markov model
[e1, (71, {81, [111, [12], [13]. However, most of the papers discuss only the
efficiencies for the lines with the arbitrary service times by the approximation
methods [1), [3}, [10]. On the other hand, the queueing system M/G/1 with a
finite waiting room which is related to the dual model considered in this paper
is discussed by Hashida and others, and the various results are presented [4],
{5].

In this paper we consider the procedure to estimate the effects of the
design factors in the two-stage series lines in which the first stage has an
arbitrary service time and the second stage has an exponential service time.
First, we show that the system states can be represented by the imbedded Markov
chain like GI/M/1 or M/G/1 queueing model and that the state probabilities in
the steady state condition can be solved by the Laplace transform with respect
to the arbitrary service time distribution. And from the state probabilities

the efficiency, the idling time distribution, the blocking time distribu:zion and
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322 T. Iyama

the number of in-process works distribution are represented. Moreover, we dis-
cuss the relations between ~-he dual models and show that the wvarious properties

for the dual model can be represented by the other model.

2. Model
The two-stage series line consists of two stages to operate the work and

the buffer storage holding in-process works temporarily, as shown in Fig. 2.1,

Buffer Storage

— Work Flow

o Work

Fig. 2.1 Two-stage series line

Then the line is defined by the service time in stage i (i=1,2) represented by
the probability density function (p.d.f.) fi(x) and the buffer capacity M.
Assume that there are infinite works ready to be operated in the first
stage and there is infinite buffer capacity just behind the second stage, there-
fore idling due to lack of input works is never occurred in the first stage and
blocking is never occurred in the second stage because the completed work is
always ejected from the stage. And the service times are mutually independent.
Now we formulate the work flow of this model. This flow is defined by the
output interval 0i , between the (j-~1)~th work and the j-th work in stage i,

?
which is represented by

(2.1 0 X, . *B, . (i=1,2; 3=1,2,3,...),

A
1,] 1,3"1 s ] 1,]

where X, ,, I, . and B, ., denote the service time for the j-th work in stage i,
1,] 113_1 1,]

the idling time occurred when stage i waits the j-th work in stage i after eject-
ing the (j-1)-th work from the stage and the blocking time occurred when the
service for the j-th work in stage i is completed but the work finds the buffer

. and B,
9J—1 1,]
are unknown random variables, but if we have the initial conditions that the

full and is held in the stage, respectively. In this equation Ii

numbers of work are independently counted in each stage and that stages 1 and 2
begin to operate the first work at the same time t=0 and then there is nc¢ in-
process work in the buffer, i.e. the j-th work in stage 1 is the (j+1)-tk work

=0, I

in stage 2 and Ii,O i,i-1

and B, , are given b
i,] g y

j=2 - j=1 +
2.2 I, ., ,=[Cz00, +%X ., )-750
(2.2) 2,5-1 = LCZ 0p ¥ X 5 9) - 200, 0]
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The Efficiency of Two-Stage Series Lines 323

j-M i=1 +
B =[xz O -(Cz o + X
1,j n=1 2,0 n=1 1,n 1,J)]
Il,j—l =0
Bay T 0

where the notation [Y]+ denotes
+
[Y}) = Max (0, Y)

and I, . =B, . =0 is given by the above assumption.
1,j-1 2,3 & Y P

3. The imbedded Markov chain
j=1
We consider the system states at the time t= JE 0 + X, -
=1 1,n 1,3

0, i.e. the
time just before the completion of service for the j-~th work in stage 1. These
states are defined by the state of the each stage and the number of in-process

works in the buffer and are represented as follows;
Sj(wl,W2|m): Stages 1 and 2 are in operating and m in-process works
are in the buffer (0<m<M)
Sj(wl,IZIO): Stage 1 is in operating and Stage 2 is in idling and
there is no in-process work in the buffer.

Furthermore the time in which the each state is occurred is given by the follow-

ing range of time. The state Sj(wl,IZfO) is occurred in

j i1 .
I 0 iJz 0 +X .ng 0 +[X, .-X .]+,
n=1 zan—n=1 l)n l’J ~n=] 2,1'1 l)J 2’3
the state sj(wl,w2|m) is occurred in
j-1-m j-1 j=-m
bX 0, <L 0 +X, .<L 0, (0<m<M-1),
n=1 07 =1 1,n 1,j n=1 s -
and the state sj(wl,w2|M) is occurred in
j=M + i-1 j=M
r 0 -[X, . .~ i < 0 +X, <z O .
n=] 2,0 [ 2,j-M 1,]1 =p=1 1,n 1,j n=1 2,n

In Fig. 3.1 the above relations are described.
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324 T. Iyama

State sj(wl,wle) sj(wl,wle-l) sj(wl,wzlm) Sj(wl,IZ]O)
By.3 "0y -m1 ] S, 5-m 1 125
O > p); © )Y € -~ t
Range |[«[X -X .]t<—»X - X — (X .-X ]f»
2,3-M "1,] 2,3-M+1 2,j-m 1,5 72,3
j-M j—-M+1 j
Time 770 T I3 0
n=1 2,n =1 2,n n=1 2,0
\
jom-1 j-m

i=-1
o: The time % O + X, .
n=1 l,ﬂ 13]

Fig. 3.2 The system state

In this figure I, ., B, ., and §, ., (0 <m=<M-1) denote the idling time occurred
2,37 71,3 2,j-m ==

immediately after the ejection of the j-th work in stage 2, the blocking time

occurred immediately after the completion of service for the j-th work in stage

1 and the rest part of service time for the (j-m)-th work which exists in stage

2 when the service for the j-th work in stage 1 is completed and also there are

m in-process works in the buffer, and they are given by

j-1 ] + +
1. . = 20, +X D-"r 0, 1 <[x, .-X, .]
2,3 [(Il=1 1,n 1,] n=1 Z,n _‘[ 1,j 2,3

i-M j=1 + +
B = 7 0 - z 0 +X ) < [X, . -X
1,j [n=l 2,n (nzl 1,n 1,3 Il 2,j-M 1’J]

Jzm izl +

§. . =1[% 0, ~-Ctr 0, +X . <X, . .
2,i-m [n=1 2,n (n=1 l,n 1,3)] 2,j-m

In this model the system state at any time does not form the Markov chain
j—1
but the state at JZ 0 +X. ,-0 forms the imbedded Markov chain, therefore
n=1 1,n 1,3
this transition probabilities are determined by the number of works for which

the services are completed in stage 2 during the service time Xl 417 In Table
3

3.1 the transition probabilities are represented. 1In this table 62 j-m is the
’

unknown random variable, but the p.d.f. hm(ﬁ) can be calculated as follows.

We define the completed part of the service time A o for the (j-m)-th

2,j"
work which exists in stage 2 when the (j+1)-th work in stage 1 is ejected, and
denote the p.d.f. by g (A). Then A, . and X_ |, are mutually independent and
m 2,j-m 2,j-m
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The Efficiency of Two-Stage Series Lines 325
Table 3.1 Transition probability
State at State at
jEIO +X. -0 JZ 0. 4x -0 Transition Probability
n=1 lsn 1,7 n=1 1l,n "1,3+1
sj(wl,wle) sj+1(wl,w21M) Prcb. (Xl,j+1;;X2,j+1—M)
M M
sj+l(w1,w2[m) Prcb. (n5m+1x2,j+l_n< xl,j+dﬁ;n§mx2’j+1_n)
M
S WLl | Preb (2 Xy gy o< Xy 540
sj (wl,wzlm,» sj+l(wl,w2!m+1) Prob. (Xl,j+1;62,j—m)
-1 9
(O;m;M 1 Sj+l(w1’ 72|m) Prob. (Gz,j—m<Xl,j+1;62,j-m+xz,j"m+l)
m
(0<gkzm-1) S., . (W W, lk Prob. (6. . + I X_ . <X, . <
== Jj+1°71 2' ) (2,_]—m n=k+1 Z,j*t1-n 1,j+1=
8 + I
2,j-m n=kx2,j+1—n)
m
. (8 z
SV Tp 0 [ Prab. (B o+ TRy <Xy )
sj(wl,Izlo, sj+1(wl,w2|0) Prob. (X 5% (40)
sj+l(w1,12l0) Prob. (Xy 441 <% 44y
]

8 n is given by

2,3-
G0 %o T Ky gem T P25

therefore hn(d) is represented by

{jgm(A)fZ(A+a)dA

Lj {?gm(A)fz(A+6)dAd6

(3.2) hm(d)

Azexp(—kzé),
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326 T. Ivama

where the p.d.f. fz(x) of the service time in stage 2 is
fz(x) = Azexp(—X2x)_

Consequently it is appeared that 62,j—m has the same p.d.f. with that of X2,j—m
and all the transition protabilities can be calculated and finally we can
estimate the system state probabilities in the steady state conditionm.

Now we estimate the steady state probabilities. These transition probabili-

ties can be rewritten by kj

m(kzx)i
(3.3) k., = é

o exp(—Azx) fl(x)dx

and the system state equations in the steady state condition are given by

(3.4) P(wl,wle) = {P(wl,wle) + P(wl,wle—l)}kO
P(wl,wle—l) = (B(W W, 1) + P(Wy, W, [M-1) Yy + P(W LW, [M-2) K,

P(wl,wle—Z) = {P(wl,wzln) + P(wl,wle—l)}k2 + P(wl,wzlm—z)k1

+ P(wl,wzlm-3)k0

P(W LW, [0) = {B(W W, (M) + P(W W, [M-1) ey + P, W, (-2, o

Foeee PO LW, 00k + P(W,,1,[0)k,

P(W),1,[0) = (P(u 1, [0 + (W, W, [M-1)) b

k. + P(W, W, [M-2) ¥ k,
i=M+1 * 1% i

=M 1

Foverinn.. +PW b b
P(hl,WZIO) igzki + P(wl,12|0) izlki

P(+): The steady state probability that the system state is S(-).

Therefore, if Pi denotes P(wl,wle—i) and P denotes P(W1,12f0), these equa-

M+1
tions are rewritten by using K(Z) and F(2)
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The Efficiency of Two-Stage Series Lines 327

(3.5) K(Z)

]

i ~8
=~
N

F(z) = T P2,

where Pi=0 (i>M+2), and we have

1-Z M+

-p . 1-Z 2
(3.6) F(2) = By Y2 B,

where H(Z) is the power series of Z.

If the Laplace transform of fl(x) is represented by Ul(s), we have
R(Z) = Ul(Xz(l—Z)),
so the above equation is

1-7 M+2
s "1-z/v 0, (1-2) +2 7 H(2).

(3.7 F(z) =

In this equation the steady state probabilities Pi (01 <M+l) are given by the

coefficient of Z1 and expressed in terms of P, if Ul(-) can be expanded in a

0
power series. Moreover the root of the equation 1—Z/U1(X2(l—z))=0 has always

Z=1 and if we denote the other roots by 1/ai, the equation (3.7) is

1 M2
(3.8) F(Z) = P (-, 2 (0,2 s 7 H(z).
4. Various line characters
First we estimate the idling time 12,j+1 and the b}giklng time Bl,j+l' In
this model B. . is occurred when the system state at "z 0. +X_  .-0 is
1,j+1 . a=1 1,n 1,j
]
,w2|M) at £ 0 X -0 or when the state
n=

sj(wl,w2|M) and changes to S (W

+
411 1 1, 1,341

is Sj(wl,W2|M—l) and changes to Sj+1(wl,W2|M), and it is not occurred in the
other cases. Therefore Bl,j+1 is represented by
(4.1) B - X - X 17 or

: 1,341 2,i-M+1 1,j+1°  °

_ +
=08 g1 T X, 5e1) Oof

=0.

Consequently the p.d.f. wB(x) (x>0) for the blocking time B is given by

1,i+1
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328 T. Iyama

(4.2) wy (x) = P, (wl,wle)-PT[sj (wl,wz|M)+sj+l(wl,w2|M)].

f(x)
> X
2,§-M1="1, j+1

Prob. (X )
+ P A [M-1) -PT[Sj (W, W, l1~4—1)+sj+1(wl,w2 M) ].

£(x)
) 31 2% 541

Prob. )

j=1
P.(*): The probability that the system state at "L 0, +X, -0 is S, (*)
] n=1 L,n 1,] J

PT[Sj(-)+Sj+1(-)]: The transition probability that the system state

changes from Sj(') to Sj+1(')

B o £ (E, () dy.

j-1
On the other hand I. . is occurred when the system state at % 0 +X, -0
2,3+1 g n=1 1,0 "1,j
J
. W - h 2
is Sj( l,W2|M) and changes to sj+1(wl,12|0) at nglol,n+xl,j+l 0, when the state

is sj(wl,wztm) (0 <m<M-1) and changes to Sj+l(wl’I ]0) or when the state is

Sj(wl,IZIO) and changes to Sj+l(wl,12[0), and it is not occurred in the other

cases. Therefore it is represented by

M +
(4.3) Loger = By g = Z%2 qe1n) o7
m
+
(X, 500 7 €2,5m 7 E %2, 5410)  OF
[ 1t oor

X541 " %50

Consequently the p.d.f. wI(x) (x>0) for the idling time I is given by

2,j+1
(46.4) Wi (x) = P, (wl,wzlm)-PT[sj(wl,wz|M)+sj+1(wl,12l0)].
Epprg ()
M
Prob. (X )

1,5+ 20%2,5+1-n

M-1
+ mEOPj MW, [m) 'PT[Sj W,,W, |m)-—>Sj+l(Wl,IZ [0)1.
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ot (0)

m

X1,5417 62, j-n" nEo%2, j41-n

Prob. (

+ Pj(w1,12|0)-PT[Sj(w 1,]0)»s, 5|01

+l l’
fl(X) o
Prob. (Xl,j+l>x2,j+l)’
E: 1, ™) (v
m . o 2 l Y,

(m)

where f2 (x) denotes the m times convolution function of fz(x). From the Table

3.1 we have :he next equalities, too

(4.5) Pps, (W)W |M)+s W,[M)] = Prob. Xy aeer 2% 541
PT[sj(wl,wzlm—1)+s L 2|M)] = Prob. (éz,j—M+1;Xl,j+l)
M
Po[S (W)W W, [M)-s 541 I1,[0)] = Prob. (xl’j+1>n£0x2’j+l_n)
P m
T[sj(w lm) ->$ +l(wl 12|0); = Prob. (Xl’j+l:>62’j_m+ nonz’jﬂ_n)

PT[Sj(wl,12|0) +S, (W 12|0)|

54170 Prob. (

Xl,j+l>x2,j+l)’

so that in the steady state condition {4.2) and (4.4) are rewritten by

(4.6) wB(x) = (P0+Pl)-f(x)

M+1

vpx) = (P0+P1)'fM+1(x)+m£2}me+2—m(x)'

In this model the efficiency p is represented by

(4.7) p = =

where ii’ ﬁl and iZ denote the mean operation time in stage i, the mean blocking
time in stage 1 and the mean idling time in stage 2. And the number of in-

process works distribution at the time just before the completion of service in
stage 1 is given by Pi(O;i;PHl) and the mean number N of the in-process works

is given by
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_ M M
(4.8) N = m?jomoP(wl,Wz|m) = Zom Py o

5. The dual model
In this section we discuss the dual model in which the service time in each
stage is exchanged.

, ) . 3 .
At first we consider the system states occurred at the time t= 2102 n—O, i.e.
n= >

the time just before the ejection of the j~th work in stage 2. These states are

defined by

s§(wl,w2|m): Stages 1 and 2 are in operating and m in-process works are in
the buffer (0 <m<M)
S;(Bl,wle): Stage 1 is in blocking, Stage 2 is in operating and M in-

process works are in the buffer,

and the relation between the system states and the range of time in which each

state is occurred are described in Fig. 5.1. In this figure I; It Bf 40 and
H] 3
6? 4m (1<m<M) denote the idling time occurred immediately after the ejection
3

of the j-th work in stage 2, the blocking time occurred immediately after the
completion of service for the (j+M)-th work in stage 1 and the rest part of
service time for the (j4m)-th work which exists in stage 1 when the service for
the j-th work in stage 2 is completed and also there are m in-process works in

the buffer.

* % (W * *
State | s* (wl,wz|0) 53 (W1, W, 1) sj(wl,wzlm) Sj(Bl,WZIM)
* * — * *
5. "Gl,jﬂ f_ 1, jm ‘_Bl,jm‘l
é & f1—o f o ot
Range [X. .-X ]+><—}i — -~ X ] -[X_ .-X ]i
1,7 2,7 1,3+1 1,j+m 2,3 "1,34M
. 4 2y L
» : +
Time RS B W T P BRNC RS WPLS B FeY
Ir 0, +x Tl
201,07, 50 221 P10 1,54

j
o: The time I O
n=1 2,n

Fig. 5.1 The system state
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In this model the state at L O

these transition probabilities are determined by the number of works for which
the services are completed in stage 1 during the service time X

5.1 these probabilities are represented,

The Efficiency of T'wo-Stage Series Lines

-0 forms the imbedded Markov chain and

n=1 2,1’1

2,j+1°

*
where Gl,j+m

the p.d.f. for the service time in stage 1 and it is represented by

has the same p.d.f. with

x( = -
(5.1) flux) Alexp( xlx).
Table 5.1 Transition probability
State at State at
3 jit .
L0 -0 Lo -0 Transition Probability
n=1 2,0 n=1 2,0

S%(H,,W, |0)

s;(wl,wzim)

(lzm<M)

(m+l <k <M)

53,*(31,w2 |M)

5%, 1054, [0)

(W, W, [m)

*
Sj+l 1’
*
53 LB, 1)

% -
Sj l(Wl,w2|m 1)

*
5341 (W) »W, | m)

*

53 MO
* W M
8341y 21

S* (W

PIRALELY) )

*
$541(B oW, 0

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

G5 2%, 541)

n m+1

L X, . <X, . < I X, .
(n=1 1,j+n  "2,j4l=4=1 1,j+n)

M+1
(X

X )
n=1 2

1,3+n = %2, 341

(X

fla

§%
1.3 )

2,3+1 j+m

%
Of 3m <%, 541

A

*
81, j4m 21, j4mtl

k

§* + I X, . <X, . =
( n=nrt1 1,j+n 2,jt1 =

1,j+m
k+1
O am T I 1%, 5
M+1
(5%

Lo+ oz XL <X, L)
1,j+m n=m+1 1,j+n 2

i+l

(X )

2,341 2%, jemk1

(X )

1,i061 < %2, 541

)
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From this Table we can estimate the steady state probabilities P*(wl,wzlm)
and P*(Bl,wle), and if we denote

(5.2) P} = P*(wl,wzli) (0<igM)
P¥i = P*(Bl,wle)
and
(5.3) Fe(z) = % P 2%,
i=0 1

we have the following system equation, where P%=0 (1>M+2),

1-2Z zM+2 H(Z)

(5.4) F*(2) = PS' 1—z/U§(Al(1—Z)) +

Ug(s): Laplace transform in terms of fg(x).
In the dual models we have

U5, (1-2)) = U, (3, (1-2))

Xl = XZ,

so the following equalities are obtained

(5.5) P* = P,
1 1
and
(5.6) P*(wl,wzlm) = P(Wl,WZIM—m) (0 <m<M)

P*(Bl,wle) = P(wl,12|0).

PN . * R . % .
The idling time 12,j+% and the blocking time Bl,j+M+l are estimated by
using the system state at JZ 02 n—O as follows. The idling time is occurred
n=1 <>

when the system state is s;(wl,wle) and changes to s#+l<wl,w2|0) or when the
. % % R
system state is sj(wl,wzll) and changes to sj+1(wl,w2 0), and it is not occurred

in the other cases. Therefore 13 41 is represented by
b
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+

* = -
G115 T By gl oF
+
= [6% -
(63, 5417%2, 542 T
= 0.
. % . *
And the blocking time Bl,j+M+l is occurred when the system state is Sj (wl’WZIO)

and changes to S§+1(B1,W2|M), when the state is s;s(wl,wzlm) (1 <m<M) and changes
* % * -
to Sj+l(B1,W2]M) or when the state is Sj (Bl’WZIM) and changes to sj+1(Bl’w2[M)’

and it is not occurred in the other cases, therefore it is represented by

M+1 +

% = _
(5.8) B [XZ,j+l nzlxl,j-'-n] or

1, M+l

MHL +

X, .,.-6% - I X, .
[ 2,3+1 1,j4m n=m+1 l,J+r1]

or

4

= [X ] or

2,5+l X1,j+M+1

Therefore by using the same procedure in Section 4 the idling time distribution
w%(x) (x>0) and the blocking time distribution wg(x) (x>0) in the steady state

condition are given by

(5.9) W’I‘(x) = (P(’)‘ + Pf)'f*(x)
* (P + Px)-fx M k.
wh(x) = (PF + PR -£5 (%) + R B (9

Fr(x): Lff;(y)ff(y+x)dy

Bx(x): [:f’i(m) (y) £5(y+x) dy,

where fi(m) (x) denotes the m times convolution function of ff(x). From (4.6),

(5.5) and (5.9) we have the following equalities,

(5.10) w’I‘(x) WB(X)

wﬁ(x) wI(x) .

Finally the mean number N* of the in-process works is represented by

- M
(5.11) N* = mEOm'P*(Wl,Wzlm) + M'P*(Bl,W2|M)
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and from (4.8), (5.6) and (5.11) we have

(5.12) N* = M - N,

6. Conclusion

We have discussed the procedure to estimate the effects of the design
factors in the two-stage series lines in which the first stage has the arbitrary
service time. And the various line characters are obtained and the relations

between the dual models are presented.

times for the various two-stage series lines in Table 6.1 and 2.

Table 6.1 Numerical results of B

1

For example, we represent the mean idling

for the balancing line (A2=1.0)

Service Time Distribution fj(x)

M K-Erlang Uniform Constant

K=1 K=2 K=4 K=5 0.5zx<1.5 x=1.0
0 | 0.5000 0.4444 0.4096 0.4019 0. 3834 0.3679
1 | 0.3333 0.2807 0.2497 0.2428 0.2268 0.2141
2 | 0.2500 0.2045 0.1785 0.1731 0.1600 0.1500
3 ] 0.2000 0.1607 0.1389 0.1343 0.1235 0.1154
4 |1 0.1667 0.1324 0.1136 0.1098 0.1006 0.0938
5 | 0.1429 0.1125 0.0962 0.0928 0.0848 0.0790
6 [ 0.1250 0.0978 0.0833 0.0804 0.0734 0.0682
7 1 0.1111  0.08:5 0.0735 0.0709 0.0646 0.0600
8 | 0.1000 0.0776 0.0658 0.0634 0.0577 0.0536
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Table 6.2 Numerical results of B

The Efficiency of Two-Stage Series Lines

1
Service Time Distribution fj(x)
M K-Erlang Uniform Constant
K=1 K=2 K=4 K=5 1.0<x<3.0 x=2.0
0 | 0.3333 0.2500 0.1975 0.1859 0.1590 0.1353
1 | 0.1429 0.0833 0.0530 0.0471 0.0346 0.0251
2 | 0.0667 0.0303 0.0154 0.0129 0.0081 0.0050
3 | 0.0323 0.0114 0.0046 0.0036 0.0019 0.0010
4 + 0.0159 0.0043 0.0014 0.0010 0.0005 0.0002
5 | 0.0079 0.0016 0.0004 0.0003 0.0001
6 | 0.0039 0.0006 0.0001 0.0001
7 | 0.0020 0.0002
8 | 0.0010 0.0001
A,: The operation rate in stage i
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