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Abstract The problem in which a firm has to meet the c.emand for the services of several distinct but related equip-

ment over a planning horizon is considered. An equipment of one type can be converted into an equipment of the other 

type at some costs. Hence demands may be met by direct capacity installation (expansion) or by converSiLQn from 

another type of eqUl.pment. Capacity installation and conversion costs are assumed to be concave reflecting possible 

economies of scale in these activities. The objective is to find a policy of capacity installations and conversions between 

the types of equipment such that the present value of th<~ total installation and conversion costs is minimized. The 

problem is formulated and given a network representation. A dynamic programming algorithm, an extension and refine· 

ment to that developed in [ 2] , is then developed which can be used to solve the problem efficiently when th€' number 

of distinct equipment is not too large. 

1. I ntroducti on 

The problem in which a firm has to meet the demand for two types of 

services with two types of equipment available, an expensive general-purpose 

equipment and a cheaper specialized equi.pment which could provide only on'~ of 

the services, has been studied (but not solved) in [6J. The objective of the 

problem ~s to determine the policy which minimizes the present value of 

installation (expansion) costs over an :~nfinite horizon. In [2], it is shown 

that a discrete time version of this problem can be solved efficiently using 

a dynamic programming algorithm based on a derived recursive relation. An 

important generalization of this problem of capacity expansion with 

specialization is the case where a firm has to meet the demand for the 

services of several distinct but related equipment. An equipment of one type 

can be converted into an equipment of another type at some costs. Practical 

situations in which this problem of capacity installation with conversion 
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186 co. Fong 

possibility is applicable are many and can be found especially in the areas of 

transportation, manufacturing and connnunications. An example is the case of a 

public railway administration which has to meet the demand for passenger and 

freight services over a planning horizon. A passenger car can be converted 

into a freight car at SOtll€ costs and vice versa. The objective of the 

organization is to determine a policy of capacity installations and 

conversions such that the discounted installation and conversion costs are 

minimized over the planning horizon. Another example is the case of a firm 

which uses a number of related manufacturing processes. The machinery of one 

process can be converted into the machinery of another process with some 

adjustment and rearrangement. Its objective is again to determine a policy of 

capacity installations anc~ (if necessary) conversions such that the total 

discounted cost is minimized. In this paper, we formulate the capacity 

installation with conversion possibility problem into a finite discrete time 

model with concave installation and conversion cost functions reflecting fixed 

costs and economies of scale in these activities. Although the problem so 

formulated is quite different from the inventory models of [IOJ, [IIJ, [12J 
and the one region and the two region capacity expansion IOOdel considerE~d in 

[7J and [2J respectively, we show that an extension of the approaches used in 

these references (in particular that of [2]) can be used to solve the problem 

efficiently. 

In the next section we provide a statement and formulation of the 

problem. A graphic representation of the problem and some properties of the 

extreme points are given in §3. The derived extreme point properties are 

utilized in §4 to derive an efficient dynamic programming algorithm to solve 

the problem. A numerical example illustrating the application of the 

algorithm is given in §5. In the last section we show how the problem ean be 

extended to incorporate initial capacities, backlogging (or short-term 

leasing) of capacities, and arbitrary and not necessarily non-decreasing 

demands. 

2. Problem Formulation 

2.1. Statement of problem 
The problem considered in this paper can be stated formally as follows: 

A firm has to satisfy the demand for the service of each of a number of 

equipment over a discrete finite time horizon. The demand for each equipment 

service is a known non-decreasing function of time. It must also be satisfied 
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Installation of Several Related Equipment 187 

exac tly (i.e. no inventory or backlogging of the se1'vices are allowed) at the 

end of each p'=riod by direct capacity installation or by conversion from the 

other type of equipment. It should be pointed out that for service indus tries 

(e.g. the transport industry) to which this model is particularly applicable, 

this assumption is not restrictive since it is not possible to backlog or hold 

as inventory the services provided by the equipment [9, pp. 329]. The initial 

capacity of each equipment is assumed zero and capacity may be installed or 

converted at the beginning of each period. It is assumed that a unit of 

capacity installed or converted in any time period has a unit service 

capability until the end of the time horizon. Capacity installation and 

conversion costs are assumed to be concave, reflecting possible fixed costs 

and economies of scale in these activities. The problem is to find a policy 

of capacity installations and conversions between the different types of 

equipment such that the present value of the total installation and conversion 

costs is minimized. 

Al though the focus of this paper is on the problem so stated, in §6 'ioTe 

discuss some important extensions to the problem (e .g. when there are initial 

capacities or when the demands are not necessarily non-decreasing) and show 

how these could be handled as well. 

2.2. Mathematical formulation 
We begin the formulation process b:r defining 

,] = U, 2, ••. n}, the sel: of types of equipment where n is 

the number of equipment type. 

J. = J - {i} where i E J. 
7.-

K U, 2, T}, the se:t of time periods where T is the 

end of the planning ho:cizon. 

For i E J, t E K define 

1'it = the known increment in demand for type i equipment during 

period t. Demand is non-decreasing, so l' it ~ O. Further, 

demand for each type oE equipment is assumed to be measured 

in the same units. 

Xit the amount of capacity of type i equipment installed in 

period t. Since capal:i ty levels can only increase we have 

Xit ~ O. 

the amount of capacity of type 

type j(j '" i) in period t. 

i equipment converted to 

Obviously we have y, 't ~ O. 
1-J 
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Tit idle or excess capacity in type i equipment in period t. 

In this formulation, for brevity, we do not permit 

backlogging (or short-term leasing) of capacity and hence 

Tit ~ O. In §6 we show how this assumption can be relaxed. 

the cost of installing Xit units of type i equipment ir. 

time t. 

H. 't(Y' 't) = the cost of converting 
1.-J 1.-J 

units of type i equipment to 

type j(j 1 1) in time 

The functions C
it

(·) and H
ijt

(') are assumed to be concave, non­

negative and non-decreasing in the interval [0, a), and are further assumed 

to be expressed in present value form. We also assumed that the cost of 

maintaining idle capacity is negligible and can be ignored. For notational 

convenience we let 

R.(s, t) = 
1.-

t 
E 

T=S 

1'. 
1.-T 

and R(s, t) = E Ri(s, t). 
iEJ 

The problem of capacity installation and conversion can now be formulated 

as problem P: 

Minimize 

( 1) E E Cit(xit ) + E E { E H. 't(Y' 't)} 
tEK iEJ tEK iEJ jEJ, 1.-J 1.-J 

1.-

subject to constraints 

(2) Xit - E Y' 't + E Y' 't + Tit- 1 - Tit 1'it for t E K, i E J 
jEJ, 1.-J jEJ, J1.-

1.- 1.-

( 3) TiO 0 for i E J 

(4) TiT 0 for i E J 

(5) Xit' Yit' Tit ~ 0 for i E J, t E K. 

Objective function (1) determines the minimum total present value of 

capacity installation and conversion costs. Constraint (2) represents the 

capacity balance equation of type i equipment at each time period. It: 

expresses the condition that the change in excess capacity level of type i 

equipment from period t - 1 to t (i.e. Tit - T
it

- 1) is equal to the 

capacity increment Xit plus capacity converted into type i equipment: from 

other types of equipment (i.e. E Y"t) less the capacity converted into 
jEJ, J1.-

1.-

the other types of equipment (i.e. E Y, 't) and demand increment 1'it' 
jEJ. 1.-J 

1.-

Constraints (3) and (4) reflect the initial and terminal conditions 

respectively of the capacity states. 
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Let G represents the constraint s.et (2) - (5). G is a closed convex 

set bounded from below and the cost functions are defined such that P has a 

finite minimum. It is well-known [4] that an optimal solution of a concave 

function over a closed convex set occun. at an extreme point of the constraint 

set. Since objective function (1) is a concave function and P has a finite 

minimum, an optimal solution to problem P, therefore, occurs at an extreme 

point of G. We next derive some properties of extreme points of G whieh 

can be used to develop an efficient dync:mic programming algorithm for 

solving the problem. 

3. Properties of Extreme Point 

3.1. Graphic representation 

It can b,~ easily be verified that G has the structure of a node-are 

incidence matrix which gives rise to thE' graphic representation as presented 

in Figure 1, for the case where n = 2 and T = ;5. 

~;ure 1: Graphic Representation for P with n 2 and T = 3. 
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Each constraint in (2) is represented by flows through a node mit:. The 

node mo represents the redundant equation obtained by summing up (2) over 

t £ K and i £ J. Follo1Ning the terminology of [2 J, we shall call an arc 

active if the flow along it is positive. An arc that is not active (i.e. have 

zero flow) is called inactive. An extreme flow (extreme point) of G is 

defined here as a feasibh! flow whose active arcs contain no cycle [I J, [5 J 
implying that there exists an optimal solution to P whose basic variables 

(active arcs) do not contain a cycle. 

The graph representing G is a single-source multi-sink network. From 

the results of [12J we can derive the following important properties to an 

extreme point of P. For completeness we also provide a simple proof for the 

properties. 

(7a) 

(7b) 

(lc) 

(ld) 

Lemma 1. Every extreme point of G satisfies 

Yjit 

I it- 1 

Ykit 

o for i £ J, t £ K 

o for i ~ j; i, j £ J, t £ K 

o for i ~ j; i, j £ J, t £ K 

o for j ~ k; i, j, k £ J, t £ K 

Proof: Consider (7a). Ii t-l > 0 implies that there exists a path of , 
active arcs linking node mit- 1 (via some nodes m

jT
, T £ {l, •.. , t - l}, 

j £ J) to the only source node moo If Xit > 0 then we have traced a cycle 

of active arcs which include arcs (mit-
1

, mit) and (mo' mit). This proves 

that both 

Properties 

and Ii,t-l cannot be positive in an extreme point of 

to (7d) can similarly be proved. 

G. 

The graph G representing problem P is different from the network V 

representing the problem considered in [2J. One major difference is that the 

network V of [2J is a lIlulti-source multi-sink network, whereas the graph G 

of problem P is a single-source multi-sink network. It is this difference 

which enables the properties of Lemma I to be developed for problem P" 

whereas no properties siuJlar to Lemma I can be derived for the problem 

considered in [2]. Another major difference is that graph G is applicable 

for problem P with any number of types of equipment, whereas the network V 

of [2J is generally applicable only when the number of regions is two. l 

IThe network V of [2] can be extended to handle more than two producing 
regions, but only under the res tric ti ve assumption that the transport eos t into 
a region is independent of the supply source (see §5.6 of [2]). 
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We can characterize an extreme point of G by defining n + 1 groups of 

states at each. period t for t £ K + {O}: 

Group 0: Iit 0 for i £ J. 

Group i for i £ J: Iit 0, Ijt ~ 0 for j £ J i · 

Group 0 contains only one state. Any state of Group i for i £ J can be 

described by a (n - l)-dimensional variable. Further, the maximum feasible 

value of Iit in a state of group i at time t is R(t + 1, T) • This can 

be eas ily verified from Figure I. Representation of the possible levels of 

I
it

, when at IOOst only n - 1 of them can be,positive, by states of groups 

0, and i for i £ J provides a useful way of developing a dynamic 

programming algorithm which is discussed next. 

4. A Dynamic Programming Algorithm 

4.1. Recursive relations 
States of groups 0 and i for i £ J, however, do not completely 

exhaust all the possibilities since extreme points of G can also satisfy 

(7) .71 .Iit # 0 for t £ K - {T}. 
1-£J 

Equation (7) is comparable, though obviously not similar, to (16) of [2] 

and a recursive relationship similar to (17) and (18) of [2] can be developed 

to solve problem P. For clarity, we shall develop the recursive relationship 

for solving problem P here, and then point out the differences between the 

developed relationship and equations (17) and (18) of [2]. 

In the dynamic programming framework, let the time periods be stages and 

a be the (n _. l)-dimensional state variable corresponding to the capacity 

levels associated with the states of group 0, or i for i £ J. From §3.1 

we know that at period t group 0 has only one value while group i has 
n-1 

(R(t + 1, T) + 1) levels each. Thus at each t there are 

Pt{=n(R(t + 1, T) + 1)n-1 + 1} possible values for a, with each value of a 

corresponding uniquely to a value of Ijt for j £ J
i 

with Iit = O. 

Let ft(c~) be the cost of optimal capacity installation and conversion 

for periods t; + 1, ... , T, with Ijt for 

specified by a £ U, ... , Pt}' Let a (a, 
uV 

an optimal policy over periods u + 1 to V 

I. 
1-V 

for 

for i £ J 

t = u +}, 

are specified by a and 

... , V - 1. We have: 

j £ J. (with Iit = 0) uniquely 
1-

B) denote the cost of following 

given that I. for i £ J and 
1-U 

respectively and 71 Iit # 0 
i£J 
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(8) 

(9) 

e.o. Fong 

1) o 

Min {Min {c (a, 8) + f v (8)}} 
u<v~T 1~8~P uV 

V 

for u = T - 1, T - 2 ..• 0 and 0.=1, ••• Pu 
where Po PT = 1. 

Recursive relations (8) and (9) represent a (n - 1)-dimensional state 

variable dynamic programming relationship and can be represented by an acyclic 

network with vertices a = 1, 2, .•. , Pt for each t E K + {O}. In this 

acyclic network each vertex a E {1, 2, ..• Pu} is connected to another 

vertex 8 E {1, •.. , Pv } v > u by a directed edge (a, 8) with cost 

cuv(o., 8). An optimal solution to P is given by fo(o. = 1) and is 

represented by the shortest path between vertex 0.(=1) in period 0 and 

vertex 8(=1) in period T. Once the costs cu,v(o., 8) for all the directed 

edges in the acyclic network are computed, fo(o. = 1) can be derived easily 

using a shortest route algorithm [3]. Since the total number of states at 
n-1 

each stage t is n(R(t + 1, T) + 1) + 1, the number of computations per 

stage is of the order of (R (1 + t, T» (n-1) (n-1). For n = 3, the number of 

computations per stage is of the order of (R(l + t, T»4 which is feasible 

on present large computers [8]. For n > 3, it will be demonstrated in §4.4 

that when the demand functions can be assumed to be linear, considerable 

reduction on the number of (n - l)-dimensional state variables can be 

achieved, making recursive relations (8) and (9) still tractable when n is 

not too large (e.g. for n not more than 4 or 5). 

For any value of n, however, for the procedure to be efficient, the 

subproblems for deriving cuv(o., 8) must be soluble easily. We shall now 

show that to be so for the case n = 2. For the more general case where 

n > 2, we shall also show that though the subproblems are slightly more 

complicated, they can still be solved efficiently by the approach indieated 

for n = 2. 

4.2. Subproblems 
In the calculations in a subproblem to derive cu,v(o., 8) for n = 2 

three· cases can be clearly distinguished, with a corresponding to the states 

of each of the three groups (as classified in § 3.1) falling under one case. 

Case (0) is the case where the a corresponds the state of group O. 

Here we have I 1u = I 2u =, O. Since (7) is satisfied for periods u + 1 to 

V - 1, by Lemma 1 (properties (7a) and (7c» we have: 
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Yijt; = Xit = 0 for i ,;, j; i, j e: J, t e: {u + 2, ... , v} 

This implies only Yijt,u+l and xiu+l for i ,;, j; i, j e: J can be non-

zero. Hence, we now need to evaluate or.ly the three remaining possibilities 

where there can be no cycle, i.e. 

a. X1u+1 = R/u + 1, v) + I 1v ; x2u+l R2(u + 1, v) + I 2V 

with Y 12,u+l = Y 21, u+l 0 

b. xlu+l R(u + 1, v) + Ill' + I 2v ; I) 
-' 12, u+ 1 = R. (u 

2 
+ 1, v) + I 2v 

with x2u+1 = Y21,u+1 = 0 

c. x2u+1 R(u + 1, v) + I 1v + I 2V ; ~121, u+l = R1(U + 1, v) + I 1v 

with x1u+1 Y 12,u+l = o. 
Since S speeifies I 1v (and I 2), i_n each of the three situations the 

value of the nonzero variables are spec:~fied uniquely and the costs are, 

therefore, trivially obtained. The 

In case (i) Cl. corresponds to 

minimum of the three 

a sJ:ate of group 1. 

costs 

Here 

is 

we 

cuv(CI., S). 

have I 2u > 0, 

I 1u = o. Again by Letmna I we have 

Y12t X2t 0 for t e: {u + 1, v} 

Y21t .. Xlt 0 for t e: {u + 2, vl. 

But xlu+l Y21,u+1. = 0 by Letmna (p roperty (7b» • 

Thus for extreme flow and feasibility WI~ must have only one of two 

possibilities, i.e. 

a. I 2u R~(u + 1, 
" 

v) + I 2v with x1u+1 R1(u + 1, v) + I . 
lV' Y21 ,u+l 0 

or 

b. I 2u R(u + 1, v) + I + I 
2v lv with Y 21, u+l R1(u + 1, v) + I • 

lV' 

xlu+l =, O. 

In either case the values of the nonzero variables are uniquely specified. The 

minimum cost (cuv(a., S» can thus be obtained easily. It should be noted 

that when I~:u does not equal the two values specified, the flow is non-­

extreme and hence, in these cases cuv(CI., S) can be set arbitrarily high. 

Case (i'O is the case where Cl. corresponds to a state of group 2. This 

is similar to case (i) and need not be elaborated further. 

For the more general case where n > 2, the approach indicated can also 

be applied to derive cuv(CI., S) efficiently. For example, when n = 3, we 
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have four cases i.e. case, (0) where I 1u =I2u =I3u = 0, case (i) where 

I 1U = 0, I 2u > 0, I3u > 0, 

and case (Hi) where I 1u > 0, 

case (ii) where I 1u > 0, I 2u = 0, I3u > ° 
I 2u > 0, I3u = O. For case (0) Lemma 1 

implies only Yij,u+1 and xiu+1 can be nonzero. In this case we need to 

evaluate only 16 possibilities,2 each with the nonzero variables uniquely 

specified. For case (i) the number of possibilities that need to be evaluated 

depends on whether I 2u (or I 3u) is zero or positive. Assuming that 

I 1u = 0, I 2u > 0 and I,)u> 0, we now need to evaluate only three 

possibilities. 3 However if I 1u = 0, I 2u = 0 and I3u> 0, we now need to 

evaluate seven possibilities,4 each with the nonzero variables uniquely 

specified. Cases (ii) and (iii) are similar to case (i) and can be analysed 

in the same manner. 

Having shown that C' (ex 8) 
uv ' 

can be trivially derived, we are thus 

justified to say that recursive relations (8) and (9) provide an efficient 

algorithm for solving problem P with n not more than 3. 

4.3. Remarks 

For n > 2, recursive relations (8) and (9) are entirely different from 

recursive relations (17) and (18) of [2J, since the latter cannot be extended 

to consider the general case of more than two producing regions. Even for the 

special case of n = 2, although in the main problem recursive relations (9) 

and (9) are similar to recursive relations (17) and (18) of [2], an important 

difference exists between the two sets of relations in terms of the solution 

philosophy used and the computational efforts required for solving the 

2The possibilities are (i) x1u+1 > 0, x 2u+1 > 0, x3u+1 > 0, (H) to (vii) 

with two of three capacity variables nonzero and one of three conversion 
variables nonzero (e.g. x 1u+1 > 0, x 2u+1 > 0 and Y13,u+1 > 0) and (viii) 

to (xvi) with one capacity variable and two conversion variables nonzero (e.g. 
x1u+1 > 0 Y12,u+1 > 0 and Y13,u+1 > 0). 

3The three possibilities are (i) x 1u+1 > O. (H) Y21.u+l > 0 and 
( iH) 0 Y 31, u+1 > • 

4The seven possibilities are (i) x 1u+1 > O. x 2u+1 > O. (ii) to (v) with 

either 

x > 
1u+1 

x1u+1 
o and 

nonzero but two 
Y32 ,u+1 > 0). 

or x 2u+1 nonzero and one conversion variable nonzero (e.g. 

Y32.u+1 > 0) and (vi) to (vii) with no capacity variable 

conversion variables nonzero (e.g. Y31.u+1 > 0 and 
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subproblems. As demonstrated in §4.2 for recursive relations (8) and (9) in 

the case where n = 2, each cuv(a, S) can be derived after merely three 

(case 0) or two (in case (i) or (ii» sets of arithmetic operations. However, 

for recursive relations (17) and (18) of [2] each d (e,~) can only be 
u.v 

derived after (v - (u + 1»2 arithmetic operations (see §4.1 of [2]). 

Hence, the computational efforts required to solve the subproblems in 

recursive relations (8) and (9) when n = 2 is trivial and constant. whereas 

the computational efforts required to solve the subproblems in recursive 

relations of (17) and (18) of [2] is a squa1'e function of v and u. 

4.4. Simplifications 

If the de,mand increments 1'it are all even integers (including zero). we 

can as in [2] restrict the value of the state variable a in the main problem 

to those assoc:iated with only even values (including zero) of I it . The 

reader is referred to [2] for the proof. 

Another important simplification arises when the demand for each type of 

equipment can be assumed to grow linearly. i.e. 1'it = 1'i for i E J. t c K. 

This simplifieation is presented as the following Lemma. 

Lemma 2. For a problein P where t.he demand grows linearly, i.e. 

1'it = 1'i for i E J. t E K. at any period t we can in the main problem 

restrict the value of a to those associated with the values of Ijt for 

J' £: J. (i.e. group i states) which are partial sums of 1'. for i E J as 
'1. <-

follows: 

( 10) Group i: a .1' . 
<- <-

for j E J. 
<-

and 

whe re a. E {D. 1. 2. •.. T - t}. 
<-

Proof: Condition (10) follows from the concept of exact requirement 

introduced in [11]. This condition fol'.ows from the rationale that Ijt > 0 

with implies that in an extreme flow of G there must exist some 

subset of nodes 

... , 'k E {t + 1, 

total demand that 

{mo • mn •••• , mn } where 9,1' •••• 9,k E J. ']' 
"'0 '0 "'1'1 "'Ie'k 

...• T} and 9, j" = t + 1 with a corresponding o 0 
can be met exactly by idle capacity I jt . If such a set does 

not exist, then it implies that there exists at least one node m9" 9, E J, 

, £: {t + 1, ... , T} whose associated demand is partially met from idle 

capacity Ijt and partially from another capacity installation xpq ' P E J, 

q £: U. 2 • ... , ,} leading to the existence of a cycle of active arcs in G. 

Lemma 2 effectively reduces the values of a in the main problem, at any 

period t, from n(R(t + 1, T) + l)n-J + 1 to approximately neT _ t)n(n-l) . 
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Since at each stage t the number of levels of Iit that needs to be 

enuJrerated is approxima te ly (T - t)n, this implies that the total number of 

distinct (n - 1)-state variable is about neT - t)n(n-1) . This is an 

important reduction sincE' it reduces the computational effort from one that is 

dependent on the demand parameters (i.e. 1" it) to one that is dependent on 

the planning horizon (i.E. T), which is typically a small number between 10 

to 20 years. Hence when T is about 10 years, the problem may be tractable 

on large computers when n is not more than 4 or 5. It should be noted 

that a simplification similar to Lemma 2 cannot be derived for the problem 

considered in [2J. 

A similar version of condition (10) can also be derived for problem P 

in which are arbi trary and non-nega ti ve . However, the number of 

distinct values which the partial sums of 1"it for i € J and t € K can 

assuJre would be so many that it is, in this case, more efficient to enuJrerate 

the values of Ijt for 

R(t + 1, T) for t € K. 

j E: J. 
1-

(for states of group 

4.5. Conventional dynamic programming recursion 

i) from 1 to 

Problem P can also be solved using the conventional dynamic progranmring 

recursion with time periods as stages and excess capacities of the n types 

of equipment as n-diJrensional state variables. The computational effort in 

using this recursion, however, is much greater than recursive relations (8) 

and (9). The main computational saving in using recursions (8) and (9) is 

that the state diJrensionality in the main problem has been reduced to n - 1, 

with easy subproblems for the derivation of cuv(a, s). 

5. A Numerical Example 

In this section, the application of recursive relations (8) and (9) is 

illustrated through solving a numerical example. 

Consider a problem P with n = 2 and T = 3 as represented by 

Figure I, with 1"it = 2 for i = 1, 2 and t = 1, 2, 3. 

The cost functions are assumed to be: 

if o 

if 
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rO.8l t - 1(S + 

if X2t 0 

C 2t (x2t ) 
3x

2t
) if > 0 X2t 

if Y 12t 0 

H 12t(Y 12t) {:O.8l t -
'

(1 + 2y 12t) if Y12t > 0 

r y 21t 

H (y ) = 
21t 21t (0.8)t-1(2 + 3Y21t) if Y 21t > 

The vertices of the acyclic network r<:~presenting the state 

of the recursive relations (8) and (9) ar'~ given in Figure 2. 

t=O 
P =.1 o 

... - ..... ------_ ... - .... 

""" .. CD '~""tV 
,.' I ll=O, I21=2 I 12=O, I22=2 

, , , , , 
cD 

, 
I , 

I
10

=0, I
20

=0 

(group 0 state) 

(group 1 state) (group 1 state) 

G) 
I 11=0, I 21 =0 

(group 0 state) 

I
12

=O, I 22=0 

(group 0 state) 

0 

O. 

variables Cl 

I ]3=0, I 23"0 

(group 0 state) 

, .. 
, , , , 

, 

~ , , , 
I 

Q) 
, 

0----''''-'-'' 
C 2 3(CI=3, Il=l) , 

I
ll

=2, I
21

=0 

(group 2 state) 

I
12

=2, I
22

=0 

(group 2 state) 

Vertices of Acyclic Network 
For Numerical Example 
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It should be noted that since all the demand increments 

integers, by the simplification of §4.4, the state variables 

are even 

a in the 

acyclic network can be restricted to even values of I it . We shall now show 

the details for calculating 

edge joining vertex (i.e. 

Cu=O,V=2(a = 1, S = 1), i.e. the cost of the 

a = 1) for u = 0(I
10 

= I 20 = 0) and vertex 

(i.e. S = 1) for v = 2(I12 = 0, I22 = 2). It should be noted that a is 

in case (0) of §4.2, where only x'l and Y"l for i j j; i, j E: J can be 
1.- 1.-J 

nonzero. Hence we need to evaluate only three possibilities, i.e. 

a. x11 R/l, 2) + I12 4 + 0 4, 

x 21 R 2(1, 2) + I22 4 + 2 6, with Y121 0, Y 211 0 

Cost for this case -. 24 + 23 47 

b. x
11 

= 10, Y 121 = 6, with x 21 = 0, Y211 0 

Cost for this case -. 54 + 13 = D7 

c. x 21 = 10, Y 211 = 4, with x 12 = 0, Y 121 0 

Cost for this case 3" ., + 14 = 49 

Hence, Co 2(1, 1) = 47 with x 11 = 4, x 21 = 6. , 
We shall now further show the details for calculating Cu=2 v=/a = 3, , 

S = 1) i.e. the edge joining vertex 3 for u = 2(I12 = 2, I22 = 0) and 

vertex 1 for v = 3(I13 =, 0, I
23 

= 0). It should be noted that a is now in 

case (ii) of §4.2 and we need to consider only one of two possibilities which 

are: 

a. and o 
or 

b. I12 = R(3, 3) + I 13 + I 23 with Y123 = R2(3, 3) + I 23 and x 23 = O. 

In this instance, I12 = R1(3, 3) + I 13 = 2. Hence x 23 = R2(3, 3) + [23 2 

and Y123 = O. Cost for this is (0.8)2. 11 = 7.04. Thus C2 3(3, 1) = 7.04. , 
All the other edge costs in the acyclic network can similarly be 

calculated. These costs are given in Table I. 

The problem is then reduced to one of finding the shortest route through 

the acyclic network. It can easily be verified using a standard shortest 

route algorithm [3] that the least cost path from vertex 1 for u = 0 to 

vertex 1 for v = 3 is given by CO2 (1, 1) + C 23(1, 1) = 47 + 8.96 55.96, 

implying that the optimal solution is x 11 = 4, x 21 = 6 and x 13 = 2 with 

all other variables zero, 
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~: 
u = 0 u = 1 

Vertex (Cl) Vertex (Cl) 
To 1 1 2 3 

Vertex 1 31 
V = 1 (B) 2 25 

3 35 

Vertex 1 47 Cl 24.8 13.6 
V = 2 (B) 2 41 11. :l 20.0 8.8 

3 51 19. a 28.0 Cl 

3 
Vertex 

1 57 32.8 Cl V = (B) Cl 

Note: Each entry denotes an edge cost e .. g. Cu=1 V=2(Cl , 

Edge Costs For Acyclic Network 
For Numerical Example 

6. Extensions to Problem P with n = ;: 

199 

u = 2 

Vertex (Cl) 
1 2 3 

8.96 16.00 7.04 

2, B 3) 28.0. 

In this section, we consider the various possible extensions to the model 

P. For brevity of presentation we shall discuss the case where n = 2. The 

approaches used are, however, applicable for n > 2. 

6.1. Idle capacity maintenance cost 

Maintenance cost of idle capacity in most realistic situations is 

negligible and has been ignored here. Hcwever it can, if necessary, be 

incorporated into model P by defining the cost function Git(I
it

) to 

represent the cost of maintaining Iit units of idle capacity of type i 

equipment in period t. Function G
it

(·) is assumed to be concave, 

nonnegative and nondecreasing in the interval [0, Cl). Objective (I) would 

now include the terms l: l: G 't(I 't)' Assuming that the problem has a 
ir:.j t£K 1.- 1.-

finite minimum, it can be solved by the approach discussed in §3 and §4. 
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6.2. Backlogging of equipment capacity 

In a situation where short-term leasing of equipment is available, then 

it may be realistic to incorporate the possibility of backlogging of each or 

both type of equipment capacity into the problem P. It needs to be pointed 

out that we assumed it is not possible to have an inventory or backlog of the 

service provided by the equipment. However, inventory of equipment capaci ty 

in the form of idle capacity and backlog of equipment capacity in the form of 

short-term leasing of capacity are now permitted. This can be achieved by 

defining: 

(11) Iit '" Qit - Lit' with Qit , Lit ;-: 0 for i E J, t E K with the 

imposed condition that 

(IZ) Qit' Lit'" 0 for i E J, t E K. 

The variables Q
it 

and Lit now represent the amount of idle and backlog 

capacity respectively of type i equipment at period t. In terms of the 

network representation, this involves the addition of arcs (m
it

+
1

, m
it

) to 

represent Lit with Qit now represented by arcs (mit , mit+
1
). We now 

define Fit(L
it

) as the cost of backlogging Lit units of type i equipment 

capacity at period t, where F
it

(.) is again assumed to be concave, 

nonnegative and nondecreasing over the interval [0, a). Objection function 

(I) now would include the terms 

Since each node mU now has four arcs representing xit ' y. 'tU -I i), 
J1.-

Qit-l and Lit directed into the node, Lemma 1 can be expanded as: 

Lemma 3. Every extreme point of P satisfies 

( IZa) Xit Qit-l 0 for i E J, t E K 

( IZb) Xit Lit = 0 for i E J, t E K 

(IZc) Xit Y" t '" 0 J1.-
for i -I j; i, j E J, t E K 

( IZd) Yjit Qit-l 0 for i -I j; i, j E J, t E K 

(IZe) Yjit Lit = 0 for i -I j; i, j E J, t E K 

( IZf) Lit Qit-l 0 for i E J, t E K. 

The proof of this Lemma is the same as the proof for Lemma 1 and needs no 

further e labora tion. 

At each period t, the number of states of groups 1 and 2 (as 

classified in §3.1) would now have to be expanded to include negative values 

of Iit' i.e. 
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Group 1: I2t # 0, I It 0 

Group 2: I2t 

Now states in each groups 1 and 2 ca"1. aSStllre a maximum of R(1, T) levels. 

Hence at each period t, we have to enumerate 2R(1, T) + 1 levels. The 

recursive relations (8) and (9) is still applicable except that now 

Pt = 2R(1, T) + 1 for t £ K- {T} wit'1. Po =P
T 

= 1. 

In using recursive relations (8) and (9) the subproblems for calculating 

cUv(a, S) even for n = 2 is now slightly more complex. Referring to the 

classification of §4.2, in case (0) we can have four subcases: 

(13a) Q1t 
> 0, Q2t 

> 0, Llt L2t 0 for t u + 1, · .. , V - 1 

( 13b) Q1t > 0, L2t > 0, Llt Q2t 0 for t u + 1, · .. , V - 1 

(13c) Llt > 0, Q2t > 0, Q1t L2t 0 for t u + 1, · .. , V - 1 

( 13d) Llt > 0, L2t > 0, QU Q2t 0 for t u + 1, · .. , V - 1. 

As shown in §~" 2 for (13a) we have only three possibilities in which we ne,ed 

to compute the costs. For ( 13b) , it can easily be veri tied by Lemma 3 (using 

properties (J 2d) and ( J 2e» that Y2lt = ° for t u + 2, ... , V and 

y 12t = 0 for t u + 1, ... , V - 1. Hence we have only five possibiliti_es 

in which the eosts need to be computed. The five possibilities are: 

(a) x 1u+1 
> 0 with Y12v > 0, 

(b) x 1u+1 
> 0 with y 2v > 0, 

(c) x 1u+1 > 0, 

(d) x 2v 
> 0 with y > 0 21, u+ 1 and 

(e) Y21,u+l "> o. 

Again in each of the five situations the nonzero variables are uniquely 

specified and the cost can be derived tdvially. Conditions (13c) and (13d) 

are similar to (13b) and (13a) respectively. Hence for case (0), we have to 

derive 16 cost data, the minimum of these being c (a, S). 
uV 

In case (i) we also have the four subcases (13a) to (13d). For (13a) it 

can be shown that, since now I
2u 

can he negative. we now need to compute the 

costs for five possibilities. S In each of (13b), (13c), (13d), we have eight 

possibilities. 6 Hence we compute C (11, S) 
uV 

with a from a group 1 state we 

have to derive 29 cost data and select the minimum. 

Case (ii) is similar to case (i) and will not be further elaborated. We 

have now shown that the subproblems can still be solved easily for the 
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backlogging case, justifyi.ng the fact that recursive relations (8) and (9) can 

still be applied efficiently. 

6.3. Initial capacities 

Initial capacity in either or both type of equipment can also be 

incorporated into model 1'. In this case, the state specified by a at stage 

o would correspond to thE capacity status of each type of equipment. 

Recursive relations (8) and (9) can still be used to solve the problem. 

However now the network representing G is no longer a single-source network 

and Lemma I need not necessarily hold true. Now the subproblem for 

calculating euv(a, S) is slightly more complicated. Referring to the 

classification of §4.2, case (0) remains unchanged since I
1u 

I
2u 

0 

implies that Lemma I still holds for nodes miT' i E J and u < T ~ v. In 

case (i) , we still can have at most one installation for each type of 

equipment between periods u + 1 and v, i.e. we can have no installation, 

only one installation, or two installations with one installation per type of 

equipment. The cost for the possibility of no installation between u + 1 

and v is uniquely specified, since for feasibili ty y 21 ,u+1 
must be nonzero 

and. hence, Y21t for t = u + 2, ... , v and Y12t 
for t = u + 1. ... , v 

must be zero. Consider the possibility in which there is only one 

installation. When the expansion occurs at node m
2T 

for any T between 

u + 1 and v or m
1T 

for any T between u + 2 and v the cost is 

uniquely specified since t~e value of the expansion is known and Y21,u+1 > 0 

for feasibility. There an~, therefore, (v - u) + (v - u - 1) such 

SThe possibilities are (a) x1u+1 > 0 with Y 12,u+ 1 > 0, (b) x1u+1 > 0 

with x 2u+1 > O. and (c) x1u+1 > 0, (d) x 2u+1 > 0 with Y21 u+1 > 0, , 
(e) Y 21 u+1 > O. , 

6For (13b) the possibilities are (a) no positive installation or conversion 
variable between periods U + 1 and v, (b) Y 12,u+l > 0, (c) Y2l,v> 0 

(d) x2u+l > 0, (e) x 2 ,u+1 > 0, Y21 ,V > 0, (f) x 2u+l > 0, xlv> 0, 

(g) xlv> 0, (h) xlV> 0, Y12~u+l > O. For (I3c) and (I3d) the 

possibilities are similar and. therefore, need not be given here. 

eval ua dons. When the expansion occurs at node we have 2(v - v.) 

possibilities. each with 11 21T or (but not both) nonzero for 

and 

T E {u + 1, ...• v}. Hence we have a total of 4(v - u) - 1 possibilities to 

consider when there is only one expansion. When there are two installations 

between periods u + 1 and v, there cannot be any capacity conversion 
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between periods u + 1 and V. This implies we now have u - V 

possibilities with xlu+l > 0 and x
2T 

> 0 for any T between u + 1 and 

v. Hence in this case (and also case (~~i)), we have to consider 5(v - u) 

possibilities, each with the cost uniqw!ly specified. 

6.4. Arbitrary demand 

The case in which the demands are arbitrary (i.e. not necessary 

nondecreasing) may be realistic in some situations. For example, some public 

railway administrations have experienced an absolute decline in demand for 

passenger traffic (cars) due to increasLng competition of other modes of 

passenger transportation, while the demlnd for freight cars have generally 

maintained a steady growth. The formulation and network representation of 

problem P still remains valid when th,~ demands are arbitrary. Now we have 

for i £ J and t £ K, but is unrestricted in sign. In 

the network each Y'it < 0 would be represented by an inflow of Y'it units 

into node As in the case with inLtial capacities, the network is now a 

multi-source network and Lemma 1 is no longer valid. Recursive relations (8) 

and (9) can still be used to solve the :)roblem, but the subproblems would have 

to be solved in the manner described in §6.3. 

7. Conclusions 

In this paper, a recursive relationship is developed to solve the problem 

of capacity installation for several types of related equipment with 

conversion possibility from one type to the other - a problem encountered 

particularly in the transport and manufacturing industries. 

This recursive relation is an extension and refinement of the recursive 

relation developed in [2], and is quite efficient when the types of equipment 

is not too large (e.g. ~ 4). This is in contrast to the recursive relations 

in [2] which is limited to the case of two producing regions only. Even when 

the types of equipment available is two (i.e. n = 2), it is further shown 

tha t the sol u.tion philosophy used to solve the subproblems is quite different, 

and more efficient, than that used in [2]. Important implications and 

extensions tc the basic problem considered are also derived. 
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