ABSTRACT

A SPECIAL MATCHING PROBLEM AND AN ALGORITHM FOR IT

Shinji TOKUMASU，Hitachi Research Laboratory，Hitachi，Ltd． Naganori MOTOI，Hitachi Research Laboratory，Hitachi，Ltd． Motomi ODAMURA，Hitachi Research Laboratory，Hitachi，Ltd．

This paper deals with the following problem：Suppose there exist n point sets，$N_{1}, N_{2},--\cdots, N_{n}$ ，each point p of which has two attribute values $A(p)$ and $F(p)$ ，where $A(p)$ takes a binary value＇good＇or＇bad＇and $F(p)$ takes a value of real number given according to some evaluation of p ．Then，the problem is to find an interchanging rule so that by repeatedly interchanging attrib－ ute values $A(p)$ and $F(p)$ between $p_{1}, p_{2} \varepsilon N\left(N=\sum_{i=1}^{n} N_{i}\right)$ ，the value should be minimized under the condition that the value（2）be maximal：
（1） $\operatorname{Max} \operatorname{Max}\left|F(p)-F^{\prime}(p)\right|$ $i \in B \quad p \in N_{i}$
（2）Value of $|B|$ where，
（i）$B=\left\{\mathbf{i} \mid A^{\prime}(p)=\right.$＇good＇$\left.V_{p \in N_{i}}\right\}$
（ii）$A^{\prime}(p)$ and $F^{\prime}(p)$ are attribute functions modified by interchanging．

In this paper，the authors have developed a theory by which this problem could be handled as a matching problem for a bipar－ tite graph and presented an efficient algorithm for it．

A numerical example and a result of numerical experiment are also given．

