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Abstract This paper presents a new algorithm determining the K·th best path without any circuit between two 

specified vertices in a connected, simple and nonoriented graph.. The method presented here is based on the well·known 

fact that the minimum set of ring sum of several Euler graphs and a special path between two vertices consists of all 

paths between the vertices. Lastly, an illustrative example iI given and the efficiency of the algorithm is estimated 

approximately. 

1. Introduction 

For the K-th best path problem there exist several available 

algorithms which approach to the problem by making use of the minimum 

tree [2], the shortest path algorithm [6], DP[l] or the path algebra 

[5]. The review of these are given in [4] and [6]. The purpose of 

this paper is to present a new algorithm which differs from any of them 

at the point that the edges in a graph are used positively, while in 

previous techniques the vertices are used more directly. 

The algorithm presented here is based on the fact that a minimum set of 

ring sum of Eu1er graphs and an arbitrary path between two vertices is 

a collection of all paths between the vertices. In this paper the K-th 

best path is defined as the path without any circuit between two given 

vertices that has the K-th best length, where K~2 and the K-th best 

length is allowt!d to be equal to the (k - 1) th best length. Since this 

definition is the same as the case assumed the positive length to each 

edge in a graph in the algorithm of Yen's [6], we try to estimate to 

show it is practical as well as that of Yen's. 

2. Notation 

Consider a connected and simple linear graph consisting of n 
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vertices and of nonoriented m edges and assume that to each edge a po­

sitive number (length) is assigned. Let P be a path between specified 

vertices sand t, C be a circuit and E be an Eu1er graph, all of which 

are sub graphs of the graph. Note that a path considered in this paper 

is a subgraph which has not any circuit. Let us use set operations 

U, n ' - and G by considering a subgraph as a set of edges, for ex­

ample, El C±> E2 = ( E
1UE2) - (E

1nE
2)· 

For P, C and E the following resu1 ts are well known [3]. 

(1) A collection {E} of all possible Euler graphs is an Abelian group 

under the ring sum 0-) 
(2) Let {p} be the c:011ection of all possible paths between sand t. 

Then 

{p} = min {p 1 (±) E ; EdEn 

where P
1 

dp} and min A is the subco11ection such that if Cl. , S £ A, 

then CI.£ min A means ~l et Cl. as long as Mep. 
As a set of gemerators of {E}, we consider a set of fundamental 

circuits 
Cl' C2 , •.• , Cf ' f = m - n + 1 • 

Let S be a subgraph. We define the length of S, denoted by L(S), 

as the sum of 1enghs of all edges in it. Assume that by some efficient 

shortest path algorithm the minimum tree from the origin vertex shave 

been already obtained, where the minimum tree is a set of edges which 

determines the shortest path from s to all other vertices in the graph 

[2]. Each edge in the minimum tree is called a branch and each edge not 

in it called chord. Let us construct each fundamental circuit ci 

(l~i~f) such that Ci contains exactly one chord. Let el' e 2 , ... , ef 
be chords and let Ci be the fundamental circuit which contains e 

We summarize the symbols used in the fol!owing section. 

T[s,x] The shortest path between sand x. 

P The pa th be tween sand t. 

P1 
The shortest path between sand t. P

1 
T[s, t]. 

P[a,b] The part of P between a and b. 

3. Algorithm 
Let ~ (1~k) bE! the collection of the ring sums of P

1 
and an Euler 

graph and also let us denote a collection by { }. 

Step O. Determine Rl. ' Ql ' and El as follows. 
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R1 {P1 } 

Q
1 

P
1 

El P 1 CB Q1 = cp 

Step 1. For k~2, determine ~ as follows. 

~ = (~-1- {Qk-1})U{Qk-1 + Ci } 

where einEk_1 cp 

and Qk-1 CB Ci " QQ, , (Q, = 1, ... , k = 2) 

Step 2. Pick out anyone of the subgraphs of minimum length in ~ and 

set it to Qk' so that 

min L(S), S E R
k

• 

Determine Ek by 

+ 

Step 3. See if the Q
k 

is a path or not:. 

To get the K-th best path, repeat the step 1 through the step 3 

until K paths are obtained. 

4. Analy~is of The Algorithm 

Let Q
k 

be a path P, and let it 

in this order, between sand t. 

contains the chords e
a1

, e
a2

, ... , 

Let e = p[u,v]. Then we have 
Cl

i 

the following Lennna 1. 

Lemma 1. 
T[s,v] CBp[s,v] = C CB C CB··· CB C 

Cl1 Cl 2 Cl
i 

T[s,v] CB p[v,t] = P
1 

CB C CB c CB 
Cl i +1 Cl i +2 

... CB 

Proof. 
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Since T[s,v] CB P[s,v] is an Eu1er graph and the circuits are 

uniquely detE~rmined by the chords, we have the former part of the Lemma. 

About the latter half, 
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T[s,v] @ P[v,t] T[s,v] @P[S,v] (±)p 

c @c @ ... @c ep a
1 

a
2 

a
i 

P 1 CB c e c(±)... e c . QED 
a i +1 a i +2 a A 

Let Then we have Lemma 2. 

Lemma 2. 

L(P) ~ L(P 1 0 E
i

) (0 < i < A - 1). 

Proof. 

L(P) L(P[s,v]) + L(P[v,tJ) 

> L(T[s,vJ) + L(P[v,tJ) 

~ L(T[s,v] CB P [v, tJ) 

L(P 1 (!) E
i

) QED 

P 

P [s, v] -----::--..t-------
e e P[v,t] ~---~ 

a1 ai 
---~ -----~--- v 

a A ---'0---

T[s,v] 

branch 

Fig. 1 --------- chord 

Theorem 

Let pI be a path such that L(p I ) < L(P). Then there exists £, 

such that Q 1(, = pI , Ce.< k). 

Proof. Let pI has the chords ea ,ea , ... ,ea ,in this order, 
1 2 jJ 

between sand t and let E' 
j 
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Then, by virtue of Lemma 2, we have 

(4.1) L(P) > L(P') ~ L(Pl e Ej ) . 

If for some j, (1 ;;; j ::: jJ-l) , there exists k' , (k' < k), such 

that Qk' = PI e E~ 
J 

, since immediately after ~, the algorithm generates 

~'+l' Qk' e CB. = PI e E~ 1 must be contained in ~'+l as long as 
J 

J-

it has not already been picked out. Then by (4.1) there must exist k" , 

(k" < k), such that Qk" = PI (8 Ej_l and hence there exists £ (£<k) such 

that Ql(. = PI (3) EO = P'. 

Since PI e E~_l = PI e CB £ R2 , there exists k', (k' <k) , 
jJ 

such that Qk' = PI e E~_l and hence we have the theorem. 

5. Efficiency for A Compl ete Graph 

For a complete graph 

m n(n - 1)/2 

n + 1 = (n - l)(n - 2)/2 

QED 

that 

f m­

In step 1, {Qk 

(K + K') subgraphs 

+ C
i

} requires at most nf additions. Suppose 

are needed to get the K-th best path, where K' 

is the number of times when the subgraph picked out in step 2 is not a 

path. Since the step 1 increases the subgraphs by at most f at a time, 

to get the K-th best path we need approximately 

(K + K')nf (K + K')n(n - l)(n -'2)/2 additions and 

f + 2f + ... + (K + K' - l)f 

(K + K' - l)(K + K')(n - 1) (n - 2)/2 comparisons. 

Though it is difficult to estimate K', in our experiments using 

the railway network it was observed that 0 s; K' s; 20K. 

By J. Yen [6], his algorithm requires approximately qKn3/6 
3 additions and qKn /3 comparisons, where O<q;;;l. In this point of view, 

the algorithm proposed here seems to be as good as that of Yen's which 

is one of the most efficient. 

6. Illustrative Example 

Consider the graph in Fig. 2, whose fundamental circuits are 

shown in Fig. 3. We want to find the K-th best path between s(=l) and 

t(=7). In Fig. 2 and 3, dotted lines represent chords and solid lines 

represent branches in the minimum tree of s. The results after apply-
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ing the algorithm in section 3 are summarized in Table 1. 

S= 

l4}---....J.../J=t 

Fig. 2 Fig. 3 

Table 1 

R Ring Sum L Q or P 

R 1 PI 2 Ql = PI 

PI ffi Cl 7 Q2 = P 2 

R2 PI <f) C2 7 
PI (£J C

3 7 

PI $ C2 7 

R3 PI (£J C
3 7 

P2 $ C2 12 
P

2 
(£J C3 6 Q3 

PI (£J C2 7 Q4 
= P

3 

R4 
PI (£J C

3 7 
P <f) C2 2 12 
Q

3 
<f) C2 9 

PI (£J C
3 7 QS = P4 

P2 
<f) C2 12 

R Q3 
(±J C2 S 9 

P3 
(±J C3 10 

P
2 

(±J C2 12 

R6 Q3 $ C2 
9 Q6 = Ps 

P
3 

<f) C
3 10 

P 2 (±) C2 12 
R7 P

3 CB C3 
10 Q7 

= P6 

R8 P2 
(±J C2 

12 Q8 
= P

7 

, , 

~ 
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