A LOWER BOUND OF AN IMPUTATION OF A GAME

Kensaku Kikuta
Osaka University

(Received February 3, 1978; Revised June 19, 1978)

Abstract: An n-tuple is defined for each n-person monotonic characteristic function game. This n-tuple is an imputation when the sum of the components of it is equal to $v(N)$. On the boundary of the set of all monotonic games, we can obtain a condition for the n-tuple being an imputation. The n-tuple belongs to the core when it is an imputation. If the sum of the components of it exceeds $v(N)$, the kernel of the game consists only of interior points of the imputation set.

1. Introduction.

In an n-person characteristic function game, corresponding to the upper bound $b(i)$ of Milnor [4] (See also Luce and Raiffa [3], ch.11), we considered a lower bound $m(i)$ in Kikuta [2]. When an imputation x belongs to a "solution" and satisfies some condition, we found in [2] that $m(i)$ is a lower bound of: x_{i} which is the i--th component of x. While it is significant to investigate whether $m(i)$ is a lower bound or not to some solution, it often happens that the sum of $m(i)$ for all $i \in N$ exceeds $v(N)$. Then $m(i)$ cannot be a lower bound. Thus it is interesting to investigate in what case the sum of $m(i)$ equals to $v(N)$. In the present paper we consider $b(i)$ and $m(i)$ as functions on the game space. For this reason, we use $m_{i}(v), b_{i}(v)$ instead of $m(i), b(i)$ respectively.

2. Preliminaries.

An n-person characteristic function game with sidepayments is an ordered pair $G=(N, v)$, where $N=\{1, \ldots, n\}$ is the set of players of G and v is a non-negative-valued function (characteristic function) defined on the power set of N. We assume v satisfies

$$
v(\phi)=0, \quad v(\{i\})=0, \quad i=1, \ldots, n, \quad v(N)=1
$$

$$
\begin{equation*}
v(S) \geqq v(T) \quad \text { whenever } \quad S \supseteq T \tag{1}
\end{equation*}
$$

The last assumption is called the monotonicity. Then our game is a monotonic characteristic function game. Without confusion we refer to G as v. We denote by V the set of all n-person games satisfying (1). Number all of the subsets of N except N, ϕ and the one player sets. Corresponding to each $v \in V$, define a vector in $R^{d}, d=2^{n}-n-2$, by $v=\left(v\left(S_{1}\right), \ldots, v\left(S_{d}\right)\right)$. Thus we can regard v as a point in R^{d}. V is a convex compact set in R^{d}. We let X be the set of all n-tuples such that each component of it is nonnegative and the sum of all the components equals to $v(N)$. We call an element of X an imputation.

Let a game $v \in V$ be given. For $S, T \subseteq N$, define

$$
\Delta_{S} v(T)=v(T)-v(T-S)
$$

and

$$
\Delta_{i} v(T)=v(T)-v(T-\{i\}) \text { when } S=\{i\}
$$

For a player i, define

$$
\begin{equation*}
m_{i}(v)=\min _{S \in D_{i}}\left\{\Delta_{i} v(S)\right\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i}(v)=\max _{S \in D_{i}}\left\{\Delta_{i} v(S)\right\} \tag{3}
\end{equation*}
$$

where $D_{i}=\{S \subseteq N| | S \mid \geqq 2, S \ngtr i\}$ and $|S|$ is the number of players which belong to S. Let $\psi_{i}(v)$ be the Shapley value of a player i, that is,

$$
\begin{equation*}
\psi_{i}(v)=\sum_{S \in D_{i}} \gamma_{n}(S) \Delta_{i} v(S) \tag{4}
\end{equation*}
$$

where $\gamma_{n}(S)=(|S|-1)!(n-|S|)!/ n$! (See Shapley [6]). Let $m(v), b(v)$ and $\psi(v)$ be n-tuples whose i-th components are $m_{i}(v), b_{i}(v)$ and $\psi_{i}(v)$ respectively. Note that $\psi(v)$ is an imputation. Put

$$
\begin{align*}
& \bar{m}(v)=\sum_{i \in N} m_{i}(v), \tag{5}\\
& \bar{b}(v)=\sum_{i \in N} b(v), \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{\psi}(v)=\sum_{i \in N} \psi_{i}(v)=1 \tag{7}
\end{equation*}
$$

Define a game v^{*} by

$$
\begin{equation*}
v^{*}(S)=(|S|-1) /(n-1) \quad \text { for all } S \subseteq N, S \neq \phi \tag{8}
\end{equation*}
$$

We assume $n \geqq 3$ hereafter.
3. Conditions for $m(v)$ Being an Imputation and the Following Results.

Lemma 1. For any $v \in V$,
(9)

$$
0 \leqq \bar{m}(v) \leqq n /(n-1) \leqq \bar{b}(v) \leqq n .
$$

Moreover the followings are mutually equivalent;

$$
\begin{aligned}
& \text { (i) } \vec{b}(v)=n /(n-1) \\
& \text { (ii) } \bar{m}(v)=n /(n-1) \\
& \text { (iii) } v=v^{*}
\end{aligned}
$$

Proof: By (1),

$$
0 \leqq \Delta_{i} v(S) \leqq 1 \quad \text { for all } S \in D_{i}
$$

Therefore $0 \leqq m_{i}(v)$ and $b_{i}(v) \leqq 1$. Summing with i, we have $0 \leqq \bar{m}(v)$ and $\bar{b}(v) \leqq n$.

$$
\psi_{i}(v) \geqq \sum_{S \in D_{i}} \gamma_{n}(S) m_{i}(v)=((n-1) / n) m_{i}(v) .
$$

Hence $1=\bar{\psi}(v) \geqq(n-1) \bar{m}(v) / n$. If $1=(n-1) \bar{m}(v) / n$, then

$$
\psi_{i}(v)=(n-1) m_{i}(v) / n \text { for all } i
$$

Therefore for any $i, \Delta_{i} v(S)=m_{i}(v)$ for all $S \in D_{i}$. In particular, when $S=$ $\{i, j\}, i \neq j, m_{j}(v)=\Delta_{j} v(\{i, j\})=\Delta_{i} v(\{i, j\})=m_{i}(v)$. Hence $n /(n-1)=$ $\bar{m}(v)=n m_{i}(v)$ for all i, and so $m_{i}(v)=1 /(n-1)$. That is, $\Delta_{i} v(S)=1 /(n-1)$ for all $S \in D_{i}$, for all i. Consequently we have $v=v^{*}$. In the same way, we have $\bar{b}(v) \geqq n /(n-1)$ and that (i) implies (iii).

Conversely if $v=v^{*}$, then it easily follows that $m_{i}(v)=b_{i}(v)=1 /\left(n_{i}-1\right)$ for all i. And so $\bar{b}(v)=\bar{m}(v)=n /(n-1)$. This completes the proof.

Define a game v_{Z} for each $\ell \in N$ by
(10)

$$
v_{\imath}(S)= \begin{cases}1 & \text { if } \quad \imath \in S, \quad|S| \geqq 2 \\ 0 & \text { if } \quad z \notin S\end{cases}
$$

Note that $\bar{b}\left(v_{\eta}\right)=n$ for all Z and $\bar{m}\left(v_{\eta}\right)=1$ for all Z.
Now, when we wish to consider $m_{i}(v)$ as a lower bound of x_{i} which is the i-th component of $x \in X$, it is necessary that $\bar{m}(v) \leqq 1$ because the sum of x_{i}^{\prime} s for all i equals to 1 . For this reason, it will be significant to investigate in what case $\bar{m}(v)=1$.

If $v \in V$ and

$$
\begin{equation*}
v(S)=1 \quad \text { or } \quad 0 \quad \text { for any } S \subseteq N \tag{11}
\end{equation*}
$$

then we call the game v a simple game. We denote by $E x(V)$ the set of all extreme points of V, that is, the set of all simple games. For a simple game v,
define

$$
\begin{equation*}
W^{m}(v)=\{S \subseteq N \mid v(S)=1 \text { and } v(T)=0 \text { for all } T \subsetneq S\} \tag{12}
\end{equation*}
$$

Theorem 1. Suppose $v \in E x(V)$. Then $\bar{m}(v)=1$ if and only if $v=v_{\imath}$ for some $Z \in N$.

Proof: We show the necessity. Since v is a simple game, $m_{i}(v)$ is a nonnegative integer for any i. Therefore $\bar{m}(v)=1$ if and only if there exists a unique $Z \in N$ such that $m_{\eta}(v)=1$, and $m_{i}(v)=0$ for all i such that $i \neq 2$. Suppose $W^{m}(v)=\left\{S_{1}, \ldots, s_{k}\right\}$. If $\tau \notin S_{j}$ for some j, then $\Delta_{q} v\left(S_{j} \cup\{l\}\right)=0$, and so $m_{l}(v)=0$, contradicting $m_{\eta}(v)=1$. Hence $Z \in S_{j}$ for $j=1, \ldots, k$. Moreover, for any i such that $i \neq \eta, 1=m_{q}(v) \leqq \Delta_{q} v(\{i, \tau\})$, so that $\{i, \eta\} \in W^{m}(v)$ for any i such that $i \neq 2$. If for some $j,\left|S_{j}\right| \geqq 3$, then $\{i, \tau\} \subset S_{j}$ for some $i \in N$, which contradicts the minimality of S_{j}. Consequently we have $W^{m}(v)=\{\{i, \tau\} \mid$ $i \neq \tau, i \in N\}$, which means $v=v_{\eta}$. The sufficiency has already been noted. This completes the proof.

Corollary. Suppose $v \in E x(V)$ and $v \neq v_{\eta}$ for any $\tau \in N$, then $\bar{m}(v)=0$.
Proof: By Lemma 1, $0 \leqq \bar{m}(v) \leqq n /(n-1)<2$. Because $\bar{m}(v)$ is an integer, either $\bar{m}(v)=0$ or 1 . By Theorem $1, \bar{m}(v)=0$. This completes the proof.

Now, define

$$
\begin{equation*}
U=\{v \in V \mid \bar{m}(v) \geqq 1\} \tag{13}
\end{equation*}
$$

Then $v^{*} \in U$. We show that v^{*} is an interior point of U in R^{d}. For each $S \subseteq N$ such that $2 \leqq|S| \leqq n-1$, define a real number ε_{S} as follows; $\left|\varepsilon_{S}\right| \leqq 1 /(n(n-1))$. Define a function, $v^{*}+\varepsilon$, on the power set of N, by

$$
\left(v^{*}+\varepsilon\right)(S)= \begin{cases}1 & \text { if } S=N \\ v^{*}(S)+\varepsilon_{S} & \text { if } 2 \leqq|S| \leqq n-1 \\ 0 & \text { if }|S|=0 \text { or } 1\end{cases}
$$

It is not difficult to see $v^{*}+\varepsilon \in V$. Choose ε_{S} as $\left|\varepsilon_{S}\right|<1 /(2 n(n-1))$ for each S such that $2 \leqq|S| \leqq n-1$. When $S \ni i$ and $2 \leqq|S| \leqq n-1$,

$$
\begin{aligned}
& \Delta_{i}\left(v^{*}+\varepsilon\right)(S)=1 /(n-1)+\varepsilon_{S}-\varepsilon_{S-\{i\}} \geqq 1 / n \\
& \Delta_{i}\left(v^{*}+\varepsilon\right)(N)=1 /(n-1)-\varepsilon_{N-\{i\}} \geqq(2 n-1) /(2 n(n-1))
\end{aligned}
$$

Hence

$$
m_{i}\left(v^{*}+\varepsilon\right) \geqq \min \{1 / n,(2 n-1) /(2 n(n-1))\}=1 / n,
$$

and we have $\bar{m}\left(v^{*}+\varepsilon\right) \geqq 1$, which implies $v^{*}+\varepsilon \in U$. Thus we find v^{*} is an interior point of U in R^{d}. It is easily seen that U is a convex set because \bar{m} is a concave function on V.

Denote by $B d(U), B d(V)$, the boundaries of U, V respectively. Note that $u \in B d(V)$ if and only if there exist $S, T \subseteq N$ such that $u(S)=u(T), S \subset T$ and
$|T|>|S| \geqq 1$.
Theorem 2. Let X_{n} be the convex hull of a finite set $\left\{v_{1}, \ldots, v_{n}\right\}$ of R, where v_{η} is defined by (10). Then

$$
B d(U)=\{v \in V \mid \bar{m}(v)=1\} \supset X_{n},
$$

and

$$
\begin{equation*}
B d(U)=\left\{(1-t(u)) v^{*}+t(u) u \mid u \in B d(V)\right\} \tag{14}
\end{equation*}
$$

where $t(u)=1 /(n-(n-1) \bar{m}(u))$.
Before proving the theorem, we need two lemmas.
Lemma 2. Let $u \in B d(V)$. Then $\bar{m}(u) \leqq 1$.
Proof: Suppose $u\left(S^{*}\right)=u\left(T^{*}\right)$ for some S^{*} and T^{*} such that $S^{*} C T^{*}, t^{*}=$ $\left|T^{*}\right|>\left|S^{*}\right|=s^{*} \geqq 1$. Let $T^{*}-S^{*}=\left\{i_{1}, \ldots, i_{t^{*}-s^{*}}\right\}$. Then

$$
m_{i_{1}}(u) \leqq \Delta_{i_{1}} u\left(T^{*}\right)=0
$$

and

$$
m_{i_{j}}(u) \leqq \Delta_{i_{j}} u\left(T^{*}-\left\{i_{1}, \ldots, i_{j-1}\right\}\right)=0 \quad \text { for } j=2, \ldots, t^{*}-s^{*} .
$$

Let $N-T^{*}=\left\{k_{1}, \ldots, k_{n-t^{*}}\right\}$, and $S^{*}=\left\{\tau_{1}, \ldots, \tau_{S^{*}}\right\}$. Then

$$
\begin{aligned}
m_{k_{1}}(u) & \leqq \Delta_{k_{1}} u(N) \\
m_{k_{j}}(u) & \leqq \Delta_{k_{j}} u\left(N-\left\{k_{1}, \ldots, k_{j-1}\right\}\right) \quad \text { for } j=2, \ldots, n-t^{*}, \\
m_{\eta_{1}}(u) & \leqq \Delta_{q_{1}} u\left(T^{*}\right)
\end{aligned}
$$

and

$$
m_{j}(u) \leqq \Delta_{q_{j}} u\left(T^{*}-\left\{\tau_{1}, \ldots, \tau_{j-1}\right\}\right) \text { for } j=2, \ldots, s^{*}
$$

Hence

$$
\begin{aligned}
\bar{m}(u)= & \sum_{i \in T^{*}-S^{*}} m_{i}(u)+\sum_{i \in N-T^{*}} m_{i}(u)+\sum_{i \in S^{*}} m_{i}(u) \\
\leqq & 0+\Delta_{k_{1}} u(N)+\sum_{j=2}^{n-t^{*}} \Delta_{k} u\left(N-\left\{k_{1}, \ldots, k_{j-1}\right\}\right) \\
& +\Delta_{Z_{1}} u\left(T^{*}\right)+\sum_{j-2}^{s} \Delta_{\imath} u\left(T^{*}-\left\{z_{1}, \ldots, z_{j-1}\right\}\right) \\
= & u(N)-u\left(T^{*}\right)+u\left(T^{*}\right)-u\left(T^{*}-S^{*}\right) \\
= & u(N)-u\left(T^{*}-S^{*}\right) \leqq 1 .
\end{aligned}
$$

This completes the proof.
Remark. The converse of Lemma 2 is not true. For instance, there exists $u \notin B d(V)$ such that $0<u(S)<1 / n$ for all $S ;|S|=2$. Then $m_{i}(u)<1 / n$ for any i and so $\vec{m}(u)<1$.

Denote by Int(V) the set of all interior points of V. Define a function on $I \times B d(V)$ by

$$
\begin{equation*}
w(t, u)=(1-t) t^{*}+t u \quad \text { for } t \in I, u \in B d(V) \tag{15}
\end{equation*}
$$

Here I is the unit interval. Note that $w(t, u)$ belongs to V for each fixed (t, u). The following Lemma 3 is an elementary result in convex set theory and we omit the proof (Note the Corollary 2 at page 21 of Nikaido [5]).

Lemma 3. Suppose $v \in \operatorname{Int}(V)-\left\{v^{*}\right\}$. Then there exists a unique $(t, u) \in I \times$ $B d(V)$ such that $v=w(t, u)$.

Proof of Theorem 2: By the continuity of function \bar{m}, v belongs to $B d(U)$ if and only if $\bar{m}(v)=1$. Now, suppose $\bar{m}(v)=1$. Then $v \in B d(V)$ or $v \in \operatorname{Int}(V)$. If $v \in B d(V), v=w(1, v)$. Let $v \in \operatorname{Int}(V)$. By Lemma 3, there exists a unique (t, u) such that $v=w(t, u)$. Because $\bar{m}(v)=1$,

$$
1=\bar{m}\left((1-t) v^{*}+t u\right)=(1-t) n /(n-1)+\operatorname{tim}(u),
$$

so that $t=t(u)=1 /(n-(n-1) \bar{m}(u))$. Note that $\bar{m}(u) \leqq 1$ by Lemma 2 .
Inversely, when $v=(1-t(u)) v^{*}+t(u) u$, it easily follows that $\bar{m}(v)=1$. Suppose $v \in X_{n}$. We can express v uniquely as

$$
v=\sum_{i=1}^{n} x_{i} v_{i}, \quad x=\left(x_{1}, \ldots, x_{n}\right) \in X
$$

From the concavity of \bar{m},

$$
\bar{m}(v) \geqq \sum_{i=1}^{n} x_{i} \bar{m}\left(v_{i}\right)=\sum_{i=1}^{n} x_{i}=1
$$

Moreover

Therefore

$$
m_{i}(v) \leqq \Delta_{i} v(N)=x_{i} \quad \text { for all } i
$$

$$
\bar{m}(v)=\sum_{i=1}^{n} m_{i}(v) \leqq \sum_{i=1}^{n} x_{i}=1
$$

We have $\bar{m}(v)=1$, which implies $v \in B d(U)$. This completes the proof.
Lemma 4. Assume $v\left(S^{*}\right)=1$ for some S^{*} such that $2 \leqq\left|S^{*}\right| \leqq n-1$. Then for $\bar{m}(v)=1$, it is necessary and sufficient that

$$
v(T)=\sum_{i \in T \cap S^{*}} m_{i}(v) \quad \text { for all } T \text { such that } T \nsubseteq S^{*}
$$

Proof: For $i \in N-S^{*}$,

$$
m_{i}(v) \leqq \Delta_{i} v\left(S^{*} \cup\{i\}\right)=0
$$

We have

$$
\begin{equation*}
\bar{m}(v)=\sum_{i \in S^{*}} m_{i}(v) \tag{16}
\end{equation*}
$$

Suppose $\vec{m}(v)=1$ and $T \cap S^{*}=\left\{i_{1}, \ldots, i_{q}\right\}$ for $T \nsubseteq S^{*}$. Then $m_{i_{1}}(v) \leqq \Delta_{i_{1}} v(T)$ and $m_{i_{j}}(v) \leqq \Delta_{i_{j}} v\left(T-\left\{i_{1}, \ldots, i_{j-1}\right\}\right)$ for $j=2, \ldots, \tau$. Hence
(17)

$$
\sum_{i \in S^{*} \cap T} m_{i}(v) \leqq \Delta_{S *} v(T) \leqq v(T)
$$

Let $S^{*}-T=\left\{j_{1}, \ldots, j_{k}\right\}$. Then $m_{j_{1}}(v) \leqq \Delta_{j_{1}} v\left(T U S^{*}\right)$ and $m_{j_{p}}(v) \leqq \Delta_{j_{p}} v\left(\left(T \cup S^{*}\right)-\right.$
$\left\{\dot{d}_{1}, \ldots, j_{p-1}\right\}$) for $p=2, \ldots, k$. We have

$$
\sum_{i \in S^{*}-T} m_{i}(v) \leqq \Delta_{S^{*}-T} v\left(T \cup S^{*}\right)=1-v(T)
$$

that is,
(18)

$$
v(T) \leqq \sum_{i \in T \cap S^{*}} m_{i}(v),
$$

since $\bar{m}(v)=1$ and (16). By (17) and (18), we have

$$
\begin{equation*}
v(T)=\sum_{i \in T \cap S^{*}} m_{i}(v) \text { for } T \text { such that } T \nsubseteq S^{*} \tag{19}
\end{equation*}
$$

Conversely, suppose $v(T)=\sum_{i \in T \cap S^{*}} m_{i}(v)$ for all T such that $T \nsubseteq S^{*}$. Then $1=$ $v(N)=\sum_{i \in S^{*}} m_{i}(v)=\bar{m}(v)$. This completes the proof.

Lemma 5. Assume $v\left(S^{*}\right)=0$ for some S^{*} such that $2 \leqq\left|S^{*}\right| \leqq n-1$. Then for $\bar{m}(v)=1$, it is necessary and sufficient that

$$
v(T)=\sum_{i \in T \cap\left(N-S^{*}\right)} m_{i}(v) \text { for all } T \text { such that } T \nsubseteq N-S^{*}
$$

Proof: For $i \in S^{*}, m_{i}(v) \leqq \Delta_{i} v\left(S^{*}\right)=0$. We have

$$
\bar{m}(v)=\sum_{i \in N-S^{*}} m_{i}(v)
$$

Suppose $\bar{m}(v)=1$. Put $T^{*}=\left(N-S^{*}\right) \bigcup^{\prime}\left\{i_{0}\right\}$ for $i_{0} \in S^{*}$ and let $N-S^{*}=\left\{i_{1}, \ldots\right.$,
$\left.i_{n-s^{*}}\right\}$. Then $m_{i_{1}}(v) \leqq \Delta_{i_{1}} v\left(T^{*}\right)$ and $m_{i_{j}}(v) \leqq \Delta_{i_{j}} v\left(T^{*}-\left\{i_{1}, \ldots, i_{j-1}\right\}\right)$ for $j=2$,
$\ldots, n-s^{*}$. Therefore $1=\sum_{i \in N-S^{*}} m_{i}(v) \leqq v\left(T^{*}\right)$ and we have $v\left(T^{*}\right)=1$. By $n-1 \geqq$
$\left|T^{*}\right| \geq 2$, Lemma 4, and $m_{i_{0}}(v)=0$,

$$
v(T)=\sum_{i \in \frac{T \cap T^{*}}{} m_{i}(v)=\sum_{i \in T \cap\left(N-S^{*}\right)} m_{i}(v) \text { for all } T \nsubseteq T^{*} ~(v)}
$$

Put $T^{* *}=\left(N-S^{*}\right) \cup\left\{j_{0}\right\}$ for $j_{0} \in S^{*}$ and $j_{0} \neq i_{0}$. Note that $\left|S^{*}\right| \geqq 2$. In the same way as above we have

$$
v(T)=\sum_{i \in T \cap\left(N-S^{*}\right)} m_{i}(v) \text { for all } T \nsubseteq T^{* *}
$$

In particular, if $T \nsubseteq N-S^{*}$ but $T \subseteq T^{*}$, then $T \nsubseteq T^{* *}$. Consequently, we have $v(T)=\sum_{i \in T \cap\left(N-S^{*}\right)} m_{i}(v)$ for all $T \nleftarrow N-S^{*}$.
Conversely suppose $v(T)=\sum_{i \in T \cap\left(N-S^{*}\right)} m_{i}(v)$ for T such that $T \neq N-S^{*}$. Then $1=$
$v(N)=\sum_{i \in N-S^{*}} m_{i}(v)=\bar{m}(v)$. This completes the proof.
Now, suppose $v \in B d(V)$. Assume $v\left(S^{*}\right)=0$ for some S^{*}, or $v\left(T^{*}\right)=1$ for some T^{*}. Thus we can apply Lemma 4 and Lemma 5 to obtain a necessary and sufficient condition for $\bar{m}(v)=1$. Put

$$
L(v)=\{S \subset N \mid v(S)=0 \text { and }|S| \geqq 2\}
$$

and

$$
W(v)=\{S \subset N \mid v(S)=1 \text { and }|S| \leqq n-1\}
$$

Theorem 3. Suppose $v \in B d(V)$. Assume $L(v) \neq \phi$ and $W(v) \neq \phi$. Put $S^{0}=$ $\bigcap_{S \in L(v)}(N-S)$ and $T^{0}=\bigcap_{S \in W(v)} S$ and $S^{*}=S^{0} T^{0}$. Then $\vec{m}(v)=1$ if and on1y if

$$
v(T)=\sum_{i \in S^{*} \cap T} m_{i}(v) \text { for all } T \text { such that } T \nsubseteq S^{*}
$$

Proof: By Lemma 4 and Lemma 5, we have $m_{i}(v)=0$ when $i \notin S^{*}$. And we have $\bar{m}(v)=\sum_{i \in S^{*}} m_{i}(v)$. Suppose $\bar{m}(v)=1$ and $T \nsubseteq S^{*}$. Then either $T \nsubseteq S^{0}$ or $T \nsubseteq T^{0}$. If $T \nsubseteq S^{0}$, there exists S in $L(v)$ such that $T \nsubseteq N-S$. From Lemma 5, it follows $v(T)=\sum_{i \in T \cap(N-S)} m_{i}(v)=\sum_{i \in T \cap S^{*}} m_{i}(v)$. When $T \neq T$, there exists S in $W(v)$ such that $T \neq S$. By Lemma 4, v(T) $=\sum_{i \in T \cap S^{2}} m_{i}(v)=\sum_{i \in T \cap S^{*}} m_{i}(v)$. The converse is easily seen because $1=v(N)=\sum_{i \in N \cap S^{*}} m_{i}(v)=\sum_{i \in S^{*}} m_{i}(v)=\vec{m}(v)$. This completes the proof.

When $\bar{m}(v)=1, m(v)$ is an imputation. In this case, it seems to be interesting to investigate whether $m(v)$ belongs to some "solution". Define the core of v by

$$
\begin{equation*}
C(v)=\left\{x \in X \mid \quad \sum_{i \in S} x_{i} \geq v(S) \text { for any } S \subseteq N\right\} \tag{20}
\end{equation*}
$$

Theorem 4. Suppose $\bar{m}(v)=1$. Then

$$
m(v) \in C(v)
$$

Proof: For any S such that $2 \leqq|S| \leqq n-1$, let $N-S=\left\{i_{1}, \ldots, i_{n-s}\right\}$ and $s=|S| . \quad$ Then

Therefore

$$
m_{i_{j}}(v) \leqq \Delta_{i_{j}} v\left(S \cup\left\{i_{1}, \ldots, i_{j}\right\}\right) \text { for } j=1, \ldots, n-s
$$

$$
\begin{aligned}
& \qquad \begin{aligned}
& \sum_{i \in N-S} m_{i}(v) \leqq \sum_{j=1}^{n-s} \Delta_{i} v\left(S \cup\left\{i_{1}, \ldots, i_{j}\right\}\right) \\
&=\Delta_{N-S} v(N)=1-v(S) . \\
& \text { Since } \sum_{i \in N-S} m_{i}(v)=1-\sum_{i \in S} m_{i}(v), \text { we have }
\end{aligned}
\end{aligned}
$$

$$
\sum_{i \in S} m_{i}(v) \geqq v(S)
$$

This completes the proof.
Well, fix a game v. Let $x \in X$ and $S \subseteq N$. We define the excess of S with respect to x by

$$
\begin{equation*}
e_{v}(S, x)=v(S)-\sum_{i \in S} x_{i} \tag{21}
\end{equation*}
$$

and the maximum surplus of a player k against a player $Z, k \neq Z$, with respect to x by

$$
\begin{equation*}
s_{k Z}(v, x)=\max _{S \in T_{k Z}} e_{v}(S, x) \tag{22}
\end{equation*}
$$

where $T_{k Z}=\{S \subseteq N \mid k \in S$ and $Z \notin S\}$. We define the kernel [1] of v by

$$
\begin{equation*}
K(v)=\left\{x \in X \mid\left(s_{k Z}(v, x)-s_{Z k}(v, x)\right) x_{\imath} \leqq 0 \text { for all } k, Z \in N, k \neq \tau\right\} \tag{23}
\end{equation*}
$$

Theorem 5. Suppose $v \in \operatorname{Int}(U)$ and $x \in K(v)$. Then

$$
x_{i}>0 \text { for } i=1, \ldots, n
$$

Proof: Since $v \in \operatorname{Int}(U), \bar{m}(v)>1$. Thus there exists $i_{0} \in N$ such that $x_{i_{0}}<m_{i_{0}}(v)$. Assume $x_{\imath}=0$ for some $\ell \in N$. Then by theorem 1 of Kikuta [2], $x_{i} \geqq m_{i}(v)$ for $i=1, \ldots, n$, which is a contradiction. Therefore $x_{i}>0$ for $i=1, \ldots, n$. This completes the proof.

Theorem 6. Suppose $v \in E x(V)$. Then for any $x \in K(v)$,

$$
\begin{equation*}
x_{i} \geq m_{i}(v) \text { for } i=1, \ldots, n \tag{24}
\end{equation*}
$$

Proof: It is clear when $\bar{m}(v)=0$. Suppose $\bar{m}(v)=1$. By Theorem $1, v=$ v_{i} for some $i \in N$. By definition of v_{i}, all players except i are dummies, hence $x_{j}=0$ for all $x \in K(v)$ and all $j \neq i$. Consequently $K(v)=\left\{e_{i}\right\}$ where the j-th component of e_{i} is $\delta_{i, j}$, which is the Kronecker's delta. On the other hand $m(v)=e_{i}$. This completes the proof.
4. A Concluding Remark.

Define a function on $I \times B d(V)$ by

$$
\begin{equation*}
p(t, v)=\bar{m}\left(t v+(1-t) v^{*}\right) \sqrt{b}\left(t v+(1-t) v^{*}\right) \tag{25}
\end{equation*}
$$

By Lemma $1,0 \leqq p(t, v) \leqq 1$. By the definitions of functions \bar{m} and $\bar{b}, p(t, v)$ is continuous on $I \times B d(V)$. Moreover,

$$
\begin{aligned}
m_{i}(t v & \left.+(1-t) v^{*}\right) \\
& =\min _{S \in D_{i}}\left\{\Delta_{i}\left(t v+(1-t) v^{*}\right)(S)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\min _{S \in D_{i}}\left\{\Delta_{i} v(S)+(1-t) \Delta_{i} v^{*}(S)\right\} \\
& =1 /(n-1)-t\left\{1 /(n-1)-m_{i}(v)\right\}
\end{aligned}
$$

Summing up with i,

$$
\bar{m}\left(t v+(1-t) v^{*}\right)=n /(n-1)-t\{n /(n-1)-\bar{m}(v)\}
$$

Similarly, we have

$$
\bar{b}\left(t v+(1-t) v^{*}\right)=n /(n-1)+t\{\bar{b}(v)-n /(n-1)\}
$$

By Lemma $1, \bar{m}\left(t v+(1-t) v^{*}\right)$ is decreasing and $\bar{b}\left(t v+(1-t) v^{*}\right)$ is increasing in t. Hence $p(t, v)$ is decreasing in t. Put $v_{t}=t v+(1-t) v^{*} . \Delta_{i} v_{t}(S)(S \geqslant i)$ represents the marginal contribution of a player i when he enters into $S-\{i\}$ in a game v_{t}. If $\Delta_{i} v_{t}\left(S^{\prime}\right)$ has little variation when S varies in D_{i}, then $b_{i}\left(v_{t}\right)-m_{i}\left(v_{t}\right)$ will be small, and will be large if $\Delta_{i} v_{t}(S)$ has much variation. Thus

$$
\bar{b}\left(v_{t}\right)-\bar{m}\left(v_{t}\right)=\sum_{i=1}^{n}\left\{b_{i}\left(v_{t}\right)-m_{i}\left(v_{t}\right)\right\}
$$

will be large if, as a whole, $\Delta_{i} v_{t}(S)(i=1, \ldots, n)$ has much variation. Dividing $\bar{b}\left(v_{t}\right)-\bar{m}\left(v_{t}\right)$ by $\bar{b}\left(v_{t}\right)$ for normalization, we have

$$
\left(\bar{b}\left(v_{t}\right)-\bar{m}\left(v_{t}\right)\right) / \bar{b}\left(v_{t}\right)=1-p(t, v)
$$

Moreover, it seems to be interesting to consider some function $q(t, v)=$ $q\left(x_{1}, \ldots, x_{n}\right)$ where $x_{i}=m_{i}\left(t v+(1-t) v^{*}\right) / b_{i}\left(t v+(1-t) v^{*}\right), i=1, \ldots, n$, and $(t, v) \in I \times B d(V)$.

Acknowledgement.
The author would like to thank Professor M. Sakaguchi of the Osaka University for his helpful suggestions and the referees for their valuable comments.

References

[1] Davis,M.D., and M. Maschler : The Kernel of a Cooperative Game. Nav. Res. Log. quar., Vol. 12 (1965), pp. 223-259.
[2] Kikuta, K.: On the Contribution of a Player to a Game. Int. Journal of Game Theory, Vo1. 5 (1976), pp. 199-208.
[3] Luce,R.D., and H. Raiffa : Gomes and Decisions, New York, Wiley, (1957).
[4] Milnor, J.W.: Reasonable Outcomes for n-Person Games. Research Memorandum RM-916, The RAND Corporation, Santa Monica, (1952).
[5] Nikaido, H.: Convex Structure and Economic Theory, Aca. Press, Inc., (1968).
[6] Owen, G.: Game Theory, W.B. Saunders Co., Philadelphia, (1968).
[7] Shapley, L.s.: A Value for n-Person Games. Annals of Mathematics Studies, No. 28, Princeton University Press, Princeton, N.J., (1953), pp. 307-317.
[8] Shapley, L.s.: Simple Games: An Outline of the Desciptive Theory. Behavioral Sci., Vol. 7 (1962), pp. 59-66.
[9] Spinetto, R.: The Geometry of Solution Concepts for n-Person Cooperative Games. Manag. Sci., Vol. 20, (1974), pp. 1292-1299.

Kensaku KIKUTA: Department of Applied Mathematics, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, 560, Japan.

