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Abstract:  An n-tuple is defined for each n-person monotonic characteristic function game. This n-tuple is an imputa-
tion when the sum of the components of it is equal to »/N). On the boundary of the set of all monotonic games, we can
obtain a condition for the n-tuple being an imputation. The n-tuple belongs to the core when it is an imputation. If the

sum of the components of it exceeds v(N), the kernel of the game consists only of interior points of the imputation set.

1. Introduction.

In an n~person characteristic function game, corresponding to the upper
bound b(Z) of Milnor [4](See also Luce and Raiffa [3], ch.1ll), we considered
a lower bound m(%Z) in Kikuta [2]. When an imputation x belongs to a "solution"
and satisfies some condition, we found in [2] that m(Z) is a lower bound of x,
which is the i-th component of x. While it is significant to investigate
whether m(Z) is a lower bound or not to some solution, it often happens that
the sum of m(Z) for all 7 &N exceeds v(N). Then m(Z) cannot be a lower bound.
Thus it is interesting to investigate in what case the sum of m(Z) equals to
v(N). 1In the present paper we consider £(Z) and m(Z) as functions on the game

space. For this reason, we use mi(v), bi(v) instead of m(Z), b(Z) respectively.

2. Preliminaries.

An n-person characteristic function game with sidepayments is an ordered
pair G = (N,v), where N = {I,...,n} is the set of players of G and v is a non-
negative-valued function (characteristic function) defined on the power set of
N. We assume v satisfies

v(¢) =0, v({i}) =0, i=1,...,n, VN =1,

¢5)

C

v(8) » v(T) whenever S2T.
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458 K. Kikuta

The last assumption is called the monotonicity. Then our game is a monotonic
characteristic function game. Without confusion we refer to G as v. We denote
by V the set of all n-person games satisfying (1), Number all of the subsets
of N except N, ¢ and the one player sets. Corresponding to each v &V, define
a vector in Rd, d= Zn—n-2, by v = (v(Sl),...,v(Sd)). Thus we can regard v as
a point in Rd. V is a convex compact set in R . We let X be the set of all
n-tuples such that each component of it is nonnegative and the sum of all the
components equals to v(N). We call an element of X an imputation.
Let a game v €V be given. For S, TSN, define

ASv(T) v(T) - v(T-3),

and
Aiv(T) = v(T) - v(T-{Z}) when S = {Z}.

For a player 7, define

2) m.(v) = min {Aiv(S)}
’“ SeD,
i
and
(3) bi(v) = max {A,L.v(S)},

S €D,
7
where Di = {scn| |s| > 2, St} and |s| is the number of players which belong

to S. Let ‘”i“’) be the Shapley value of a player 7, that is,

(4) v, (v) = SED.Yn(S)Aiv(S),

i
where Yn(S) = (|8]-1)1(n-|8|)t/n! (See Shapley [6]). Let m(v), b(v) and y(v)
be n-tuples whose Z-th components are mi(v), bi(v) and “’i(“) respectively.

Note that ¢(v) is an imputation. Put

(5) mv) = ] m.(v),
1€N

(6) b(v) = Ebi(v),
i€N

and

N V) =} . (v) =1
1€N

Define a game v* by
(8) v*(S) = (|8|-1)/(n-1) for all SEN, S # ¢.

We assume 7 > 3 hereafter.
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3. Conditions for m(v) Being an Imputation and the Following Results.

Lemma 1. For any vE€YV,
)} 0 < M(v) < n/(n-1) < b(v) < n.

Moreover the followings are mutually equivalent;
(1) B(v) =n/(n-1),
(i) m(v) = n/(n-1),
(111) v = v*,
Proof: By (1),
0z Aiv(S) <1 for all SEDi.

Therefore 0 < mi(v) and bi(v) < 1. Summing with Z, we have 0 < m(v) and
b(v) < n.

v () 2 Sgpiyn(smi(u) = ((n=1)/n)m,(v).

Hence I = {(v) > (n-1)@(v)/n. 1f 1 = (n-1)W(v)/n, then
wi(v) = (n-l)mi(v)/n for all <.

Therefore for any <, Aiv(S) = mi(v) for all SEDi. In particular, when S =
{2, d}s 2 # 4, mj(v) = Ajv({i, iy = Aiv({i, J}) = mi(v). Hence n/(n-1) =
ml(v) = nmi(v) for all Z, and so mi(v) = 1/(n-1). That is, Aiv(S) = 1/(n-1)
for all SéDi, for all Z. Consequently we have v = v*. In the same way, we
have b(v) > n/(n-1) and that (1) implies (iii).

Conversely if v = v*, then it easily follows that mi(v) = bi(v) =1/(n-1)
for all ©. And so b(v) =m(v) = n/(n-1). This completes the proof.

Define a game vy for each L €N by
1 if 1€5, 8] > 2,

(10) (8) =

Yz
0 if 1€5.
Note that F(vz) =n for all 7 and Fn'(vz) =1 for all L.

Now, when we wish to consider mi(v) as a lower bound of x; which is the
i-th component of x€X, it is necessary that m(v) < 1 because the sum of a:i's
for all Z equals to 1. For this reason, it will be significant to investigate
in what case m(v) = 1.

If veV and
11 v(S) =1 or 0 for any SV,
then we call the game v a simple game. We denote by Ex(V) the set of all

extreme points of V, that is, the set of all simple games. For a simple game v,
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460 K. Kikuta

define
(12) W'v) = {(SCN| v(S) = 1 and v(T) = 0 for all TES).

Theorem 1. Suppose v E&Ex(V). Then
m(v) =1 if and only if v = v, for some . €N.

Proof: We show the necessity., Since v is a simple game, mi(v) is a non-
negative integer for any <. Therefore %(v) = I if and only if there exists a
unique . €N such that mz('v) = 1, and mi(v) = 0 for all 7 such that 7 # L.
Suppose W) = {S ..._,Sk}. If Z¢S. for some j, then A U(S.U{Z}) = 0, and
so my (v) =0, contradicting my (v) = 1 Hence ZéS for 4 = 1, ...,k Moreover,
for any 1 such that ¢ # 1, 1 = my (v) <A v({l,Z}), so that {z,Z}GWm(U) for
any 7 such that ¢ # 1. 1f for some J, |S ] > 3, then {{,1}CS. for some L€ N,
which contradicts the minimality of S"7 Consequently we have W'(v) = {{z,1}]

i #1, 1€N}, which means v = vy The sufficiency has already been noted.
This completes the proof.

Corollary. Suppose vVE€Ex(V) and v # v, for any L €N, then W(v) =
Proof: By Lemma 1, 0 < M(v) < n/(n-1) < 2. Because (v) is an integer,

either 7i(v) = 0 or 1. By Theorem 1, W(v) = 0. This completes the proof.

Now, define
(13) U= {vev| m(v) > 1}.
Then v*€ . We show that v* is an interior point of U in Rd. For each S&N
such that 2 < Is| < n-—IZ, define a real number e, as follows; IeSI 2 1/(n(n-1)).
Define a function, v*+e, on the power set of N, by

1 if S =N,
(v*+e)(8) = | v*S) + eg if 2 < [S] ¢ n-1,
0 if |S| =0 or 1.

It is not difficult to see v*+e ¢V. Choose g as IES' < 1/(2n(n-1)) for each

5 such that 2 ¢ |S| < n-1. When $3% and 2 < |S| < n-1,

Ai(v*+e) (S) 1/(n-1) + e, - > 1/n.

5~ Cs-{i} =

N-{i} 2 (2n-1)/(2n(n-1)).

Ai(v*+e) (N) = 1/(n-1) - ¢

Hence
mi(v*ﬂ:) > min{l/n, (2n-1)/(2n(n-1))} = 1/n,

and we have m(v*+e) > 1, which implies v*+e €U, Thus we find v* is an interior
point of U in Rd. It is easily seen that U is a convex set because 7 is a

concave function on V.
Denote by Bd(U), Bd(V), the boundaries of U, V respectively. Note that
u €Bd(V) 1if and only 1f there exist S,T<N such that u(S) = u(T), SCT and
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7] > |s| > 1.

Theorem 2. Let X, be the convex hull of a finite set {vz,...,vn} of Rd,
where vy is defined by (10). Then
Bd(U) = {veV| m(v) = 112K,
and
(14) BA(U) = {(I-t(w))v* + t(wu | u€BA(V)},
where t(u) = 1/(n-(n-1)m(ul).

Before proving the theorem, we need two lemmas.

Lemma 2. Let u€Bd(V). Then 7ifw) < 1.
Proof: Suppose u(S*) = u(T*) for some S* and T* such that S*CT*, t* =
|T*] > |S*| = g* > 1. Let I'* - §* = {il""’it*-s*}' Then

m, (u) < A. uw(T*) =0,
1 T
and
mi.(u) < Ai.u(T*'{il""’ij-l}) =0 for j=2,...,t%g*,
J J
Let ¥ - T* = {kl""’kn-t*}’ and S* = {Zl""’zs*}' Then
my, (uw) < A, u(N),
k1 = k1
- s _ A
mk‘(u) < Ak’u(N {kl""’kj-l}) for j = 2,...,m-t%,
J J
m, (u) < &, u(T*),
Zl - Zl
and
* S = *
mz‘(u) < Al.u(T -{Zl,...,Zj_l}) for j = 2,...,8*%.
J J
Hence
mw = )} om.(w o+ ] om(w+ ] m.(u
1€T*-5% i€en-r+ * i€s* ¥
n-t*
<0+ By u(N) + .Z Ak.u(N'{kz""’kj-l})
1 Jg=2 g
3*
* %
+ Azlu(T )+ .Z Az-u(T {Zl""’zj-l})
Jj-2 g

u(N) - u(T*) + u(T*) - u(T*-5%)
u(lN) - u(T*-8*) < 1.
This completes the proof.

Remark. The converse of Lemma 2 is not true. For instance, there exists
ugéBd(V? such that 0 < u(S) < 1/n for all S;|[S| = 2. Then mi(u) < 1/n for

any 7 and so M(u) < 1.
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Denote by Int(V) the set of all interior points of V. Define a function
on IxBd(V) by
(15) wltyu) = (I-t)t* + tu for t€I, u€Bd(V).
Here I is the unit interval. Note that w(¢t,u) belongs to V for each fixed
(t,u). The following Lemma 3 is an elementary result in convex set theory

and we omit the proof (Note the Corollary 2 at page 21 of Nikaido [5]).

Lemma 3. Suppose v & Int(V)-{v*}. Then there exists a unique (t,u) € Ix
Bd(V) such that v = w(t,u).

Proof of Theorem 2: By the continuity of function 7, v belongs to Bd(U)
if and only if @(v) = 1. Now, suppose 7i(v) = 1. Then v €BA(V) or v €Int(V).
If v€BA(V), v = w(l,v). Let v€ Int(V). By Lemma 3, there exists a unique
(t,u) such that v = w(t,u). Because TA(v) = 1,

1 ml(1-t)v* + tu) = (1-t)n/(n-1) + tA(u),
so that t = t(u) = 1/(n-(n-1)M(u)). Note that T(u) < I by Lemma 2.

]

Inversely, when v = (1-t(u))v* + t(u)u, it easily follows that W(v) = 1.

Suppose vGXn. We can express v uniquely as

n
v = z @, = (2., )€EX.
1=1
From the concavity of 7,
7 n
mw) > Jafv) = [ =1
7/::1 7,:1
Moreover
m.(v) < A.v(N) =x., for all <.
1 = 1 1
Therefore
I I
wv) = ) m.(v) < x. = 1.
i=1% T 421t

We have W(v) = 1, which implies v €Bd(U). This completes the proof.

Lemma 4. Assume v(5*) = I for some S* such that 2 < |s*| < n-1. Then
for #(v) = 1, it is necessary and sufficient that
v(T) = ] m(v) for all T such that TES*.
iens* *
Proof: For 7 € N-S*,
mi(v) < A‘iu(S*U{i}) = 0.
We have

(16) ) = ) m.(v).
i€s* *

Suppose 7i(v) = 1 and TNS* = {il,...,iz} for T S*. Then m. (v) < Ai v(T)
1 -1
and my (v) < a; -U(T_{il""’ij—l}) for § = 2,...,L. Hence

d Jd
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(7 L om.(v) < bo0(T) < (1),
iesT v
A_p = * *_
Let S*-T {‘71"""7k}' Then ”'j (v) < AJ. v(TUS*) and mJ. (v) < AJ. v((TUS
1 1 p p
{J'Z ...,J }) for p = 2,...,k. We have
Y om.(v) <AL, 2(TUS*) =1 - v(T),
sege-p v = 5T
that is,
(18) o(r) < 1 m(v),
T 1€TNS*
since A(v) = 1 and (16). By (17) and (18), we have
(19) u(r) = ) m,(v) for T such that TELS*,
1€TNS*
Conversely, suppose v(T) = Z mi(v) for all T such that Tgs*. Then 1 ==
1€NS*
v(N) = )} m.(v) =7(v). This completes the proof.
i€s* v

Lemma 5. Assume v(S*) = 0 for some S* such that 2 < |S*| < n-1. Then
for W(v) = 1, it is necessary and sufficient that

(1) = ] m,(v) for all T such that T@N-S*.
1€TN(N-5%)

Proof: For 7€ S*, mi(v) s Aiv(S*) = (., We have
mv) = ) m(v).
1EN-S*
Suppose 7(v) = 1. Put T* = (N—S*)U{i } for 71 € S* and let N-S* = {il,..._,
1 s*}' Then m, (v) < A v(T*) and m, (v) < A v(T*- {’01,.. ,l }) for § = 2,

" 1 ‘1 i i
..,m-g*. Therefore I = ) m.(v) < v(T*) and we have v(T*) = 1. By n-1 >
iel-s* * - -
|7*| > 2, Lemma 4, and m, (v) = 0,
o(r) = ) m.(v)= 7§ m.(v) for all T T*,
ieTnT* * 1€ TN(N-5*) *

Put T#** = (N—S"*)U{jo} for jOGS* and jo # io. Note that |S5*| > 2. 1In the
same way as above we have

o(T) =} m.(v) for all TET**,
€T(N-S*) *

In particular, if T$N-S* but TEST#*, then T.,¢.T**. Consequently, we have

v(T) = } m.(v) for all T¢EN-5*.
L€TN(N-5*%) *
Conversely suppose v(T) = z m (v) for T such that T$N—S* Then 1 =
’L&T/\(IV-S*)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



464 K. Kikuta

v(N) = ] m.(v) =T(v). This completes the proof.
1EN-S*

Now, suppose v € Bd(V). Assume v(S*) = (0 for some S*, or v(I'*) = 1 for
some T*. Thus we can apply Lemma 4 and Lemma 5 to obtain a necessary and
sufficient condition for #(v) = 1. Put

L(v) = {SCN|v(8) = 0 and |5]|

2}

v

and
W(v)

{SCN|v(S) = 1 and |S| < n-1}.

[}

A

Theorem 3. Suppose v€Bd(V). Assume L(v) # ¢ and W(v) # ¢. Put s =

() (N-5) and w7 - /) S and $* = sonzp Then #(v) = 1 1f and only if
S€L(v) SeW(v)

v(T) = ] m.(v) for all T such that T¢S*.
i€syr v
Proof: By Lemma 4 and Lemma 5, we have mi(v) = 0 when 7€ 5*. And we
have #(v) = )} m.(v). Suppose 7i(v) = 1 and T$S*. Then either T;éSo or
i€5% ¥
T$T0 if TgéSO_, there exists S in L(v) such that T¢N-S. From Lemma 5, it
follows v(T) = } m.(v) = '} m.(v). When T_;t_TO, there exists S in
1€TN(N-5) * ieTns* *
W(v) such that T_f_s. By Lemma 4, v(T) = § mi(v) = mi(v). The con-
1€TNS 1€TNS*
verse is easily seen because I = v(N) = X m.(v) = z mi(v) = m(v). This

ienns* * 1€5*
completes the proof.

When m(v) = I, m(v) is an imputation. In this case, it seems to be
interesting to investigate whether m(v) belongs to some "solution'. Define
the core of v by
(20) cv) = {x€x| ] x, > v(5) for any SSN}.

i€s © T

Theorem 4. Suppose M(v) = 1, Then

m(v) € C(v).

Proof: For any § such that 2 < (3] < n-1, let N-5 = {il,...,in_s} and

s = |S|. Then
mi.(v) ) .v(SU{il,...,ij}) for j = 1,...,n-8.

J J
Therefore z nis
m.(v) < A, v(SULE .0, 2,))
i€h-s ¥ T g=1%j 1 J
= AN_SU(IV) =1 - v(S).
Since ) m.(v) =1 - ) mi(v), we have
1€N-8 1€5
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) m.(v) > v(S).
€8 N
This completes the proof.

Well, fix a game v. Let x€X and SEN. We define the excess of S with
respect to x by
(21) e (S,2) =v(S) - } x.,

v & 1
1€8
and the maximum surplus of a player k against a player I, k # I, with respect
to x by
(22) skz(v,ac) = max ev(S,x),
S€ET
ki

where TkZ = {SQ,N|k€S and ZﬁS}. We define the kernel [1] of v by

(23) K(v) = {w€X|(sy;(v,a)-8,, (v,2) )2, < 0 for all k,LE€N,k # 1}

Theorem 5. Suppose v&Int(U) and x¢&¢ K(v). Then
@, > 0 for 2 = 1,...,n.

Proof: Since v€ Int(U), m(v) > 1. Thus there exists iOEIV such that
xio < mio(v). Assume x; = 0 for some L€N. Then by theorem 1 of Kikuta [2],
xi > mi(v) for i = 1,...,n, which is a contradiction. Therefore xi > 0 for
1 =1,...,n. This completes the proof.

Theorem 6. Suppose v&Ex(V). Then for any x €X(v),
(24) z, 2 mi(v) for 2 = 1,...,n.

Proof: It is clear when Wi(v) = 0. Suppose 7i(v) = 1. By Theorem 1, v =
v, for some 7€V, By definition of Vs all players except 1 are dummies,
hence acj = 0 for all x€K(v) and all j # 7. Consequently K(v) = {ei} where
the j-th component of e; is 61: ., which is the Kronecker's delta. On the other

J
hand m(v) = e, This completes the proof.

4. A Concluding Remark.

Define a function on IxBd(V) by
(25) p(t,v) = Aty + (1-t)v*) /bty + (1-t)v*).
By Lemma 1, 0 < p(t,v) < 1. By the definitions of functions 7 and b, p(t,v)
is continuous on IxBd(V). Moreover,
mi(tv + (1-t)v*)

= min {Ai(tv + (1-t)v*)(5)}
SEDi
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min {A.0(S) + (1-t)A.v*(S)})
SED,L. i 7

1/(n-1) - t{1/(n-1) - mi(v)}.
Summing up with 7,

m(tv + (1-t)v*)
Similarly, we have

b(tv + (1-t)v*) = n/(n-1) + t{b(v) - n/(n-1)}.
By Lemma 1, 7i(tv + (I-t)v*) is decreasing and b(tv + (I-t)v*) is increasing

n/(n-1) - tin/(n-1) - #(v)}.

in ¢. Hence p(t,v) is decreasing in ¢. Put v, = tv + (1-t)v*, Aivt(S)(Sﬁi)
represents the marginal contribution of a player 7 when he enters into S-{7}
in a game Ve If Aivt(S) has little variation when S varies in Di’ then
bi(vt) - mi(vt) will be small, and will be large if Aivt(S) has much varia-
tion. Thus n
b(v,) - 7(v,) = ] {b,(v,) - m.(v,)}

=1
will be large if, as a whole, Aivt(S) (i = 1,...,7n) has much variation. Divid-
ing F(vt) - ﬁ(vt) by E(vt) for normalization, we have

(B(v,) - W(v,))/B(v) =1 - p(t,v).

Moreover, it seems to be interesting to consider some function g(t,v) =
qlx ,...,xn) where @, = mi(tv + (l-t)v*)/bi(tv + (1-t)v*), i = 1,...,n, and
(t,v) € IxBA(V).
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