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Abstract Dynamic programming is one of the methods which utilize special structures of large-scale mathematical
programming problems. Conventional dynamic programming, however, can hardly solve mathematical programming
problems with many constraints. This paper proposes differential dynamic programming algorithms for solving large-
scale nonlinear programming problems with many constraints and proves their local convergence. The present
algorithms, based upon Kuhn-Tucker conditions for subproblems decomposed by dynamic programming, are composed
of iterative methods for solving systems of nonlinear equations. It is shown that the convergence of the present
algorithms with Newton’s method is R-quadratic. Three numerical examples including the Rosen-Suzuki test problem

show the efficiency of the present algorithms.

1. Introduction

Large-scale mathematical programming problems, as is well known, have
special structures. Several decomposition and partitioning procedures for
solving them [12] have been developed by utilizing their special structures.
Dynamic programming also utilizes a similar structure of large-scale mathemati-
cal programming problems, but it admits more flexible structure than the decom-
position and partitioning procedures do [16, 17, 19]. It, however, is hardly
possible to solve mathematical programming problems with many constraints by
conventional dynamic programming, even if they have the required structure.
This is because each constraint yields one state variable and because conven-
tional dynamic programming must compute optimal values of subproblems for every
possible lattice points of state variables and must reserve them in high-speed
memories. Although some state variable reduction methods have been developed
[1], the difficulty of dimensionality never seems to disappear.

Jacobson and Mayne [10] have invented differential dynamic programming
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372 K. Ohno

(D.D.P.) for solving discrete and continuous time optimal control problems.
Gershwin and Jacobson [5]}, Havira and Lewis [7] and Mayne [13] have discussed
further D.D.P. for constrained optimal control problems. A method analogous
to D.D.P. has been invented by Dyer and McReynolds [3]. The above authors,
however, have not proved the convergence of their D.D.P. algorithms. Recently,
Mayne and Polak [14, 24] have proposed first-order algorithms of the D.D.P.
type for solving continuous time optimal control problems and have proved the
convergence of their algorithms. It should be noted, however, that their algo-
rithms are not based upon principle of optimality but based upon maximum prin-
ciple, and are quite different from the first-order D.D.P. algorithms mentioned
in {3, 10]. Ohno [20, 21] has devised a new D.D.P. algorithm for solving
discrete time optimal control problems with constraints on both control and
state variables, and has proved its local convergence.

As shown in the above, D.D.P. has been applied to optimal control problems.
In a previous paper [22], a D.D.P. algorithm for solving separable programs has
been devised and its local convergence has been proved. The main purposes of
this paper are to propose D.D.P. algorithms for solving large-scale nonlinear
programming problems including separable programs and to prove their local
convergence. In Section 2 it is shown that under some conditions, nonlinear
programming problems can be decomposed into subproblems by dynamic programming.
Section 3 contains Kuhn-Tucker conditions for each subproblem and a basic lemma.
A D.D.P. algorithm for sclving large-scale nonlinear programming problems is
devised in Section 4 and a combination of the D.D.P. algorithm with Newton's
method is discussed in Section 5. A modified version of the D.D.P. algorithm
is described in Section 6. Numerical examples are given in Section 7 and

convergence proofs of the D.D.P. algorithms are given in Section 8.

2. Decomposition by Dynamic Programming

Let xn(n=1,2,...,N) be kn—dimensional column vector. Consider the follow-

ing nonlinear programming problem with angular structure [12]:

(P) minimize f(xl’XZ""’xN)

subject to gJ(xl,xz,...,xN)sO (j=1,...,m),
hi(xn)so (j=l,...,mn, n=1,...,N).
If equality constraints on (xl’XZ"°"XN) or x_ are imposed on (P), the follow-

ing analysis is valid with obvious changes. Define m and mn—dimensional vector

m
valued functions g and hn as (gl,...,gm)T and (hi,...,hnn)T, respectively,
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Differential Dynamic Programming 373

where T denotes the transposition. Then the feasible region of (P) denoted by

X is represented as
= .. ; < < =1,... .
X {(xl,- X )3 8(xs...,x)s0 and h (x)<0  (n=1,...,N)}

Since Problem (P) is too general to be decomposed by dynamic programming, it is

assumed that [16]:
k k 1.1

(C,) There exist functions EN: R N+Rl and En:R OyR >R (n=1,...,N-1) such that

1

fo(x) = Ey (%)

fn(xn""’xN) = En(xn,fn+l(xn+l,...,xN)) (n=1,...,N-1)
and f(xl,...,xN) = fl(xl,...,xN),
where R  denotes the kn—dimentional Euclidean space and En(',y) (n=1,...,
N-1) are monotone nondecreasing functions of y;

m_Kn _m
3]

k
) There exist functions 01: R 1»Rm and o.; R'XR >R (n=2,...,N) such that

(c
g,(x)) = 0, ()5
gn(xl,...,xn) = on(gn_l(xl,...,xn_l),xn) (n=2,...,N)
and g(xl,...,xN) = gN(xl,...,xN).
It is clear that separable programs satisfy the above conditions. Moreover,
almost all large-scale mathematical programming problems which have been dis-
cussed by many researchers [9, 12] also satisfy these conditions.

Now let us introduce m—-dimentional state variables sn (n=0,1,...,N) as

(2.1) sg = 0 and s, = gn(xl,...,xn) (n=1,...,N).

Then Condition (Cz) leads to the following difference equations:

(2.2) s, = On(sn_l,xn) (n=1,2,...,N),

where 01(0,xl) = ol(xl).
Denote by Sn (n=1,...,N) the reachable set of s’ that is,
m P
Sn = {SneR T gn(xl,...,xn), (xl,...,xN)eX}.
Clearly for any n=1,...,N,

(2.3) X = QS [{(xl,...,xn_l); s 178

(%,5+..5%_ ), h (x,)<0
n-1" n-1 o ! ol i

n-1

(i=l,...,n—l)}x{(xn,...,XN); s ),

n-1"8n-1 0¥y
g(xl,...,xN)SO, hi(xi)SO (i=n,...,N)}].

Therefore Condition (Cl) implies that
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(®)=min{€, (x;,8, (08 (x [Hf (x ,...,XN))...))|(xl,...,xN)eX}

= min {El(xl’gz(""gn—l(x

sn—lesn-l

hiSO (i=n,...,M}...))]s

n_l,mln{fn{sn_l=gn_1,g50,

o1 B by <0 (i=1,...,n-1)}.

This suggests that the following subproblem (Pn) should be dealt with:

(Pn) F(s ,) = min{fn(xn,...,xN)|s (X ceesX ),

n n-1 n-1

g(xl,...,xN)SO, hi(xi)SO (i=n,...,N)},

n~1

where s eR™ and it is assumed that F (s )=~ for s such that the feasible
n-1 n n-1 n-1

region of (Pn) is empty. 1In addition, suppose that En(xn,®)=m (n=1,...,N-1).

Theorem 1. Suppose that Conditions (Cl) and (02) are satisfied. Then for
n=1l,...,N-1,

(2.4) F (s )= min{En(xn,Fn+l(On(sn_l,xn)))|hn(xn)50}
and
(2.5) FN(SN-l) = min{EN(xN)!ON(SN—l’xN)SO’ hN(xN)SO}.

Proof: Let us redefine Sn (n=1,...,N-1) as

= R ¢t i .o
s {sne _; there exists a (xn+1,

hiSO (i=n+1,...,N)}.

.,xN) such that S, Bne g<0,

In a way similar to (2.3), for Sn—lesn—l’

{(xn,...,xN); $1-178,-1° g<0, hiSO (i=n,...,N)}
=s:gsn[{xﬂ; 0n(sn—l’xn)=sn’ hn(xn)SO}X{(xn+l"'"XN); Sh 8y’
g<0, hi(xi)so (i=n+1,...,N)}].

From this and Condition (C ) it follows that for sn_lesn_1
= S:ign{g (x_ ,mln{f |sn=gn, g<0, h <0 (i=n+1,...,M |
on(sn_l,xn)=sn, hnSO}

Fn(sn—l)

<
min{En(xn,Fnﬂ(On(sn_l,xn) )] lon(sn_l,xn)esn, hn_o}

min{En(xn,Fn+l(On(sn_l,xn)))lhn(xn)SO}.

Clearly, (2.4) holds for s ésn—l’ and (PN) is reduced to (2.5).

n-1
Since Fl(O) is identical with the optimal value of (P), Theorem 1 implies
that every optimal solution of (P) can be obtained by solving first Subproblem
(%.5) and solving (2.4) recursivel% for n=N-1,...,1. That is, Problem (P) with
nElkn—dimentional variable and m+n)=31mn constraints has been decomposed into N

subproblems with each kn—dimensional variable and m+mN or mn constraints.
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Remark 1. The above decomposition of (P) is different from that in [16].

In [16], it is assumed that (Cl) and, instead of (CZ)’ (Cé) are satisfied:

ky

k
(Cé) There exist functions GN:R -R" and On:R o R™R" (n=1,...,N-1) such that

gy (%) = T (%)

gn(Xn,---aX ) = Un(xn;g

N ,...,xN)) (n=1,...,N-1)

ot Fnia

and g(xl,...,xN) = gl(xl,...,xN),

_ _o.1 m, _m _ 1 1 m m, T
where.for njl,...,N 1l and s=(s7,...,8 JER , On(xn,s)—(cn(x?,s ),...,On(xn,s ))
and Gi(xn,sJ) (j=1,...,m) are nondecreasing functions of slJ. Moreover, instead

of (Pn), define for n=1,...,N,

(20 F (s) = min{fn(xn,...,xN)’gn(xn,..,,xN)Ssn, hy(x)<0 (i=n,...,N)}.

Then the following recurrence relations hold for n=1,...,N-1:
-1
= mi <
(2.6) Fn(sn) mln{gn(xn,Fn l(on (xn,sn)))lhn(xn)_o, xnsVn},

where O;l(xn,sn)=max{sn+lsRm; On(xn,sn+l)£sn} and Vn={xn; there exists Ogl(xn,
Sn) for given sn}. Since (2.6) includes the function o;1 and the set Vn’ it is
not easy to discuss (2.6) theoretically.

As noted above, (P) can be solved by using (2.5) and (2.4) recursively.
However, it is almost impossible to solve (P) with m23 by using (2.5) and (2.4).
This is because both the storage of Fn(sn-l) for suitable lattice points of
S.-1 and the comparisons of values En(xnﬁFn+l(0n(sn_l,xn))) at all X satisfy-

ing hn(xn)SO for each lattice point of s, are required. Thus an iterative

1-1
method based on (2.5) and (2.4), which is called a D.D.P., will be developed

in the following sections.

3. Kuhn-Tucker Conditions

Define the Lagrangian functions Ln {n=1,...,N) for subproblems given by

(2.4) and (2.5) as: for n=1l,...,N-1,

_ T
(3.1 Ln(xn’xn’sn—l) - En(xn’Fn+l(Gn(sn—l’xn)))+Anhn(xn)
and
~ T T
(3.2) Ly tsy ) = Eg&HA R (x)+uto (s [.x0),

where An and U are mn—dimensional and m-dimensional nonnegative Lagrange multi-

pliers. To begin with, suppose that

(C3) For each n=1,...,N, the function En, component functions oi (j=1,...,m)
of On and component functions hi (j=l,...,mn) of hn are all twice dif-

ferentiable functions and all their second derivatives are uniformly
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continuous.

For scalar functions, sav, E denote by V E and VZE the gradient row vector
and the Hessian matrix of E w1th respect to X respectlvely, and for vecter
functions, say, 0 denote by V c and V 0 the Jacobian matrix and the second
Frechet- der1vat1ve of on w1th respect to X respectlvely That is, V E —(BE
BXi BE /ax ), V E —(3 E /Bx 3x9 ), V o] —(30 /8x ) and for any m-dlmen31onal
vector z, z Vi6n=j§lzJVion. Note that gradient vectors are taken as row vec-
tors in relation to Jacobian matrices.

Suppose that Problem (P) has an optimal solution {x;; n=1,...,N}. Then
the optimal trajectory {sg; n=1,...,N} corresponding to {x:} can be determined
by (2.2). Moreover each subproblem (P ) with sn_l=s: 1 has also the optimal
solution {x?; i=n,...,N}, and hence the optimal value Fn(s* ) is attained at

—xk i & R | A J(gxy. o
x =x* in (2.4) and (2.5). Let h y th and so on denote h (x ), (sN

% > 1’
xﬁ), Vhi(x;) and so on, and put for n=1l,...,N,
i %
* = {3 hi =0, j=1,...,m_}
and
. .*
1* = {i; o% =0, j=1,...,m}.
Suppose that
(CQ) For n=1, y,N-1, gradient vectors {VhJ H JGI*} are linearly independent,

and {VhN JeI*} and {V OJ ; 361*} are also linearly independent.

This condition implies that the second-order constraint qualification is satis-

fied for each subproblem, if F is twice continously differentiable (differ-

n+l

entiability of F will be proved in Lemma 1). Consequently, it follows from

n+l
the second-order necessary conditions [4, p.25] for x: to be an optimal solu-

tion of (P ) with s =g* that: For each n=1,...,N-1, there exists a
n n-1 "n-1

Lagrange multiplier X; such that

(3.3 VXLn(x;,A*,s* ) =V En By EAVE R O:+(X;)TVh: =0,
(3.4) Diag(kg)h; = 0,

(3.5) hn(x:)

(3.6) A; > 0,

sk
and such that for every vector z satisfying Vhi z=0 for all jEI;,
T2
%
(3.7) z VXLnZ > 0,

where Diag(kn) denotes the diagonal matrix with the j-th diagonal element Ai

and
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2. _ .2 3 T 3 2 T 2
(3.8) VL = vxgn+2(ay VED VY0t 5 £ {VF Vo0 4V 0 VF_ 1V o }
2
T..T 9 T2
+vxOnVFn+l ay2 gnVFn+lvxon+xnv hn’

For n=N, there exist Lagrange multipliers X§ and u* such that

T T
LR = VEk$( A% (1% * =

(3.9) VXLN(xN,AN,u , SN~1) VEN+(AN) VhN+(u ) VXON 0,

i *Yhk = i *)gk =
(3.10) Diag (AN)hN 0, Diag (u )ON 0,

% %

(3.11) hy (x%) <0, o (s% .58 <0
(3.12) Xﬁ > 0, ux > 0

sk *
and such that for every vector z satisfying th z=0 for all j61§ and ong z=0
for all jeI*,

Ty2
ViL*z >
(3.13) z xLNz 0,
where
2 2 T2 T 2
. v =Y AV v .
(3.14) L EN+ N byt Vo
T ,T.T T.T T.T .
Put for n=1,...,N-1, Xn=(xn,%n) and XN=(XN,XN,u )" and define for n=1,...
N-1,
(3.15) T (X ,s 1) = (VL (x,s .),b (x) Diag(r ))T
) n n’ n-1 xn n’ n-1"""n"n n
and
(3.16) T (X,s. i) = (VL (X_,s. .).h (x.) Diag(A),0 (s, -,x.) Diag(u))T
N XN’ N-1 x NON’N-177 NN N "N N-1’"N ’ -
It should be noted that for arbitrarily fixed s , T (X ,s )=0 is a system
n~1 n n’n-1
of (kn+mn) equations for the same number of unknowns and that TN(XN’SN-1)=O
with fixed s ., is a system of (k +m +m) equations for the same number of un-

knowns. Thege%ore if X: (n=l,...TN)Nis an isolated solution of Tn(Xn,s§_1)=O,
that is, if there exists a neighbourhood of X: which contains no other solu-
tions of Tn(Xn,s;_l)=O, then X; satisfying the second-order necessary condi-
tions can be obtained by solving Tn(Xn,sg_l)=0 in the neighbourhood without
taking into account inequalities (3.5) and (3.6) or (3.11) and (3.12). From
inverse function theorem [23, p.125] it follows that if the Jacobian matrix of
Tn with respect to Xn is nonsingular at X:, then X: is an isolated solution of

T (X ,s* _)=0. The Jacobian matrix of T , denoted by J , is: for n=1,...,N-1,
n n’ n-1 n n

v2L Vh!
(3.17) JK,s )= *T "
Dlag(kn)th Dlag(hn)
and
2 T T
vxLN VhN VxON
(3.18) JN(XN’SN-I) = Dlag(AN)VhN Dlag(hN) 0
D1ag(u)VxON 0 Dlag(ON)
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% 3%
It is clear that if Xi=0 for some n and jeI; or UJ =0 for some jeI*, then some

J; are singular. Consequently it is assumed that

3 % 5 %
(c For n=l,...,N, AJ7>0 for all jeI* and W50 for all jeIx.

5)
Denote by H* (n=1,...,N-1) the matrix whose rows are VhJ (jeI;) and by H§ the
matrix whose rows are VhJ (JeI*) and V UJ (jeI*). Moreover denote the kernel

of H by N(H), that is, N(H) {z, Hz= 0}. The last assumption is [8]:

2
* *) = =
(Cy) N(Hn) n N(Van) {0} for n=1,...,N.
Now denote by
X*(s ) = (x*(s )T A% (s )T)T for n<N
n n-1 n n-1" > "n " n-1 >
T T T,.T
= (x* * * =
(xFCey 1) Milsy )75 (s 1)) for n=N

a solution of Tn(xn’sn—l)=0 for fixed S -1 and by Kn(Xn,sn_l) the Jacobian

matrix of Tn with respect to S _1° The Jacobian matrix Kn is given by

-1
2L (X5 )
(3.19) K (X ,s ) = Txs"n%a>%n
n’ n-1 A X ,s )
n’ n-1 >
where for n=1,...,N-1,
2
2 T 2 T 3
. v =V = _°_
(3.20) st 0n{ay EnV Fn+l+VFn+1ay2 EnVFn+1}VSOn
3 2 ] T
+ dy gnVFn+lvstn+(3y vgn) VFn+1vscn’
(3.21) An =0,
and
2 T 2
. v =
(3-22) stN H Oxs N’
(3.23) Ay = 0
Dlag(u)VSON

Then the following lemma holds.

Lemma 1. Suppose that Conditions (Cl) through (06) are satisfied. Then
for n=1,...,N, J (X*,s* _) is nonsingular. Moreover, F (s ) is twice con-
n n’ n-1 n n-1

tinuously differentiable in a neighbourhood 0:_1 of S;—l’ and for n=1,...,N-1,

(3.28)  F (s 1) =& (xA(s _|),F_, (0 (s ,xk(s 1)),
=0
(3-23) VFn(sn—l) T 9y En(x:(sn-l)’Fn+l(cn(sn—l’x;(sn—1))))VFn+l(Un(sn—l’
x;(Sn-l)))vson(sn-l’xg(sn—l))’ 2
2 _ T, 9 T T,.T _3°
(3.26) v Fn(sn—l) B Vx;(sn_l) {(8 VEn) vFn+l+vx0nVFn+lay2 EnVFn+1
2
T 2 T T ]
gnvxon +1}vson+vson{VFn+lay2 EnVFn+l
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2

3 2 3 2
—_— —_— *
t dy gnv Fn+1}vs0n+ ay &nVFn+1{Vson+st0ann(sn_l)}
and
= *
(3.27) Foleg ) = & (xd(sy 1))
T
= 1% *
(3.28) VE(sy_p) = WA(sy )7V op(sg (oxd(sy 1)),
(3.29) VA (s ) = Vuk(s. )TV o 4ur(s. ) TVP0 tuk(s. ) TV> 0 Vxk(s, )
: N N-1 N-1" "s'N N-17 "s'N N-1" "sx N "N N-1""

= * i n *

where for n=l1,...,N, xn(sn—l) belongs to a neighbourhood OX of Xn and
-1
% = - % *
(3.30) VXn(sn_l) Jn (Xn(sn—l)’Sn—l)Kn(xn(sn—l)’sn-l)'
Proof: Since under Condition (C6), (3.13) becomes
T2
*

(3.3L) z VXLNz >0

§ can be proved in a

way similar to [4, p.80-81]. Consequently, implicit function theorem [23, p.

for every nonzero vector zeN(H§), the nonsingularity of J

128] implies that there exist open neighbourhoods 0X of X§ and Os of Sﬁ—l such

= a i i * F:
eclOS, TN(XN’SN—l) 0 has a unique solution XN(SN_l)ecQOX and

(3.30) holds for n=N, where cSLOS means the closure of OS.

f
that for any SN-1

N—leos’
Since (3.9) through (3.12) and (3.31) are the second-order sufficient condi-

for any s

tions [4, p.30] for x§=x§(s§_l) to be an isolated local optimal solution of

F (s* _), there exist open neighbourhoods oNco_ and oY 1COS such that x*(s_ .)
N N-1 X X s N-1
N N-1

) for s €0 .

€0, is an isolated optimal solution of FN(S It is clear

X N-1

= * * =
that FN(SN—l) EN(xN(sN_l)) and TN(XN(SN—I)’SN—l) 0 for s

quently,

N-1
N_IGCQOS . Conse-

Fr(oyan) = Iy RReyog)syy)
and hence VFN(SN—1)=VXLN(X§(SN-1)’SN—l)vxﬁ(SN—l)+VSLN(X§(SN—1)’SN—l)
T .
“wrsy ) Voon(on1o X (o))

By (3.30) with n=N, this implies that FN is twice continuously differentiable

2 . , 2 .
and V FN is given by (3.29). Therefore ‘xLN—l and VXLN-l are well-defined,
and the lemma for n=1,...,N-1 can be proved in the same way as in the above.

4. Differential Dynamic Programming

Denote any iteration procedure for solving the system of the nonlinear

equations Tn(Xn,sn_l)=0 for fixed s, by

-1
k+1 k
(4.1) Xrl = Un(xn’sn—l)’
h k=0,1 Si by L 1 J—l(X s ) exists for X 0" and s =On_1
where k=0,1,.... ince by Lemma 1, J "(X ,s €0y 105

for example, Newton's method is described as
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k -1, k

k
) = Xn_Jn (ansn_l)Tn(ans )-

K
(4.2) U_(XS,s 1

n-1
Let an initial guess {X sOX; n=l,...,N} be given. Then the initial trajectory
{sg, n=0,...,N} corresponding to {xn} is determined by (2.2) with s —0 As

0

-1
noted in the preceding section, if sg_leO: R then an optimal solution of (P )

. .0 . . -
with Sn—l_sn—l can be obtained by solving Tn(Xn,s l) =0 in O Since the iter

ation procedure U usually generates a sequence {X* k=1,2, ...} converging to

1

n

In particu-

the solution of T (X ,s0 1) =0 which is nearest to the initial point XO X

—U (X ,s0 ) will come nearer to the optimal solution of F (so_l).

lar, since sg is always fixed to the origin, Xi and si given by
1 _ 0 O 1 0.1
Xl Ul(Xl,so) and s] = Ol(so,xl)

will come nearer to X* and s*. This suggests the following conceptual algo-

Kl T k4l Kk k K+l

rithm: Compute X by X —U (X 8 ) for n=N,...,1 and determine s by
(2.2) with s —0 for n=1,... N-l. However, it should be noted that T s Jn and
Kn (n=1 ...,N—Z) which may be used in U contain unknown values F (s ),

(s ) and V F (s ). Therefore it is essential to obtain thelr approxi—
mate values whlch guarantee that {X*} is a point of attraction of the following
n X (n=1,...,N)
such that for any X €0 o’ (k 1,2,...) generated by the algorlthm remain in 0n

D.D.P. algorithm, that is, there exist open neighbourhoods O <o?

and converge to X* [23 pP. 299] Since exact values F (S ), (s ) and

V F (s ) are given in Lemma 1, such approximate values can be obtalned by
~k ~k
approx1mat1ng suitably (3.24) through (3.29). Deno;e by Fn+l’ VFn+l and V F o+l

. k k
v k i
the approxlmatf values OfNFn+l(Sn)’ VFn+1(sn) and Fn+l(sn), respectively, and

denote by T 0’ Jn’ Kn and Url (n=1,...,N-1) Tn’ Jn’ ngand ngw1th Fn+ VF

v . . . 2 k —
and V'F o+l substltuted by their approximate values Fn+1’ VFn+l and V Fn+l’ re
spectively. For example, when for n=1,...,N-1, Un represents Newton's method

(4.2), En is described as

~ k ook 1,k ~ k
(4.3 Un(xn’sn—l) - Xn Jn (Xn’sn—l)Tn(xn’Sn—l)'
Note that as shown by (3.9), (3.14), (3.16), (3.18), (3.19), (3.22) and (3.23),
TN’ JN and KN include no unknown functions so that UN also does.

D.D.P. algorithm: Let {Xg; n=1,...,N} and {sg; n=0,...,N-1} be given.
Set k=0.

. skl sk ok 2~k
Step 1: Compute XN , 1N’ VFN and V FN by
~ktl k k

(4.4) Xy = Uy(Kgesy ()

JeHL
(4.5) N = F, (x )s

+1.T ~k+
(4.6) vEL - (uk DT oy lsn_ o

*N
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and

4.7) VZF - -1

(XN N- l)KN(XN’SN 11.%% (S
"stON(SN—l’XN)[JN KN]X}’
where [JI_\IlKN]u and [Jl_qlKN]X

denote submatrices of

381

k
N)+(u )T (v cN(sN 1% )

-1 . '
JN KN corresponding to W and

xN, respectively.
Step 2: For n=N-1,...,2, compute §k+l, f*, Vfﬁ and szﬁ by
~k+1 k k
(4.8) X =0 (Xn’sn—l)’
~k k+1 ~k Rt <k ) gpk ~ktl k
(4.9)  F =& (x "T,F )+ & L F L DOVE LY (s 1°%, )( n),
~k _ 3 k+l k k  ~k+l k+l k
(4.10) VF_ = 3y £ )VF BN C IR S L C I SO R A (s 1%, kT
2
~k (T 3" k+1 k ~k+1
(VFn+l) E (x )V} +1VSOn(sn 1°%, )
k+1 k k+l k Ty k, T 2~k k ~k+1
E (x 7LF ) G SO RNA) ( 12X VE Vo (s x0T
and
2% _ w13 ok T k+1 k k k., T
(4.11) VF_ = -[J Kn(Xn 1 {(8 ve (x ) VF LA AC R CRIPE 9
~k ~k+ k k+1 k
- (VF )—&( LR W g B GRS DY 0 Gl x
8y
k ~k+1, T ~k T 8 ~k+1
v }v o ( )+v o (s %y ) {(VFn+1) —5 e
~k ~k k+l k 2 k ~k+1 9 ~k+1
Fr1+l)VFn E x n+1) }V n (S + dy E“n(xn
ky -2 k k, >~1> ,k k
)VFn+l{V c (S n- ’Xn)-vsxon(sn—l’xn)[Jn Kn(Xn’sn—l)]x}'
Step 3: Compute X? 1 by
k+l _ ~ .k k k_
(4.12) X1 = Ul(Xl,so), where sO—O.
Step 4: For n=2,...,N-1, compute ngi and X:+1 by
k+1 K+l k+l
(4.13) n-1 On—l(sn—Z’xn-l)
and
k+1 ~k k k k+1 k
(4.14) Xn = n [J K (X 0 Sne 1)](sn_l—sn_l).
Step 6: Compute s and X§+l
k+1 _ k+1 _k+l
(4.15) S§-1 " °N—1(SN—2’XN—1)
and
K+l _ okl k k k+l__k
(4.16) X =X -l KN(XN’SN DIy sy

Set k=k+l and go back to Step 1.

Note that §k+l

ket l) =0 but that to a solution

Remark 2. in Steps 1 and 2 is

a solution of T (X »S_

not an improved estimate to

of T (X_ ,s5 )=0.

ne1 Steps 4
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~k+ +
and 5 compute the new state siti and adjust Xn 1 for the old state S:—l to X: !
for sifi. Let Cn(xn) and c;(xn) be twice differentiable functions with uni-

formly continuous derivatives. When all En (n=1,...,N-1) are given by &n(xn,y)

=cn(xn)+y, computations of F: in Steps 1 and 2 are unnecessary, because none of
% , J , K , ka and VZ?k include values of fk. A discrete time optimal

n n n n-1 n-1 n

control problem is one of the most important problems with such gn. Moreover,
a separable program is composed of such &n and oy given by On(sn_l,xn)=sn~1
+c;(xn). Therefore the D.D.P. algorithm for solving separable programs be-

comes much simpler than the present D.D.P. algorithm [22].

In the following, -
i.e., for matrix A—(a Y, || Af| =max Z[a}|. Put & —IIX X*(s )|| and § —(6
89T it

Theorem 2: Suppose that Conditions (Cl) through (C6) are satisfied. It
is assumed that the iteration procedures Un (n=1,...,N) satisfy the following

conditions:

(C7) For n=1l,...,N, there exist nonnegative numbers a and p such that for
E 150 and Xk n ||U (X 1)—X;(s )||<a (5 )1+p, where if p=0,
then a _<1;
n
(Cgy) For n=1,...,N-1, there exlst positive numbers b ., b and b such
8 Kk el nl n2 n3
that for s €0 and X o™
n—l s ). &
k
||Un(xn 1) U (x ,s plh=e lE (s )-F +l|
k
7 - +
+bn2l|VEn+l(Sn) VFn+1|| br136r1”v F ) v Fn+l||

Then the optimal solution {X;} of (P) is a point of attraction of the D.D.P.
algorithm. Moreover its convergence is R-superlinear or R-linear [23, p.291],
according as the constant p in (C7) is positive or zero.

The proof is given in Section 8. 1In [22] a similar result is shown for
the D.D.P. algorithm for solving separable programs. In {22], however, its
convergence rate is not shown explicitly and the constant corresponding to p
in (C7) is assumed positive. Since p in (C7) may be zero, almost all iteration
methods for solving a system of nonlinear equations satisfy Condition (C7). In
fact, Newton's method, discrete Newton's method, some modifications of Newton's
method, secant method [23], quasi-Newton methods [2] and Newton-Moser type
method [6] satisfy Condition (C7) with p>0. In addition, parallel-chord method,
simplified Newton method and successive overrelaxation method [23] satisfy (C7)
with p=0. Consequently, all these methods can be used as Un in the D.D.P.
algorithm, if they satisfy Condition (08).
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5. Combination with Newton's method

One of the methods which are used popularly in solving a system of non-
linear equations is Newton's method given by (4.2). This section deals with
the D.D.P. algorithm with Un and ﬁn given by (4.2) and (4.3). The following
lemma is necessary in proving that Newton's method satisfies Conditions (C7)

and (CB) in Theorem 2.

Lemma 2. Suppose that Conditions (Cl) through (C6) are satisfied. Then

for n=1,...,N-1 and integer k, there exist nonnegative numbers a?j (i,3=1,2,3)

such that for xkeo; and sk_leoz-l
Il T (xn o 1) Tn(X:,s: l)|l < a‘l’lll (s R Fn+1[|+a 1 VE, (s e VEE 1”
[ERCNTRE A I “31||Fn+1<SE> LR AN Sy
+an3||V2Fn+1(sn)-V Fn+1”’
and ”Kn(XE,sE_l)-En(X:,SE_l)” <o llF , l(ss) F e, 1l vE (S -VF +1“
+ol |l VE_, (s5)-v7F P

Proof: From (3.15), (3.17), and (3.19) it follows that

~ _ _ ~ _~ _ 2 ~ 2~
l-F | = lve-vE |,  [a-3] = | vi-viL |
~ 2
I P AR A

Therefore Condition (C3) and (3.3), (3.8), (3.20) imply that the lemma holds.

Corollary 1. Suppose that Conditions (Cl) through (C6) are satisfied.
Then the optimal solution {X:} of (P) is a point of attraction of the D.D.P.
algorithm with Newton's method. The convergence of this algorithm is R-
quadratic [23, p.291].

Proof: Since Condition (C3) implies that Jn is Lipschitz-continuous in
Xn, Newton's method satisfies Condition (C7) with p=1 [23, p.312]. From (4.2)
and (4.3) it follows that

~ _l ~
[FRCNCE Rl R AN N A

Therefore Lemma 2 implies that Newton's method satisfies Condition (C8), be-
cause

I &5k DI = Il 8% -1 xr(sX sk

and the boundedness of ||};l|| is shown in Lemma 3 in Section 8. The R-
quadratic convergence can be proved in much the same way as in Section 8.
The same argument as in the above proof can apply to the D.D.P. algorithm

with any other iteration method Un represented by Tn’ Jn and Kn. Thus the
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optimal solution {Xg} of (P) will be a point of attraction of the D.D.P. algo—
rithm with any iteration method noted in the preceding section.

Let us discuss the operation count, i.e., the number of multiplications
and divisions, per one iteration of the D.D.P. algorithm with Newton's method.
Denote for n=1, ,N-1, J 1T and J lK by AX and VXn, respectively, and J;lT
and JN KN by AXN and VXN, respectlvely Put for n=1,...,N-1, Mn=kn+mn and Nn
m+tm , and M =k +m+m_ and N _=m+m_. Then AX_ and VX can be obtained by solving

n N N N N n n

N
the following matrix equation:

N

?‘«‘Z

(5.1) Jn(AXnVXn) = (TK).

n n

Since by (3.15) through (3.19), J , T and K are M XM , M x1 and M _xm matrices,
n’ n n n n’ n n

the operation count for solving this matrix equation by using Gaussian elimina-

tion is [M +3(m+1)M —M 1/3. In addition, the operation counts for constructing

Jn’ Tn and Kn (n=1, N-l) are k [2k N +(m+1) +3k +1], (kn+1)Nn’ m[(kn+l)(2m

N Ty and Ky are kN(kN

+1), respectively. Since the operation counts for

+kn)+m+2] respectively, and those for constructing J
N, (k HDON and m (K
N s N o 2

constructing fk VF and V'F by (4.5) through (4.7) are 0, m~ and m (m+2kN),
respectlvely, the operatlon count in Step 1 is [MN+3(m+l)MN MN]/3+(k +1) NNNk
+m (m+3kN+2) Similarly, since the operation counts for constructing F VFn
and V fk by (4.9) through (4.11) are m(k +l)+k , m{4m+2k +3)+k +1 and 2m[2m2+(m
+l)(2k +l)]+k , respectlvely, the operation count in Step 2 is Z {[M +3(m
+l)M -M ]/3+(2k +k +l)N +m[2(m+l)(2m+2k +l)+3m(k +l)+k +6k +6]+3k2+5k +l} The
M )/3+(2k2+k +1)N +k (m+1)2+k (3k +1) and

that in Steps 4 and 5 is m n§2 Mn. Therefore the operatlon count per one itera-

operation count in Step 3 is (M +3M

tion of the D.D.P. algorithm with Newton's method is:

N N-1
T 3 (M +(3m-1)M ]/3+(2k +k FDN_} o+ (m+3) ] k
n=1 n=2
) .N—l
+ (7m +10m+5)n22k + N(Am +9m +8m) - (kN kN - li(Ml+1)

2 . 2 2 2
- m(7m +16m+16) + 3m kN + (m +2m+l)k1 + 3kl + kl.

N N
Neglecting the order of I (m+Mn)Mn and I ann, the operation count is of the

order of n=1 n=1
N 2
(5.2) ) {M /3+mM +2k N 4mk (7mtk )}
n=1
The D.D.P. algorithm with Newton's method requires the core memory which stores
+
values of Xk l, [J K 1, sk and sk+l for all n in Steps 4 and 5 and those
of X, T, 5 R ,F ok, o7 | 9% and v for each n in Steps 1
n’” n® "n® o’ 0’ ntl’ o’ Tatl’ n &% ntl TOT €ach min Steps

and 2. Therefore the magnitude of the core memory required for the D.D.P.

algorithm with Newton's method is:
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N
(5.3) ) (M _+k ) + 2{m 2 (M)mHL} + max{M +m+2)M_}.
n=1
Summing up the results obtained above yields the following corollary.
Corollary 2. The operation count per one iteration of the D.D.P. algo-
rithm with Newton's method is of the order of (5.2) and the magnitude of the

core memory required for the algorithm is given by (5.3).

This corollary shows that both the operation count and the magnitude of
the required core memory for the D.D.P. algorithm with Newton's method grow
only linearly with N. This desirable property is one of the well-known desir-
able properties of dynamic programming. Since the D.D.P. algorithm is based
upon the decomposition by dynamic programming, it inherits almost all desirable
properties of dynamic programming.

When Mn is large for some n, Newton's method (4.2) is not a good practical
method for solving the system of nonlinear equations. This is because solving
(5.1) consumes much time. For such n, Newton's method had better be replaced

by quasi-Newton method [2]. Since MN=kN+m+m is usually larger than other Mn

N
=k +m 0’ let N be such an n. In quasi-Newton method approximate matrices of

(- J ) are succe851ve1y computed without calculatlng JN Denote by Gk an ap-

-1,k k _ 1.0 0
proxlmate matrix of (- J (XN,sN l)) and put G J (XN’SN 1 Then for k=0,1,

.., Step 1 is mod1f1ed as follows:

. . k ~k+1
Step 1-1: Compute MN dimensional vectors N and XN by
k k, k k
N Ty (K> Sy-1)
~k+1 k k
and XN = XN + Yy -
Step 1-2: Compute MN dimensional vector zk by
k k+1 k
2y = Ty&y oSyp) - T (XN N 7
Step 1-3: Compute Gg L by
k+1 k k k, k., kT k,, kT k k
Gy = Gy - (Crzdy ) (v 6y/ (y) Gz
Step 1-4: Compute Fk and VFk by (4.5) and (4.6), respectively, and Vsz

N

by (4.7) with (- J ) replaced by Gk+1

N
The corresponding modification in Step 5 is obvious. If for n<N, Mn is large,
then the corresponding step in Step 2 had better be modified in a way similar

to the above modification of Step 1.
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6. Modified Differential Dynamic Programming

In the D.D.P. algorithm discussed in the previous sections, equalities
(3.3), (3.4), (3.9) and (3.10) in the Kuhn-Tucker conditions have played a
major role, but inequalities (3.5), (3.6), (3.11) and (3.12) in the conditions
have been intentionally neglected, because these inequalities are unnecessary
for the local convergence of the D.D.P. algorithm. Thus, if the initial guess
{X } is far from the optimal solution of (P), then the D.D.P. algorithm has a
tendency to generate a sequence {X } converging to the unconstrained optimal
solution or an optimal solution of (P) with some neglected constraints. This
tendency will be corrected by taking into consideration those inequalities. A
natural way to do so is to restrict Xﬁ+l (n=1,...,N) so that they satisfy those
inequalities.

For given positive numbers En (n=1,...,N) and €, put

]
1]

3 hi(xE)SEn, 3=L,..0m ) (0=1,.. N, k=0,1,...)

k _ .. Jd..k k . _
and I {i; Oé(stl,xN)se, j=1,...,m} (k=0,1,...).

Moreover for given positive number r <1, define a simple modification of itera-

tion procedure U (Xi,sk ) as

n-1
k k . 2.k Lok k _ -
(6.1) VK hs g3 O={1-Ge )T ()T (X ,s ) (0e1,...,N, k=0,1,...),

where % is an appropriately chosen nonnegative number. For example, when U (Xk,

k ) represents Newton's method (4.2), the corresponding modification V (Xk

n 1
sk 1; ) becomes
k k 2 -1 k k k k
(6.2) v (X S L) = X (r ) J (X 0’ )Tn(xn’sn l)'
Let us denote by V X ,sk ; 1) the above modification of U (Xk,sk Y. A modi-
n n’ n-1 n n’“n-1

fication of the D.D.P. algorithm is made by using Gn (n=1,...,N-1) and VN in-
stead of ﬁn (n=1,...,N-1) and UN'

Modified D.D.P. algorithm: Let {xg; n=1,...,N} and {sg; n=0,...,N-1} be
given. Set k=0.

Step 1: Compute i§+l

~k+1

6.3) B - vN(xk K

N*SN-13 L,

where for given positive numbers € and E', £ is the smallest nonnegative inte-

3 ,~k+1 -k ~ktl k  ok+l
ger such that.h (x )<€N fOf JEIN, N(sN 1° %y )<e ior jel, AN
>-¢g' for j satisfying u J>_¢' are all satisfied.
VFN and szk by (4.5), (4.6) and (4.7), respectively.

Step 2: Set n=N-1. Compute ik L by

>-¢'! for j
kJ N
satisfying A e!

Then compute F;,
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Al K
(6.4) X § (2
n n n

-1} L)

b

where for glven p051t1ve number e' £ is the smallest nonnegative integer such
that hJ(x )<€ for J€I and Ak+1 J> —en for j such that k >-e are all sat-
1sf1ed. Then compute FE VF and V F by (4.9), (4.10) and (4. 11), respective~

ly. Set n=n-1 and repeat thlS step until n=2.

Step 3: Compute X§+l by
k+1 k k
= L,
(6.5) X Vl(Xl, 0’ )

where for given positive number €!, £ is the smallest nonnegative integer such

Y . ) ;
that hi(xi 1)38 for jeli and X§+1 JZ—ei for j such that A?Jz—si are all satis-

1
fied.
Step 4: For n=2,...,N-1, compute skti by (4.13) and X:+l by
k+l k+l 2 k k k+1 k
(6.6) X7 (3K sk D1 -8 ),

where r is a given positive number less than one and £ is the smallest nonnega-

tive integer such that hJ(xk+l)<€n for js[k and Ak+l i

>-¢' for j such that AkJ
n n
z—en are all satisfied.

Step 5: Compute sk ! by (4.15) and X§+l

k+1 k+l 2 k+l k
(6.7) Xy =Xy -r KN(XN N P18y
where £ is the smallest nonnegative integer such that hJ(x§+l)<€N for Jelz,

OJ( k+l X;+1)<€ for JEI X; 1]

3 such that u I>-¢' are all satlsfled.

> s' for j such that AkJ>—eN and uk+l I> et for

The following theorem states that points {XE} generated by the modified
D.D.P. algorithm converges locally to the optimal solution {X;} and that its

rate of convergence is the same as that of the D.D.P. algorithm.

Theorem 3. Suppose that all conditions in Theorem 2 are satisfied. Then
the optimal solution {X;} of (P) is a point of attraction of the modified D.D.P.
algorithm. Moreover its convergence is R-superlinear or R-linear according as

the constant p in (C7) is positive or zero.

The proof is given in Section 8. As shown in the proof, the modified
D.D.P. algorithm has larger convergence domain than the D.D.P. algorithm. 1In
much the same way as in the proof of Corollary 1, the following corollary can

be proved.

Corollary 3. Suppose that Conditions (Cl) through (C6) are satisfied.
Then {X:} is a point of attraction of the modified D.D.P. algorithm with

Newton's method and its convergence is R-quadratic.
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7. Numerical Examples

As shown in Theorems 2 and 3, the optimal solution of (P) is a point of
attraction of both the D.D.P. algorithm and the modified D.D.P. algorithm under
Conditions (Cl) through (08). Various types of nonlinear programming problems

satisfy Conditions (Cl) through (C3). For example, objective functions f com-

posed of the following functions £(x,y) satisfy Conditions (Cl) and (C3):

(7.1) E(x,y) = c(x)+a(x)b(y),
(7.2) E(x,y) = C(X)+{d(X)}e(y),
(7.3) E(x,y) = e(c(x)+a(x)b(y)),

where all functions a, b, ¢, d, e are twice differentiable functions with uni-
formly continuous second derivatives, and a is nonnegative (nonpositive) valued,
b is nondecreasing (nonincreasing), d is nonnegative valued and e is nonde-
creasing functions. As noted in Remark 2, separable programs and discrete time
optimal control problems satisfy (Cl) through (CB)' Moreover, many large-scale
nonlinear programming problems satisfy these conditions [9, 12]. Conditions

(C ) and (C ) are regular conditions imposed frequently on nonlinear program-
ming problems, and Condition (C6) is satisfied, if V L* (n=1,...,N) are posi-
tive definite matrices. 1In the following, three examples are solved by using
the D.D.P. algorithm or the modified D.D.P. algorithm with Newton's method.

Thus Corollaries 1 and 3 show that Conditions (C7) and (C8) are satisfied.

Example 1. Minimize

exp(xi)+exp(x§+x§)

subject to xi+x1 4x +3
The optimal solutlon (x*, xg, x*, u*) is (-0.17264, 0.67227, 0.16807, 0.34577)
and the optimal value is 2. 64665 Clearly the objective function is decomposed
by using El(x,y) exp(x )+y, Ez(xz,y) exp(xz)y and § (x3) exp(x ). Numerical
computations with the termination criterion max HX -Xk+1‘l<10”5 were carried
out on the FACOM M-190 computer of Data Processing Center, Kyoto University.
The optimal solution with over six-place accuracy was obtained. The results
are shown in Table 1. The first column shows the initial values (xl, 2,xg,uo)
The symbol T means that the D.D.P. algorithm with Newton's method starting
from the initial value gave the unconstrained optimal solution and hence the

modified D.D.P. algorithm with Newton's method was used by setting €=0.01, €'’

=0.1 and r=0.5. The second and third columns describe the numbers of itera-
tions and the computation times of the D.D.P. algorithm or the modified D.D.P.

algorithm with Newton's method, respectively. Time is measured in milliseconds.
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Table 1. Computational Results for Example 1.

Initial value
0. 0 0.0 . 0
(xl,xz,xs,u ) Iteration | Time (m.s.) S3
(-1, 1, 1, 0.5) 6 19 -2
(0.5,0.5,0.5,0.5) 14 47 1.25
(1, 1, 1, 1) 7 24 0
(1.5,1.5,1.5,1.5) 8 26 -0.75
2, 2, 2, t 13 41 -1
(3, 3, 3, 3) 27 98 0
The fourth column indicates the values of sg, i.e., the values of the con-
straint at the initial values.
Example 2. Minimize
2 2 2 2
x1—5x1+x2—5x2+2x3—21x3+x4+7x4
bject t 2+ X +x2— + x2+ X +x2— -8x<0
subject to x; 1% %, 3 3PE,m X, <
2 2 2 2
x)- xl+2x2 + x3 +2x4-x4—10 <0
and 2 2+2 + x2- + x2 -x,-5<0
TR T XTHT %3 4 2=

This is the well-known Rosen-Suzuki Test Problem [25]. The optimal solution
(xi,x*,xg,xz,u{,ug,ug) is (0,1,2,-1,1,0,2) and the optimal value is -44. It is
clear that all conditions except (Cé) are satisfied for the above problem.
However, Condition (CA) requires that the decomposition of the above problem
should be three stages. Therefore, the objective function must be decomposed
by El(xl,y)=xi—5xl+y, Ez(xz,y)=x§—5x2+y and Ea(x3,x4)=2x§—21x3+x2+7x4. The
numerical results are shown in Table 2. All details are the same as in Table 1.
Table 2 shows that the D.D.P. algorithm or the modified D.D.P. algorithm with

Newton's method can solve rather quickly the Rosen-Suzuki Test Problem.
Table2. Computational Results for Example 2.

Initial value

(xg,xg,xg,xg,ug,ug,ug) Iteration | Time (m.s.) sg
(0,0,0,0,1,1,1)t 12 68 (-8,-10,-5)
(0,1,0,1,1,1,1) 9 51 (-8,-7,-6)
a,1,1,1,1,1,1)* 14 78 (~4,-6,-1)
(-1,-1,-1,-1,1,1,D)* 18 103 (-4,-2,-1)
(,-1,1,-1,1,1,1) 9 52 (0,-4,3)

Example 3. Minimize

30 X

- O {1-(1-r) '}
n=1 n
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30

subject to L a x <b
n=] mn n m

(m=1, 2s3) ’

where the values of constants o a8 n and bm are given in Table 3. This is a

relaxed version of an optimal redundancy allocation problem. Nakagawa,
Nakajima and Hattori [18] have solved the above problem with integral con-
straints on x and different values of bm. The optimal value of the above

problem is -0.95473 and its optimal solution is shown in Table 3. As noted in

Example 2, Condition (C4) requires that the objective function should be decom-
. =f1- _ Xn -

posedoby using En(xn,y)—{l 1 rn) }y (n=1,2,...,27) and 528(x28,x29,x30)

= - H28{1—(1—rn)xn}. Table 4 shows the computational results. All the details
n=

Table 3. Constants and the Optimal Solution of Example 3.
1 2 3 4 5 6 7 8 9 10
n 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
.90 .75 .65 .80 .85 .93 .78 .66 .78 .91
r .79 .77 .67 .79 .67 .94 .73 .79 .68 .98
.90 .86 .95 .92 .83 .97 .89 .99 .88 .98
5 4 9 7 7 5 6 9 4 5
a . 6 7 9 8 6 4 3 9 7 4
9 8 6 3 4 5 7 6 8 7
8 9 6 7 8 8 9 6 7 8
a,. 9 7 6 5 7 8 4 9 3 9
5 3 4 5 2 6 1 10 7 6
2 4 10 1 5 5 4 8 8 10
ag | 7 3 1 2 4 12 6 5 4 3
5 9 Z 5 7 8 6 3 12 5
3.031 4.491 5.333 4.211 3.407 2.571 4.146 5.335 4.041 2.654
x: 3.899 4.393 5.813 4.345 5.500 2.291 4.851 3.959 5.642 1.879
2.958 3.286 2.539 2.785 3.771 1.995 3.183 1.609 2.904 1.869
(b,,b,,b.) = (700, 680, 585)
1’7273 s -4 -4
(uf,u;,u§) = (5.173x10 7, 1.760x10 °, 2.366x10 )
Table 4. Computational Results for Example 3.
- 0 ¢c 0. 0.0 . . 0
Initial Value (xl,...,x30,ul,u2,u3) Iteration | Time (m.s.) S,8
a 7 477 (-40,-43.5,-30.5)
b 10 673 (~104,-107,-94)
a,...,1,0.1,0.3,0.4) 13 873 (-513,-488,-419)

a=(2.5, 4, 5, 4, 3, 2.5, 4, 5, 4, 2.5, 4, 4, 5.5, 4, 5, 2, 4.5, 3.5, 5.5, 1.5,
3, 3, 2.5, 3, 4, 1.5, 3, 1.5, 3, 2, 1, 1, 1)

b=(3, 4, 5, 4, 3, 2, 4, 5, 4, 2, 3, 4, 5, 4, 5, 2, 4, 3, 5,1, 2, 3, 2, 2, 3,
1, 3,1, 2, 1, 0.1, 0.3, 0.4)
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are the same as in Table 1.

The above three examples show that the D.D.P. algorithm or the modified
D.D.P. algorithm with Newton's method has both very rapid convergence property
and rather large convergence domain. Since Corollary 2 implies that the com-
putation time of the D.D.P. algorithm with Newton's method grows only linearly
with N, the above examples suggest that the D.D.P. algorithm or the modified
D.D.P. algorithm with Newton's method will solve large-scale nonlinear program-

ming problems with several hundred variables within few minutes.

8. Convergence Proofs

This section deals with the proofs of Theorems 2 and 3. Equation (2.2)
and Condition (C3) imply that for n=1l,...,N,

IA

k k k k k k k
(8.1) |lsn-s;|1 ||on(sn_l,xn)—oh(sn_l,xg(sn_l))||+||on(sn_l,xg(sn_l))

k k
—Oh(sn_l,x;)ll+|fo (s,_1>x¥)-0_(s* 1,X*)H

IA

k
Bn1(6n+||X:(S -1 ) X*(s*--l)”)+B 2||Sn—l n—lH

where Bnl and an are Lipschitz-constants of 0 . Since by Lemma 1,
k n-1

for s €0 ,

k -1
lxxcsE p-xxcsx < 172 kIl 1 s5-sx k o

(8.1) implies that for n=1l,...,N, there exist nonnegative numbers BZ 2=1,...,

n) such that

(8.2) | sX-s* || < 2218261; .

Consequently, for n=1,...,N,

| X;(si_l)-xg(sr:l_l) I
prll M e 1T 637

where for n=1, the summation over % is assumed to be zero. Therefore, in order

k
(8.3) Il % -xx]]

A

A

to prove that {X*} is a point of attraction of the D.D.P. algorithm or the
modified D.D.P. algorlthm, it suffices to prove that as k-, H6 || %0 and that

to any small number €1>O, there corresponds a number €, such that !IG |l<€q
Lo

implies ||<SkH<€1 for all k; this is just uniform asymitotic stability of the
origin of a system of difference equations for § , if it exists.

To begin with, in order to prove Theorem 2, a system of difference equa-
tions for 6k generated by the D.D.P. algorithm will be derived. From (4.8) and
(4.14) it follows that for n=2,...,N-1,

k+1 k+1 k

o~k k ~ly ok k
(8.4 X =T s D-13R (s DI st ).
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Consequently, since 6k+l—|| k-'-]'-X:‘l(sk-l’l)H for n=2,...,N-1,

(8.5) NEIP ERC AL BT O] I [N N W) |
+||-x*(sk+l +x;<l(sk )—J_lK sk ),s8 sk D]
ol T i,k -TTIR sl DIl s t-sy I -

Similarly, (4.4), (4.12) and (4.16) imply that

(8.6) 5?*1 [RX e ky_ x5+ 6, (x R Ul(Xl,so)|

and

(8.7) 8o ||UN(X;,s§ 1)—x§(s§ DN+ -xE s (st )

-3 KN(XN(SN 1) sk l)(s§+i sy 1) I

K+l k
+11 9y KN(Xﬁ(SN—l)’SN-l)'JN KN(XN’SN—l) [N

Moreover, Condition (C3) and Lemma 1 imply that for n=2,...,N, there exist

nonnegative numbers lel [23, p.73] and erl such that

k+l ktl__k k+l RS
(8.8) ||X*(s V- X:(s ~ )+J Kn( oo S0 I s 1[| ol 22,
k k k n k
(8.9) [|Jn K (XX(s__1)ss ;)= Jn Kn(Xn,sn l)|| < Y,8,
and
-1 k k =1l k k n .k, g 1 o
©.10) |157%, G ooy TR ey DL Vs Tl

AN RERSAPY

The following lemma is essential in evaluating the right-hand sides of (8.5)
through (8.10).

Lemma 3. Suppose that Conditions (C ) through (08) are satisfied. Then

for n=1,...,N-1, there exist nonnegative numbers cgl, r!ll,i (%=n+1,...,N, i=1,2,
3), n_and e“ (%1,...,N) such that for X<c0® and s~ _eO" °,
n N n X n-1" s
. n+1 1+p
(1) ” n+l(S )- n+1|| < z (6)
kg ) § n+l ok L4p.
(ii) || vF_ . (s)-VF < (8,
ntl T n nt+l Q=ntl €2 2
N
2 20k nt+l k
(iii) | v°F_,, (s ) VF Al s 1 con 8,
n+1 A=l 23 "1
k N n .k
(iv) ||Jn(Xn - Jn(Xn,sn Ol s T oap s,
2=n+1
N
k k ~ .k k n k
) IR K DK Kos DI = T dgn6y,
2=n+1
N
. k k &k k n , k,1+p
(vi) [RURCOPERIED Ll ¢ OPERIFD B Q_§+ld23(62) ,
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(vii) N3 1(xk,si Dl s

n
N
[N P RS
2=1
Proof: Since by (3.27), (4.5) and Condition (C3), there exists a nonneg-

(viii)

ative number Cl such that
k ~k k+1

k
sy-1)"F ||£N(x*(SN 1)~ (xy < o I Gey Xy
(4.4) and Condition (C7) imply that (i) holds for n=N-1. Similarly, from
(3.28), (3.29), (4.6) and (4.7) it follows that (ii) and (iii) hold for n=N-1.

~k+l

Therefore Condition (C ) and Lemma 2 imply that (1v) through (vi) hold for
n=N-1, because w1thout loss of generality, (6 ) <(6 )l+p<6 . Now suppose
that (i) through (vi) hold for n. Equations (3.24) and (4.9) and Condition
(C3) imply that for nonnegative numbers CZ’ C3, C& and CS’

(Vk+l ~k )

115 Gek(sE ),F L (o (s 1,x*<sk IN-E

kl ~ktl
e o >Vo<snl,x>< * E)H

k o~k
I1F, (s _-F Il 1

3y
~k k ~k+1
el 2 gn|ln|vpn+1||||vxoh||>1|x;<sn_1>-xn |

A

*e, (ak)z/z + @IV 1o e liF , s5-F5, |

+ll 55 gl v 1|ak11vrn+1 ) - VEE |

Since 5&(6:)1+p5(6$)1+p, the above inequality, Condition (C7) and the assump-
tion that (i) and (ii) hold for n prove (i) for n-1. In a similar way, (ii)
and (iii) can be proved for n-1. Consequently, Condition (C8) and Lemma 2
imply that (iv) through (vi) hold for n-1. The proofs of (i) through (vi) are
concluded. From perturbation lemma {23, p.45] it follows that if ||J_ (X s

sk Dt Mo (8% H-F 8% ) llsc, and ¢ g, then HJ (x5, 8% 1> I
<C /(1—56C7). Hence (iv) leads to (vii). Since s§+1—0 (0, x )and Xk*1=U (X

0), for the Lipschitz constant Bll’

lets¥l < 8, 1T, 0%l < 8, {IIX*-xkll+llu L (5,00 |

+||G' 0) U (xl,0)||}

Consequently, Condition (C ) and (vi) of Lemma 3 imply that

Kk k.1
s sk] < 811{(1+a1(61)p)6 + QE d23(6 y1*Py,

This proves (viii) for n=1. Suppose that (viii) holds for n. Then (8.4) im~

plies that for Lipschitz constants B +11 and B  +12°

ktl__k Kk k k
[ENER Y| U xgy, Co )"X L 1Ty B30y (o) |
o

k.
n+1 r1+1’S ) Unl—l(xn+1’s )”}+{

+11

+]| U n+12
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* Byl Tlil Koprll I Sk+l :” :
Therefore Condition (C7) and (vi) and (vii) of Lemma 3 prove (viii) for n+l.
The proof of Lemma 3 is concluded.

By using Condition (C7) and (iv) through (vii) of Lemma 3, combination of

(8.5) with (8.8) and (8.10) yields for n=2,...,N-1,

(8.11) gt < <5k Hp, 2 a <5k Py (yDek S Z @y,
n n L=nt+1 " g=ntl
-1 k+1 k k+1 k
OIS (S e 2 I TR I 2.

Since 5:6;5{(6 ) +(6 ) }/2 (8.11) and (viii) of Lemma 3 imply that for n=2,...,

. n n
N-1, there exist nonnegative numbers qq and r

3 such that

N N
k+1 n, .k, 1+p n, .k, 2
(8.12) 8 < zz q, (89 +z£ r (57,
where q —an and ql—d {(&>n). 1In a similar way, (8.6) and (8.7) imply that (8.

12) holds for n=1 and n=N, where r
matrices Q(6)=(q2(6

—0 (2=1,...,N). Consequently, by using NXN

P) and R(§)=(x}8,) with q1=0 (2<n) and ri=0, (8.12) can be

}o

Q)
rewritten as

(8.13) s < ey s%4r(s%) 8¥.

Clearly, in order to prove uniform asymptotic stability of the origin of 5k, it
sufficies to prove uniform asymptotic stability of the origin of the following
system of difference equations:

k+1

(8.14) SFL 2 ey sfur () 8K,

When the constant p in (C7) is positive, Q(8) and R(§) are continuous in § and
Q(0)=R(0)=0. Therefore ]|Q(6)+R(6)||<1 for § belonging to an appropriate neigh-
bourhood of the origin. This implies that the origin is uniformly asymptoti-
cally stable [11]}. Setting p=0 in (8.14) yields

6k+l

(8.15) = Qs%+r(85) &,

where qn=an, q;=dz3 (2>n) and qz=0 (2<n). Thus Condition (C7) implies that all
eigenvalues of Q are less than one in absolute value. Moreover R($) is conti-
nuous in§ and R(0)=0. Therefore the origin is uniformly asymptotically stable
[11]. Thus it has been proved that the optimal solution {X;} of (P) is a point
of attraction of the D.D.P. algorithm.

Since (8 3) implies that

ng [ESNE plza = o ll 41,

in order to show the convergence rate of the D.D.P. algorithm it suffices to

show the convergence rate of l|6kIl, where
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N
o, =maxli+ § 157 [l kgl 827

that is, ||5k]|m=max5:. From (8.13) it follows
n

Denote the % _-norm by |

that
k k-1 k-1
651 < o, Il 657 26 I,
N

where pz=max{ X(qz+rz)}. Consequently, in the case of p>0,

£ n=1 |ll/k

k-1
. k 0y ,, j p/k _
lim 1s<ur>l| 8 < 0, 87 1im sup( T eIl )P =0

i=1
because ”GkH 70 as k»», This proves that when p>0, the convergence of the

D.D.P. algorithm is R~superlinear. Similarly it can be proved that when p=0,
the convergence is R-linear.

Let us proceed to the proof of Theorem 3. From Condition (C7) and (6.1)
it follows that

k

L
K 5 0kt Dl s 1-Gma_69P) e ) ek

||Vn(xﬁ’sn—l;
This implies that Vn satisfies Condition (C7) with p=0 in Theorem 2. Since Vn
satisfies also Condition (CS) in Theorem 2, in much the same way as in the
proof of Theorem 2 it can be proved that the optimal solution {X;} of (P) is a
point of attraction of the modified D.D.F. algorithm. Moreover, since there
exists positive integer ko such that for all kao, Vn(X:,sﬁ_l,£)=Un(X§,sE_l)
(n=1,...,N) and the integers £ in Steps 4 and 5 are always zero, the rate of
convergence of the modified D.D.P. is the same as that of the D.D.P. algorithm.

The proof of Theorem 3 is concluded.

9. Conclusion

In this paper, the D.D.P. algorithm and the modified D.D.P. algorithm for
solving large-scale nonlinear programming problem (P) have been proposed and
their local convergence has been proved. Moreover, it is shown that the rates
of convergence of the present algorithms with Newton's method are R-quadratic.
Numerical examples show the efficiency of the present algorithms. Since the
present algorithms are based upon Kuhn-Tucker conditions for subproblems (Pn)
decomposed by dynamic programming, they inherit desirable properties of dynamic
programming. In particular, both the operation count and the magnitude of the
required core memory for the D.D.P. algorithm with Newton's method grow only
linearly with the number of variables. Thus the numerical examples suggest
that the present algorithms with Newton's method will solve large-scale non-
linear programming problems with several hundred variables within few minutes.

Throughout this paper, it is assumed that (P) satisfies Condition (Cz).
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If (P) satisfies Condition (Cé) and the functions 0;1 in (2.6) are twice con-
tinuously differentiable, then the results obtained in this paper remain valid
with some modification.

In order to start the present algorithms, it is necessary to obtain an
initial guess {Xg} belonging to an neighbourhood of the optimal solution {X:}.
The conventional dynamic programming with coarse grid will provide a good ini-
tial guess {xg}. Then a good initial guess {Xg} and UO will be obtained by the
method in [15]. This approach, however, will take much time. Therefore it is
hoped to investigate a global stabilization of the present algorithms.

Finally, it should be noted that unless the matrices Jn given by (3.17)
and (3.18) are singular, the present algorithms can be performed even if the
initial guess {X } is far from the optimal solution and/or 1nfea51b1e In this
case, however, the present algorithms generate sequences of {X } which converge
to some points {Xn} or diverge unboundedly, where {Xn} may be an local optimal
solution of (P) in which some constraints are dropped. If {Xé} satisfies all
inequalities (3.5) through (3.7) and (3.11) through (3.13), then it is an local
optimal solution of (P). Moreover if (P) is a convex program, them it is the
optimal solution of (P). Since the convergence of the present algorithms is
very rapid and their convergence domains are quite large, the present algo-
rithms can solve rather easily large-scale nonlinear programming problems by

adjusting the initial values {Xg}.
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