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Abstract Dynamic programming is one of the methods which utilize special structures of large-scale mathematical 

programming problems. Conventional dynamic programming, however, can hardly solve mathematical programming 

problems with many constraints. This paper proposes differential dynamic programming algorithms for solving large­

scale nonlinear programming problems with many constraints and proves their local convergence. The present 

algorithms, based upon Kuhn-Tucker conditions for subproblems decomposed by dynamic programming, are composed 

of iterative methods for solving systems of nonlinear equations. It is shown that the convergence of the present 

algorithms with Newton's method is R-quadratic. Three numerical examples including the Rosen-Suzuki test problem 

show the efficiency of the present algorithms. 

1. Introduction 

Large-scale mathematical programming problems, as is well known, have 

special structures. Several decomposition and partitioning procedures for 

solving them [12] have been developed by utilizing their special structures. 

Dynamic programming also utilizes a similar structure of large-scale mathemati­

cal programming problems, but it admits more flexible structure than the decom­

position and partitioning procedures do [16, 17, 19]. It, however, is hardly 

possible to solve mathematical programming problems with many constraints by 

conventional dynamic programming, even if they have the required structure. 

This is because each constraint yields one state variable and because conven­

tional dynamic programming must compute optimal values of subproblems for every 

possible lattice points of state variables and must reserve them in high-speed 

memories. Although some state variable reduction methods have been developed 

[1], the difficulty of dimensionality never seems to disappear. 

Jacobson and Mayne [10] have invente:d differential dynamic programming 
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372 K.Ohno 

(D.D.P.) for solving discrete and continuous time optimal control problems. 

Gershwin and Jacobson [5], Havira and Lewis [7] and Mayne [13] have discussed 

further D.D.P. for constrained optimal control problems. A method analogous 

to D.D.P. has been invented by Dyer and McReynolds [3]. The above authors, 

however, have not proved the convergence of their D.D.P. algorithms. Recently, 

Mayne and Polak [14, 24] have proposed first-order algorithms of the D.D.P. 

type for solving continuous time optimal control problems and have proved the 

convergence of their algorithms. It should be noted, however, that their algo­

rithms are not based upon principle of optimality but based upon maximum prin­

ciple, and are quite different from the first-order D.D.P. algorithms mentioned 

in [3, 10]. Ohno [20, 21] has devised a new D.D.P. algorithm for solving 

discrete time optimal control problems with constraints on both control and 

state variables, and has proved its local convergence. 

As shown in the above, D.D.P. has been applied to optimal control problems. 

In a previous paper [22], a D.D.P. algorithm for solving separable programs has 

been devised and its local convergence has been proved. The main purposes of 

this paper are to propose D.D.P. algorithms for solving large-scale nonlinear 

programming problems including separable programs and to prove their local 

convergence. In Section 2 it is shown that under some conditions, nonlinear 

programming problems can be decomposed into subproblems by dynamic programming. 

Section 3 contains Kuhn-Tucker conditions for each subproblem and a basic lemma. 

A D.D.P. algorithm for solving large-scale nonlinear programming problems is 

devised in Section 4 and a combination of the D.D.P. algorithm with Newton's 

method is discussed in Section 5. A modified version of the D.D.P. algorithm 

is described in Section 6. Numerical examples are given in Section 7 and 

convergence proofs of the D.D.P. algorithms are given in Section 8. 

2. Decomposition by Dynamic Programming 

Let x (n=1,2, ... ,N) be k -dimensional column vector. Consider the follow-
n n 

ing nonlinear programming problem with angular structure [12]: 

(P) minimize f(x
l

,x2 , ... ,x
N

) 

subject to gj(xl,x2, ... ,~)$0 (j=l, ... ,m), 

hj(x )$0 (j=l, ... ,m, n=l, ... ,N). 
n n n 

If equality constraints on (xl,x2' ... '~) or 

ing analysis is valid with obvious changes. 

valued functions g and h as (gl, ... ,gm)T and 
Il 

xn are imposed on (P), the follow­

Define m and m -dimensional vector 
n 

1 mn T 
(h , ... ,h ) , respectively, n n 
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Differential Dynamic Programming 373 

where T denotes the transposition. Then the feasible region of (P) denoted by 

X is represented as 

(n=l, ... ,N)}. 

Since Problem (P) is too general to be d,~composed by dynamic programming, it is 

assumed that [16]: 

R
kN_CRl kn 1 1 

There exist functions l:N: ~ and l:n:R XR ---R (n=l, ... ,N-l) such that 

(n=l, ... ,N-l) 

and f(x l , ... ,xN) = fl (xl'··· ,xN). 
k n where R denotes the k -dimentional Euclidean space and l: (o,y) (n=l, ... , 

n n 
N-l) are monotone nondecreasing functions of y; 

kl m k 
There exist functions 0

1
: R ---R and an: RmxR n ___ Rm (n=2, ... ,N) such that 

gl(Xl ) = °l(xl ), 

g (xl'···,x ) = a (g l(xl,···,x l)'x) n n n n- n- n (n=2, ... ,N) 

It is clear that separable programs satisfy the above conditions. Moreover, 

almost all large-scale mathematical programming problems which have been dis­

cussed by many researchers [9, 12] also satisfy these conditions. 

(2.1) 

Now let us introduce m-dimentional state variables s (n=O,l, ... ,N) as 
n 

and s = g (Xl' ... ,x ) 
n n n 

(n=l, ... ,N). 

Then Condition (C2) leads to the following difference equations: 

(2.2) s = <1 (s l'x) n n n- n 
(n=1,2, ... ,N), 

where 

Denote by Sn (n=l, ... ,N) the reachable set of sn; that is, 

Sn = {SnERm ; sn = gn(xl,···,xn), (xl,···,xN)EX}. 

Clearly for any n=l, ... ,N, 

(2.3) X = Vs [{(Xl'···,X 1); s l=g l(xl,···,x 1)' h (x.):-;O Sn_lE n-l n- n- n- n-· i 1 

(i=l, ... ,n-l)}x{(x , ... ,xN); s l=g l(xl,···,x 1)' 
n n- n- n-

g(xl,···,xN):-;O, hi(xi):-;O (i=n, ... ,N)}]. 

Therefore Condition (Cl) implies that 
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374 K.Ohno 

(P)=min{~l (x1'~2(···'~n-1 (xn_1,fn(xn,···,xN»···»1 (x1,···,~)EX} 

~ minS {~1(x1'~2(···'~ l(x 1,min{f Is l~g 1,g~O, 
sn_lE n-l n- n- n n- n-

h.~O (i~n, .•. ,N)})···»ls l=g 1,hi~O (i~l, ... ,n-l)}. 
~ n- n-

This suggests that the following subproblem (p ) should be dealt with: 
n 

(i=n, ..• ,N)}, 

m 
where sn_1ER and it is assumed that Fn(sn_l)= for sn_1 such that the feasible 

region of (P ) is empty. In addition, suppose that ~ (x ,00)=00 (n~l, ... ,N-l). 
n n n 

Theorem 1. Suppose that Conditions (Cl) and (C
2

) are satisfied. Then for 

n=l, ... ,N-l, 

(2.4) Fn(sn_l) ~ min{~ (x,F 1(0 (s l'x ») Ih (x )~O} n n n+ n n- n n n 
and 

(2.5) FN(sN_l) = min{~N(xN) 10N(sN_l,xN)~O, ~(xN)~O}. 

Proof: Let us redefine S (n~l, ... ,N-l) as 
n 

Sn {SnERm; there exists a (xn+l' ... ,xN) such that sn=gn' g50, 

hi~O (i~n+1, .•. ,N)}. 

In a way similar to (2.3), for s lES l' 
n- n-

{(x , ... ,xN); s l~g l' g~O, hi~O (i~n, ... ,N)} n n- n-

= Us [{x; a (s l'x )=s , h (x )~O}x{(x +l'···'xN); sn=gn' s E n n n- n n n n n 
n n 

g~O, h.(x.)$O (i=n+1, ... ,N)}]. 
~ ~ 

From this and Condition (Cl) it follows that for sn_lESn_l 

F (s 1) = min {~ (x ,min{f +lls =g , g~O, hi~O (i=n+l, ... ,N)}) I 
n n- snESn n n n n n 

a (s l'x )=s , h ~O} n n- n n n 

~ min{~ (x ,F +1(0 (s l'x ») la (s l'x )ES , h ~O} n n n n n- n n n- n n n 

~ min{~ (x ,F +1(0 (s l'x »)Ih (x )~O}. n n n n n- n n n 

Clearly, (2.4) holds for sn_liSn_l' and (PN) is reduced to (2.5). 

Since Fl(O) is identical with the optimal value of (P), Theorem 1 implies 

that every optimal solution of (P) can be obtained by solving first Subproblem 

(2.5) and solving (2.4) recursively for n=N-l, •.. ,l. That is, Problem (P) with 
N N 
Ilk -dimentional variable and m+ Ilm constraints has been decomposed into N n= n n~ n 

subproblems with each k
n 
-dimensional variable and m~ or mn constraints. 
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Remark 1. The above decomposition of (p) is different from that in [16]. 

In [16], it is assumed that (Cl) and, 

kN m 
(Ci) There exist functions 0N:R ~R 

instead of (C
2
), 

k n m m 
and O:R XR ~R 

n 

(C;) are satisfied: 

(n=l, ... ,N-l) such that 

gN(xN) = °N(xN) 

gn(xn,···,xN) = °n(xn,gn+l(xn+l,···,xN)) 

and g(xl,···,xN) = gl(xl, ... ,xN), 

(n=l, ... ,N-l) 

where for n=l, ... ,N-l and 

and oj(x ,sj) (j=l, .•• ,m) 
n n 

( 1 m) m ( ) (l( 1 m( ,sm))T s= s , ... ,s ER, On xn,S = On xn's )""'On xn 

are nondecreasing functions of sj. Moreover, instead 

of (p ), define for n=l, ... ,N, 
n 

(P') F (s) = min{f (x , ••. ,xN)lg (x , ..• ,X
N

)5S , h.(x.)50 (i=n, ..• ,N)}. 
n nn nn nn n 11 

Then the following recurrence relations hold for n=l, ... ,N-l: 

(2.6) F (s ) = min{i;; (x ,F +l(O-l(x ,s ))) Ih (x )50, x EV }, 
n n n n n n n n n n n n 

where O-l(x ,s )=max{s lERm; a (x ,s +1)5S } and V ={x ; 
n n n n+ n n n n n n 

-1 
there exists ° (x, 

n n 
s ) for given s}. Since (2.6) includes the function 0- 1 

n n n 
and the set V , it is 

n 
not easy to discuss (2.6) theoretically. 

As noted above, (P) can be solved by using (2.5) and (2.4) recursively. 

However, it is almost impossible to solve (P) with m~3 by using (2.5) and (2.4). 

This is because both the storage of F (s 1) for suitable lattice points of 
n n-

sn_l and the comparisons of values ~ (x .,F +1(0 (s l'x ))) at all xn satisfy-n n' n n n- n 
ing h (x )50 for each lattice point of s 1 are required. Thus an iterative 

n n n-
method based on (2.5) and (2.4), which is called a D.D.P., will be developed 

in the following sections. 

3. Kuhn-Tucker Conditions 

Define the Lagrangian functions L (n=l, ... ,N) for subproblems given'by 
n 

(2.4) and (2.5) as: for n=l, ... ,N-l, 

(3.1) 

and 

(3.2) 

L (x , A,S 1) n n n n-
T 

~ (x ,F +1(0 (s l'x )))+A h (x ) n n n 11 n- n n n n 

where An and ~ are mn-dimensional and m-dimensional nonnegative Lagrange multi­

pliers. To begin with, suppose that 

For each n=l, ..• ,N, the function ~ , component functions a j (j=l, ... ,m) 
n n 

of an and component functions h~ (j=l, ... ,mn) of hn are all twice dif-

ferentiable functions and all their second derivatives are uniformly 
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continuous. 

2 
For scalar functions, sav, ~ denote by V ~ and V ~ the gradient row vector 

~ n xn xn 
and the Hessian matrix of ~ with respect to x , respectively, and for vector 

n 2 n 
functions, say, On denote by VxOn and IJxOn the Jacobian matrix and the second 

Frechet-derivative of 0 with respect to x , respectively. That is, V ~ =(a~ 
1 k 2 n 2 .. n . . xn n 

ax , ... ,a~ /ax n), V ~ =(a ~ /axlaxJ ), V 0 =(aol/axJ ) and for any m-dimensional 
n n n x n n n n x n n n 

T 2 m· 2 . 
vector z, z IJ 0 =.L:lzJv oJ Note that gradient vectors are taken as row vec­

x n J= x n 
tors in relation to Jacobian matrices. 

Suppose that Problan (P) has an optimal solution {x*; n=l, ... ,N}. Then 
n 

the optimal trajectory {s*; n=l, ... ,N} corresponding to {x*} can be determined 
n n 

by (2.2). Moreover each subproblem (P ) with s l=s* 1 has also the optimal n n- n-
solution {x~; i=n, ... ,N}, and hence the optimal value F (s* 1) 

l .* .*.* n n-
x =x* in (2.4) and (2.5). Let hJ , 0NJ , Vh

n
J and so on denote n n . n 

is attained at 

h~(X~), ~(s~_l' 
x~), Vh~ (x~) and so on, and put for n=l, ... ,N, 

.* 
1* = {j; hJ =0 j=l, ... ,mn 

} 
n n ' 

and 

1* {j; ~*=o, j=l, ... ,m}, 

Suppose that 

For n=l, ... ,N-l, 

and {V~*; jEI~} 

.* 
gradient vectors {VhJ ; jEI*} are linearly independent, 

.* n n 
and {IJ oJ ; jEI*} are also linearly independent. x N 

This condition implies that the second-order constraint qualification is satis­

fied for each subproblem, if F
n
+

l 
is twice continously differentiable (differ­

entiability of Fn+l will be proved in Lemma 1). Consequently, it follows from 

the second-order necessary conditions [4, p.25] for x* to be an optimal solu-
n 

tion of (P ) with s l=s* 1 that: For each n=l, ... ,N-l, there exists a 
n n- n-

Lagrange mUltiplier A* such that 
n 

(3."3) 

(3.4) 

(3.5) 

(3.6) 

V L (X*,A*,S* 1) x n n n-

Diag(A*)h* = 0, 
n n 

h (x*) ,.:; 0, 
n n 

A* ~ 0, 
n 

V ~*+ ~ ~*VF* V O*+(A*)TVh* 
x n ay n n+l x n n n 0, 

and such that for every 

T 2 

.* 
vector z satisfying VhJ z=Q for all jEI*, 

n n 

(3.7) z IJ L*z ~ ° 
x n ' 

where Diag(A ) denotes the diagonal matrix with the j-th diagonal element Aj 
n n 

and 
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(3.8) 

For n=N, 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

2 3 T 3 2 T2 
V ~ +2(--3 V ~ ) VF +lV ° + --3 ~ {VF +lV ° +V 0 V F +lV ° } x n y x n n x n y n n x n x n n x n 

2 
+V 0TVFT _3 - ~ VF V ° +\ TV2h j 

x n n+l 3y2 n n+l x n n n 

there exist Lagrange multipliers \~ and ~* such that 

V L (x* \* ~* s* ) = V~*+(\*)TVh*+(~*)TV 0* 0, 
x N N' N' 'N-1 N N -~ x N 

Diag (A~)h~ 

hN(x~) ~ 0, 

\* ? 0, 
N 

0, Diag (~*)0~ = 0, 

0N(s~_1'x~) ~ ° 
~* ? 0 

'* '* and such that for every vector z satisfying Vh
N
J z=o for all jEIN* and V oJ z=o 

x N 
for all jEI*, 

(3.13) Tn2L* z v X NZ ? 0, 

where 

(3.14) 

X =(xT ,T)T ( T ,T T)T Put for n=l, ... ,N-l, n n,An and ~= XN,AN'~ and define for n=l, ... , 

N-1, 

(3.15) T (X ,s 1) n n n-
(V L (x ,s l),h (x )TDiag(\ »T 

x n n n- n n n 
and 

(3.16) 

It should be noted that for arbitrarily fixed s l' T (X ,s 1)=0 is a system n- n n n-
of (kn+mn) equations for the same number of unknowns and that TN(XN,sN_l)=O 

with fixed sN_l is a system of (kN+rnN+m) equations for the same number of un­

knowns. Therefore if X* (n=l, ... ,N) is an isolated solution of T (X ,s* 1)=0, 
n n n n-

that is, if there exists a neighbourhood of X~ which contains no other solu-

tions of T (X ,s* 1)=0, then X* satisfying the second-order necessary condi-n n n- n 
tions can be obtained by solving T (X ,Si' 1)=0 in the neighbourhood without 

n n n-
taking into account inequalities (3.5) and (3.6) or (3.11) and (3.12). From 

inverse function theorem [23, p.125] it follows that if the Jacobian matrix of 

T with respect to X is nonsingular at X~, then X* is an isolated solution of 
n n n 

T (X ,s* 1)=0. The Jacobian matrix of T n' denoted by J , is: for n=l, ... ,N-l, 
n n n- n 

[ 
V2L 

"h

T 

1 (3.17) J (X ,s 1) = x n 

Di:g(h ) n n n- Diag(\ )Vh 
n n n 

and 

V2L VhT T 
x N N 

V
x

0
N 

(3.18) IN(XN,sN_l) Diag(AN)V~ Diag(h
N

) 0 

Diag(~)VxoN 0 Diag(oN) 
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.* .* 
It is clear that if AJ=O for some nand jEI* or ~J =0 for some jEI*, then some 

n n 
J* are singular. Consequently it is assumed that 

n 
.* .* 

(CS) For n=l, ... ,N, A] >0 for all jEI* and ~] >0 for all jEI*. 
n n 

.* 
Denote by H*n (n=1, ... ,N-1) the matrix whose rows are Vh] (jEI*) and by H* the .* .* n n --N 
matrix whose rows are Vh~ (jEI~) and VxO~ (jEI*). Moreover denote the kernel 

of H by N(H), that is, N(H)={z; Hz=O}. The last assumption is [8]: 

N(H*) n N(V
2
L*) = {O} for n=l, ... ,N. 

n x n 

Now denote by 

X~(sn_l) (x*(s l)T, 
n n-

(x~(sN_l)T, 

for n<N, 

for n=N 

a solution of T (X,s 1)=0 for fixed s 1 and by K (X,s 1) the Jacobian 
n n n- n- n n n-

matrix of Tn with respect to sn_l' The Jacobian matrix Kn is given by 

[

V2 L (X,s 1)] 
(3.19) K (X ) = xs n n n-

n n,sn_l 
A (X,s 1) n n n-

where for n=l, ... ,N-l, 

(3.20) 

(3.21) 

and 

(3.22) 

(3.23) 

V2 L 
xs n 

A 
n 

2 
= V oT{~ ~ V2F +VFT 1~2 ~ VF }V 0 

x n ay n n+l n+ ay n n+l s n 

a 2 a T 
+ ~ ~ VF IV 0 +(~ V~ ) VF +lV 0 , ay n n+ xs n ay n n s n 

0, 

V2 L ~T02 
xs N xs N' 

AN = r Dia.(")~,aN 1 
Then the following lemma holds. 

Lemma 1. Suppose that Conditions (Cl) 

for n=l, ... ,N, J (X*,s* ) is nonsingular. 
n n n-l 

tinuously differentiable in a neighbourhood 

through (C
6

) are satisfied. Then 

Moreover, F (s 1) is twice con-
n-l n n-

O of s* l' and for n=l, ... ,N-l, s n-

(3.24) 

(3.25) 

F (s 1) = ~ (x*(s l),F +1(0 (s l'x*(s 1»»' n n- n n n- n n n- n n-
a 

VFn (sn_1) = ~- ~ (x*(s l),F +1(0 (s l'x*(s l»»VF +1(0 (s l' ay n n n- n n n- n n- n n n-

(3.26) 
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a 2 a 2 2 
+ ~- ~ V F l}V 0 + ~ ~ VF l{V 0 +V 0 Vx*(s I)} "y n n+ s n "y n n+ s n sx n n n-

FN(sN_l) = ~N(xN(sN_l»)' 

VFN(sN_l) = ~*(sN_l)TVsON(sN_l,xN(sN_l))' 

379 

(3.27) 

(3.28) 

(3.29) V
2
FN(sN_l) = V~*(sN_l)TVsON~*(sN_l)TV!ON+~*(sN_l)TV!XONVxN(sN_l)' 

where for n=l, ... ,N, X*(s 1) belongs to a neighbourhood 0xn of X* and 
n ~ n 

(3.30) -1 
= -J (X*(s l)'s l)K (X*(s l)'s 1)· n n n- n- n n n- n-

Proof: Since under Condition (C
6
), (3.13) becomes 

( 3.31) TV2L* > 0 
Z x NZ 

for every nonzero vector zEN(H~), the nonsingularity of I
N 

can be proved in a 

way similar to [4, p.80-8l]. Consequently, implicit function theorem [23, p. 

128] implies that there exist open neighbourhoods Ox of XN and Os of sN_l such 

that for any sN_lEc£Os' TN(XN,sN_l)=O has a unique solution XN(sN_l)Ec£OX and 

for any sN_lEOs' (3.30) holds for n=N, where c£Os means the closure of Os. 

Since (3.9) through (3.12) and (3.31) are, the second-order sufficient condi­

tions [4, p.30] for xN=xN(sN_l) to be an isolated local optimal solution of 
N N-l 

FN(sN_l)' there exist open neighbourhoods 0XcOX and ° cOs such that xN(sN-l) 
N s N 1 

EOX is an isolated optimal solution of FN(sN_l) for sN_lEOs- . N=~ is clear 

that FN(sN_l)=t,N(xN(sN_l» and TN(XN(sN_l) ,sN_l)=O for sN_lEc£Os . Conse·­

quently, 

FN(sN_l) = LN(XN(sN_l),sN_l) 

and hence VFN(sN_l)=VXLN(XN(sN_l),sN_l)VXN(sN_l)+VsLN(XN(sN_l),sN_l) 

=~*(sN_l)TVsON(sN_l'xfi(sN_l»· 
By (3.30) with n=N, this implies that FN is twice continuously differentiable 

and V2FN is given by (3.29). Therefore "'xLN-l and V~LN_l are well-defined, 

and the lemma for n=l, ... ,N-l can be proved in the same way as in the above. 

4. Differential Dynamic Programming 

Denote any iteration procedure for solving the system of the nonlinear 

equations 

(4.1) 

T (X,s 1)=0 for fixed n n n-

Xk+1 = U (Xk s ), 
n n n' n-l 

-1 n n-l 
where k=O,l, .... Since by Lemma 1, I n (Xn ,sn_l) exists for XnEOX and sn_lEOs ' 

for example, Newton's method is described as 
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k k -1 k k 
(4.2) U (X,s 1) = X -J (X,s l)T (X,s 1)· n n n- n n n n- n n n-

Let an initial guess {XOEO
n

; n=l, ... ,N} be given. Then the initial trajectory 
n X 

{sO; n=O, ... ,N} corresponding to {xO} is determined by (2.2) with s~=O. As 
n n 1 

noted in the preceding section, if sO lEO
n

- , then an optimal solution of (p ) 
~ s n 

with s l=sO 1 can be obtained by solving T (X ,sO 1)=0 in 0xn. Since the iter-
~ ~ n n ~ 

ation procedure U usually generates a sequence {X*; k=1,2, ... } converging to 
n n 

the solution of T (X ,sO 1)=0 which is nearest to the initial point xO Xl 
o ° n n n- 0 n' n 

=U (X,s 1) will come nearer to the optimal solution of F (s 1). In particu-
n n n- ° 1 1 n n-

lar, since So is always fixed to the origin, Xl and sI given by 

100 101 
Xl = Ul(Xl,sO) and sI = 0l(sO'xl ) 

will come nearer to xt and st. This suggests the following conceptual algo-
k+l k+l k k k+l 

rithm: Compute X by X =U (X,s 1) for n=N, ... ,l and determine s by 
k n n n n n- n 

(2.2) with sO=O for n=l, ... ,N-l. However, it should be noted that T , J and 
n n 

K (n=1, ... ,N-2) which may be used in U contain unknown values F l(sk), 
n n n+ n 
~F +l(sk) and ~2F l(sk). Therefore it is essential to obtain their approxi-

n n n+ n 
mate values which guarantee that {X*} is a point of attpaction of the following 

n 

D.D.P. algorithm, that is, there exist open neighbourhoods 0nco~ (n=l, ... ,N) 

such that for any XOEO , Xk (k=1,2, ... ) generated by the algorithm remain in 0 
n n n k k n 

and converge to X* [23, p.299]. Since exact values F l(s), ~F l(s) and 
2 k n n+ n n+ n 

~ Fn+l(sn) are given in Lemma 1, such approximate values can be obtained by 
-k -k 2-k 

approximating suitably 0.24) through (3.29). Denote by F +1' ~F 1 and ~ F +1 
k k 2 n n+ n 

the approximat.= va:ues of Fn+l(Sn)' ~Fn+l(sn) and ~ Fn+l(s~), respectively, and 

denote by T , J , K and U (n=l, ... ,N-l) T , J , Kn and Un with F l' ~F 1 2 n n n n n n __ _ n+ _ n+ 
and iJ Fn+l substituted by their approximate values ~+l' iJF~+l and ~2F~+1' re-

spectively. For example, when for n=l, ... ,N-l, Un represents Newton's method 

(4.2), U 
n 

is described as 

(4.3) - k k --1 k - k 
U (X,s 1) - X -J (X,s l)T (X,s 1). n n n- n n n n- n n n-

Note that as shown by 0.9), (3.14), (3.16), (3.18), (3.19), (3.22) and (3.23), 

T
N

, I
N 

and ~ include no unknown functions so that UN also does. 

D.D.P. algorithm: Let {X~; n=l, ... ,N} and {s~; n=O, ... ,N-l} be given. 

Set k=O. 

Step 1: -k+l '~k ~F'k 2-k 
Compute X

N 
, F

N
, 

N 
and ~ FN by 

(4.4) 
-k+l 
X

N 
k k 

= UN(XN,sN-l)' 

(4.5) F'k = 
N 

-k+l. 
SN(xN ), 

(4.6) ~F'k 
N 

Ck+l)T~ (k -k+l) 
~ sON sN_l,xN 
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and 

X
N

' respectively. 

Step 2: 

(4.8) 

(4.9) 

(4.10) 

and 

(4.11) 

Step 3: 

(4.12) 

Step 4: 

(4.13) 

and 

(4.14) 

Step 5: 

(4.15) 

and 

(4.16) 

-k+1 F-k -k 2-k For n=N-1, ... ,2, compute X VF and V F by 
n ' n' n n 

-k -k 2 k k, 2 k k ~1- k k 
F l)VF +l{V ° (s l'x )-v ° (s l'x )[J K (X,s 1)] }. n+ n s n n- n sx n n- n n n n n- x 

k+1 
Compute Xl by 

k+1 - k k 
Xl = U1 (X1 ,sO)' 

k 
where sO=O. 

k+1 For n=2, ... ,N-1, compute sn_1 and Xk+1 by 
n 

Xk+1 = Xk+1_[~lK (Xk,sk )](sk+1_s k ). 
n n n n n n-1 n-1 n-1 

k+1 k+1 
Compute sN_1 and XN by 

k+1 k+1 k+1 
sN_l °N_1(sN_2'xN_1) 

381 

Set k=k+1 and go back to Step 1. 

-k+1 Remark 2. Note that Xn in Steps 1 and 2 is not an improved estimate to 

a solution of T (X ,sk+
1
1)=0 but that to a solution of T (X ,sk 1)=0. Steps 4 

n n n- n n n-
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k+1 
and 5 compute the new state sn_l 

k+1 
for sn_l' Let c (x ) and c'(x ) n n n n 

K. Ohno 

~k+1 k Xk+1 
and adjust Xn for the old state sn_l to n 

be twice differentiable functions with uni-, 

formly continuous derivatives. When all t, (n=l, ... ,N-l) are given by E", (x ,y) "n n n 
=c (x )+y, computations (If F'k in Steps 1 and 2 are unnecessary, because none of 

n n ~k 2"'k n ~k 
Tn' I n , Kn' V'Fn_ l and V' Fn_l include values of Fn' A discrete time optimal 

control problem is one of the most important problems with such E",n' Moreover, 

a separable program is composed of such E, and 0 given by 0 (s l'x )=s 1 n n n n- n n-
+c'(x). Therefore the D.D.P. algorithm for solving separable programs be­

n n 
comes much simpler than the present D.D.P. algorithm [22]. 

In the following, 11·11 denotes £1 norm or the corresponding 

Le., for matrix A=(a~), 11 All =max Lla~l. Put ok=11 Xk_X*(sk 1)11 
k T J j i J n n n n-

... , oN) . 

matrix norm, 

and ok=(ok 
l' 

Theorem 2: Suppose that Conditions (Cl) through (C6) are satisfied. It 

is assumed that the iteration procedures U (n=l, ... ,N) satisfy the following 
n 

cond i t ions: 

For n=l, ... ,N, there exist nonnegative numbers a and p such that for 

11 
k k k 11 n k l+p . k n-l k n 

sn_l EOs and Xn"OX' U (X ,s l)-X*(s 1) =>a (cS) ,where 1f p""O, n n n- n n- n n 
then an<l; 

For n=l, ... ,N-l, there exist positive numbers bnl , bn2 and b
n3 

such 
k n--l k n 

that for sn_lEOs and XnEOX' 

11 k k ~ k k 11 11 k ~k 11 U (X ,s l)--U (X ,s 1) => b 1 F +l(s )-F +1 n n n- n n n- n n n n 
k ~k k 2 k 2~k 

+b 211 V'F +l(s )-V'F +111 +b 30 11 V' F +l(s )-V' FIll n n n n n n n n n+ 

Then the optimal solution {X*} of (P) is a point of attraction of the D.D.P. 
n 

algorithm. Moreover its convergence is R-supepZineap or R-Zineap [23, p.29l], 

according as the constant p in (C
7

) is positive or zero. 

The proof is given in Section S. In [22] a similar result is shown for 

the D.D.P. algorithm for solving separable programs. In [22], however, its 

convergence rate is not shown explicitly and the constant corresponding to p 

in (C
7

) is assumed positive. Since p in (C
7

) may be zero, almost all iteration 

methods for solving a system of nonlinear equations satisfy Condition (C
7
). In 

fact, Newton's method, discrete Newton's method, some modifications of Newton's 

method, secant method [23], quasi-Newton methods [2] and Newton-Moser type 

method [6] satisfy Condition (C7) with p>O. In addition, parallel-chord method, 

simplified Newton method and successive overrelaxation method [23] satisfy (C 7) 

with p=O. Consequently, all these methods can be used as U in the D.D.P. 
n 

algorithm, if they satisfy Condition (CS), 
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5. Combination with Newton's method 

One of the methods which are used popularly in solving a system of non-­

linear equations is Newton's method given by (4.2). This section deals with 

the D.n.p. algorithm with U and U given by (4.2) and (4.3). The following 
n n 

lemma is necessary in proving that Newton's method satisfies Conditions (C
7

) 

and (C
8

) in Theorem 2. 

for 

such 

and 

Lemma 2. Suppose that Conditions (Cl) through (C6) are satisfied. Then 

n=l •...• N-l and integer k. there exist nonnegative numbers a~_ (i.j=1.2,3) 
k n k n-l 1J 

that for XnEOX and sn_lEOs 

11 
k k ~ k k 11 

Tn(Xn·sn_l)-Tn(Xn·sn_l) $ 

11 
k k ~ k k 11 

In(Xn·sn_l)-Jn(Xn·sn_l) 

11 
k k ~ k k 11 K (X.s l)-K (X.s 1) nnn- nnn-

Proof: From (3.15). (3.17). and (3.19) it follows that 

11 T -r 11 n n 11 V L -V 1 11 • 11 J -'5 11 = 11 V
2

L _'1
21 11 x n x n n n x n x n 

and 11 K -K 11 n n 
11 '12 L _'1

2 1 11 
xs n xs n 

Therefore Condition (C
3

) and (3.3). (3.8). (3.20) imply that the lemma holds. 

Corollary 1. Suppose that Conditions (Cl) through (C
6

) are satisfied. 

Then the optimal solution {X*} of (P) is a point of attraction of the D.D.P. 
n 

algorithm with Newton's method. The convergence of this algorithm is R-

quadratic [23. p.29l]. 

Proof: Since Condition (C
3

) implies that I
n 

is Lipschitz-continuous in 

Xn ' Newton's method satisfies Condition (C
7

) with p=l [23. p.3l2]. From (4.2) 

and (4.3) it follows that 

11 U (X
k 

.sk I)-V (Xk.sk 1) 11 $ 11 '5-1
11 (11 T -T 11 +11 T 11 11 J-lll 11 J -'5 11 ). n n n- n n n- n n n n n n n 

Therefore Lemma 2 implies that Newton's method satisfies Condition (C
8
). be-­

cause 

11 Tn(Xkn.skn_l) 11 = 11 T (Xk.sk l)-T (X*(sk l).sk 1) 11 n n n- n n n- n-

and the boundedness of 113-
1

11 is shown in Lemma 3 in Section 8. The R­
n 

quadratic convergence can be proved in much the same way as in Section 8. 

The same argument as in the above proof can apply to the D.D.P. algorithm 

with any other iteration method Un represented by Tn' I n and Kn' Thus the 
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optimal solution {X*} of (P) will be a point of attraction of the D.D.P. algo­
n 

rithm with any iteration method noted in the preceding section. 

Let us discuss the operation count, i.e., the number of multiplications 

and divisions, per one iteration of the D.D.P. algorithm with Newton's method. 
~-l~ ~-l~ 

Denote for n=l, ... ,N-l, J T and J K 
-1 n n n n 

by 6X and VX , 
n n 

-1 
respectively, and I N TN 

and I N ~ by 6~ and V~, respectively. Put for n=l, ... ,N-l, H =k +m 
n n n 

and N 
n 

m+m , and MN=k +m+mN and N =m+m. Then n N N N 
6X and VX can be obtained by 

n n 
solving 

the following matrix equation: 

(S.l) J (6X VX ) = (T K). 
n n n n n 

Since by (3.15) through (3.19), J
n

, Tn and Kn are H xM , M xl and M Xm matrices, 
n n n n 

the operation count for solving this matrix equation by using Gaussian elimina-

tion is [M3+3(m+l)M2-M ]/3. In addition, the operation counts for constructing 
n n n 

J , T and K (n=l, ... ,N-l) are k [2k N +(m+l)2+3k +1], (k +l)N , m[(k +1)(2m n n n n nn n n n n 
+kn)+m+2], respectively, and those for constructing I

N
, TN and ~ are kN(k

N 
+l)NN' (kN+l)NN and m

2
(kN+l), respectively. Since the operation counts for 

. ;;;'k ~k 2:::1< () () 2 2 constructlng FN, VFN and V FN by 4.S through 4.7 are 0, m and m (m+2~), 

respectively, the operation count in Step 1 is [~+3(m+l)~-~]/3+(kN+l)2NN 
+m

2
(m+3k +2). Similarly, since the operation counts for constructing ~, vFk 

2~ n ~ 
and V F by (4.9) through (4.11) are m(k +l)+k , m(4m+2k +3)+k +l and 2m[2m +(m 

n n n n n N-I 3 
+1) (2k +1) ]+k , respectively, the operation count in Step 2 is L

2
{(M +3(m 

n n n= n 
+1)M2-M ]/3+(2k

2
+k +l)N +m[2(m+l) (2m+2k +1)+3m(k +1)+k2+6k +6]+3k2+Sk +l}. The 

n n n n n 3 2 n 2 n n n 2 n n 
operation count in Step 3 iS

N
(M

l
+3M

l
-M

I
) 1 3+(2k

l
+k

l
+l)N

l
+k

l 
(m+l) +k

l
(3k

l
+l) and 

that in Steps 4 and S is m n~2 Mn' Therefore the operation count per one itera­

tion of the D.D.P. algorithm with Newton's method is: 

I {[M3+3(m+1)M2+(3m-l)M ]/3+(2k
2
+k +l)N } 

n=l n n n n n n 
2 N-I 3 2 2 

+ (7m +1 Orn+S) J/n + N(4m +9m +8m) - (kN-kN)NN - mMl (MI+l) 

N-I 
+ (m+3) I k

2 

n=2 n 

2 2 2 2 
- mOm +l6m+16) + 3m ~ + (m +2m+l)k l + 3k

l 
+ k

l
. 

N N 
Neglecting the order of L (m+M)M and L k N , the operation count is of the 

n=l n n n=l n n 
order of 

(S.2) I {M
31 3+rnM

2
+2k 2N +mk (7m+k )}. 

n=l n n n n n n 

The D.D.P. algorithm with Newton's method requires the core memory which stores 

values 
k of X , 
n 

and 2. 

~k+l ~-l~ k k+l 
of X ,VX =[J K], sand s for all n in Steps 4 and S and those 

n n n n n n 
~ ~ ~k ~k ~k ~k 2~k 2~k 

T , J , K , F , F +1' VF , VF +1' V F and V F 1 for each n in Steps 1 n n n n n n n n n+ 
Therefore the magnitude of the core memory required for the D.D.P. 

algorithm with Newton's method is: 
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(5.3) 
N 2 2 L (mM +k ) + 2{m +(N+l)m+l} + max{M +(m+2)M }. 

n n n n n n=l 
Summing up the results obtained above yields the following corollary. 

Corollary 2. The operation count per one iteration of the D.D.P. algo­

rithm with Newton's method is of the order of (5.2) and the magnitude of the 

core memory required for the algorithm is given by (5.3). 

This corollary shows that both the operation count and the magnitude of 

the required core memory for the D.D.P. algorithm with Newton's method grow 

only linearly with N. This desirable property is one of the well-known desir­

able properties of dynamic programming. Since the D.D.P. algorithm is based 

upon the decompoSition by dynamic programming, it inherits almost all desirable 

properties of dynamic programming. 

When Mn is large for some n, Newton's method (4.2) is not a good practical 

method for solving the system of nonlinear equations. This is because solving 

(5.1) consumes much time. For such n, Newton's method had better be replaced 

by quasi-Newton method [2]. Since ~=kN+m+mN is usually larger than other Mn 

=k +m , let N be such an n. In quasi-Newton method approximate matrices of 
n In k 

(-J; ) are successively computed without calculating I
N

• Denote by G
N 

an ap-
. . -1 k k 0 -1 0 0 

proxl.IDate matnx of (-IN (XN,sN-l» and put GN=-JN (XN,sN-l)' Then for k=(),l, 

... , Step 1 is modified as follows: 

Step 1-1: 

and 

Step 1-2: 

Step 1-3: 

Step 1-4: 

k ~k+l 
Compute ~ dimensional vectors YN and XN by 

k k k k 
YN = GNTN(XN,sN_l) 

~+l = ~ + y~ 
Compute ~ dimensional vector Z~ by 

k ~k+l k k k 
zN = TN(XN ,sN_l) - TN(XN,sN_l)' 

k+l Compute G
N 

by 

k+l k k k k k T k . k T k k 
GN = GN - (GNzN+YN)(YN) GN/(YN) GNzN 

~k ~k 
Compute FN and VFN by (4.5) and (4.6), respectively, and V2Fk 

N -1 by (4.7) with (-I
N 

) replaced by Gk+l 
N • 

The corresponding modification in Step 5 is obvious. If for n<N, Mn is large, 

then the corresponding step in Step 2 had better be modified in a way similar 

to the above modification of Step 1. 
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6. Modified Differential Dynamic Programming 

In the D.D.P. algorithm discussed in the previous sections, equalities 

(3.3), (3.4), (3.9) and (3.10) in the Kuhn-Tucker conditions have played a 

major role, but inequalities (3.5), (3.6), (3.11) and (3.12) in the conditions 

have been intentionally neglected, because these inequalities are unnecessary 

for the local convergence of the D.D.P. algorithm. Thus, if the initial guess 

{XO} is far from the optimal solution of (P), then the D.D.P. algorithm has a 
n 

tendency to generate a sequence {Xk} converging to the unconstrained optimal 
n 

solution or an optimal solution of (P) with some neglected constraints. This 

tendency will be corrected by taking into consideration those inequalities. A 

natural way to do so is to restrict X~+l (n=l, ... ,N) so that they satisfy those 

inequalities. 

For given positive numbers En (n=l, ... ,N) and E, put 

{ . h j ( k . -1 } (1 N k ° 1 ) J; n Xn)~En' J- , ... ,mn n= , ... " =, , ... 

and {j; ~(s~'_l'X~)~E, j=l, ... ,m} (k=O,l, ... ). 

Moreover for given positive number rn<l, define a simple modification of itera­

tion procedure U (Xk,sk 1) as 
n n n-

(6.1) V (Xk,sk 1; £)={l-(r )£}xk+(r )£U (Xk,sk 1) (n=l, ... ,N, k=O,l, ... ), 
n n n- n n n n n n-

where 
k 

sn_l) 

£ is an appropriately chosen nonnegative number. For example, when U (Xk, 
n n 

represents Newton's method (4.2), the corresponding modification V (Xk, 
n n 

sk . 
n-l' 

.Q,) becomes 

k k k .Q, -1 k k k k 
(6.2) V (X,s 1; £) = X - (r ) J (X,s l)T (X,s 1)' n n n- n n n n n- n n n-

~ k k ~ k k 
Let us denote by V (X,s 1; £) the above modification of U (X,s 1)' A modi-n n n·- n n n-
fication of the D.D.P. algorithm is made by using Vn (n=I, ... ,N-l) and V

N 
in-

stead of Un (n=l, ... ,N-l) and UN' 

Modified D.D.P. algorithm: Let {X~; n=l, ... ,N} and {s~; n=O, ... ,N-l} be 

given. Set k=O. 

Step 1: Compute ~+1 by 

(6.3) 
~k+1 

XN 
k k 

= VN(XN,sN_l; .Q,) , 

where for given positive numbers E~ and E', £ is the smallest nonnegative inte-
j ~k+ 1 k j k ~k+ 1 . k ~k+ 1 . 

ger such tha~.hN(xN )~=~+io~ jETN, CJ'N(sN_l,xN )~E ~?r JET , AN J~_E~ for j 

satisfying ANJ~-E~ and ~ J~_E' for j satisfying ~ J~_E' are all satisfied. 
~k ~k 2~k 

Then compute FN, VFN and ':/ FN by (4.5), (4.6) and (4.7), respectively. 

Step 2: Set n=N-l. Compute Xk+l by 
n 
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(6.4) X~k+l ~ k k 
= V (X ,s 1; i), n n n n-

where for given 
j ~k+l 

that h (x )~E 

positive number E', R, is the smallest nonnegative integer such 
k ~ n, k' 

n n n 
for JEI and Ak+l J~ -E' for j such that A J~_E' are all sat-

n n n n n 
isfied. Then compute Fk, VFk and V2Fk by (4.9), (4.10) and (4.11), respective-

n n n 
ly. Set 

Step 3: 

(6.5) 

n=n-l and repeat this step until n=2. 

k+l 
Compute Xl by 

k+l ~ k k 
Xl = Vl(Xl,sO; R,), 

where for given positive number El" R, is the smallest nonnegative integer such 
, k+1 k k' 

that hi (Xl ) ~El for j Ell and At+l j~E~ :~or j such that Al J~-Ei are all satis-

fied. 

Step 4: 

(6.6) 

where r is a given positive number less than one and £, is the smallest nonn.ega-
, k+l k k+l ' k' 

tive integer such that h~(xn )~En for jE1n and An J~_E~ for j such that AnJ 

~-E' are all satisfied. 
n 

Step 5: 
k+l k+l 

Compute sN_l by (4.15) and XN by 

(6.7) 
k+l ~k+l i -1 k k k+l k 

XN = XN -r [IN ~(XN,sN_l)l(sN_l-sN_l)' 
, k+1 

where R, 1.s the smallest nonnegative integer such that h~(~ ) ~~ for 
i k+1 k+1 , k k+1 j k' k+l 
~(sN_l'~ )~~ for JEI ,~ ~-E~ for j such that ANJ~-E~ and ~ 

j such that ~ J~_E' are all satisfied. 

, Ik 
~E N' 
J~_E' for 

k The following theorem states that points {X } generated by the modified 
n 

D.D.P. algorithm converges locally to the optimal solution {X*} and that i.ts 
n 

rate of convergence is the same as that of the D.D.P. algorithm. 

Theorem 3. Suppose that all conditions in Theorem 2 are satisfied. Then 

the optimal solution {X*} of (P) is a point of attraction of the modified D.D.P. 
n 

algorithm. Moreover its convergence is R-super1inear or R-1inear according as 

the constant p in (C
7

) is positive or zero. 

The proof is given in Section 8. As shown in the proof, the modified 

D.D.P. algorithm has larger convergence domain than the D.D.P. algorithm. In 

much the same way as in the proof of Corollary 1, the fol1owi,ng corollary ean 

be proved. 

Corollary 3. Suppose that Conditions (Cl) through (C
6

) are satisfied. 

Then {X*} is a point of attraction of the modified D.D.P. algorithm with 
n 

Newton's method and its convergence is R-quadratic. 
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7. Numerical Examples 

As shown in Theorems 2 and 3, the optimal solution of (P) is a point of 

attraction of both the D.D.P. algorithm and the modified D.D.P. algorithm under 

Conditions (Cl) through (C
8
). Various types of nonlinear programming problems 

satisfy Conditions (Cl) through (C
3
). For example, objective functions f com­

posed of the following functions ~(x,y) satisfy Conditions (Cl) and (C3): 

(7.1) 

(7.2) 

(7.3) 

~(x,y) 

~(x,y) 

~(x,y) 

c(x)+a(x)b(y), 

c(x)+{d(x)}e(y) , 

e(c(x)+a(x)b(y», 

where all functions a, b, c, d, e are twice differentiable functions with uni­

formly continuous second derivatives, and a is nonnegative (nonpositive) valued, 

b is nondecreasing (nonincreasing), d is nonnegative valued and e is nonde­

creasing functions. As noted in Remark 2, separable programs and discrete time 

optimal control problems satisfy (Cl) through (C3). Moreover, many large-scale 

nonlinear programming problems satisfy these conditions [9, 12]. Conditions 

(C
4

) and (C
5

) are regular conditions imposed frequently on nonlinear program­

ming problems, and Condition (C
6

) is satisfied, if 17
2
L* (n=l, ... ,N) are posi-x n 

tive definite matrices. In the following, three examples are solved by using 

the D.D.P. algorithm or the modified D.D.P. algorithm with Newton's method. 

Thus Corollaries 1 and 3 show that Conditions (C
7

) and (C
8

) are satisfied. 

Example 1. Minimize 

exp (xi)+exp (x~ +x;) 

subject to xi+x1-4X2+3 ~ O. 

The optimal solution (x!, x~, x~, v*) is (-0.17264, 0.67227, 0.16807, 0.34577) 

and the optimal value is 2.64665. Clearly the objective function is decomposed 

by using ~l(x,y)=exp(xi)'~y, ~2(x2,y)=exp(x;)y and ~3(x3)=exp(x~). Numerical 

computations with the termination criterion max Ilxk-xk+lll <10-5 were carried 
n n n 

out on the FACOM M-190 computer of Data Processing Center, Kyoto University. 

The optimal solution with over six-place accuracy was obtained. The results 
o 0 0 0 

are shown in Table 1. The first column shows the initial values (xl ,x2 ,x3 'V ). 

The symbol t means that the D.D.P. algorithm with Newton's method starting 

from the initial value gave the unconstrained optimal solution and hence the 

modified D.D.P. algorithm with Newton's method was used by setting E=O.Ol, E' 

=0.1 and r=0.5. The sec:ond and third columns describe the numbers of itera­

tions and the computation times of the D.D.P. algorithm or the modified D.D.P. 

algorithm with Newton's method, respectively. Time is measured in milliseconds. 
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Table 1. Computational Results for Example 1. 

Initial value 

° ° ° ° Time (m.s.) ° (x
l

,x2,x
3

,1l ) Iteration s3 

(-1, 1, 1, 0.5) 6 19 -2 
(0.5,0.5,0.5,0.5) 14 47 1.25 
(1, 1, 1, 1) 7 24 ° (1.5,1.5,1.5,1.5) 8 26 -0.75 
(2, 2, 2, 2) t 13 41 -1 
(3, 3, 3, 3) 27 98 ° 

° The fourth column indicates the values of s3' i.e., the values of the con-

straint at the initial values. 

Example 2. Minimize 

222 2 
xl-5xl+x2-5x2+2x3-2lx3+x4+7x4 

subject to 
222 2 

xl + xl +x2- x2+ x3+ x 3+x4- x4- 8 s ° 
x~- Xl +2X; + x~ +2x!-X4-10 s ° 

and 
2 2 2 

2xl +2xl + x2-x2+ x3 -x4- 5 s 0. 

This is the well-known Rosen-Suzuki Test Problem [25]. The optimal solution 

(x~,x~,x~,xZ,llt,ll~,ll~) is (0,1,2,-1,1,0,2) and the optimal value is -44. It is 

clear that all conditions except (C
4

) are satisfied for the above problem. 

However, Condition (C
4

) requires that the decomposition of the above problem 

should be three stages. Therefore, the objective function must be decomposed 
2 2 2 2 

by !;1(xl ,y)=xl -5xl +y, !;2(x2,y)=x2-5x2+y and !;3(x3,x4)=2x3-2lx3+x4+7x4. The 

numerical results are shown in Table 2. All details are the same as in Table 1. 

Table 2 shows that the D.D.P. algorithm or the modified D.D.P. algorithm with 

Newton's method can solve rather quickly the Rosen-Suzuki Test Problem. 

Table2. Computational Results for Example 2. 

Initial value 

° ° ° ° ° ° ° (xl ,x2,x3,x4,1l1,1l2,1l3) 

(O,O,O,O,l,l,l)t 

(0,1,0,1,1,1,1) 

(l,l,l,l,l,l,l)t 

(-l,-l,-l,-l,l,l,l)t 

(1,-1,1,-1,1,1,1) 

Example 3. Minimize 
30 x 

_ IT {l-(l-r ) n} 
n=l n 

Iteration 

12 

9 

14 

18 

9 

Time (m.s.) 

68 

51 

78 

103 

52 

(-8,-10,-5) 

(-8,-7,-6) 

(-4,-6,-1) 

(-4,-2,-1) 

(0,-4,3) 
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30 
subject to L a x ~ b 

n=l mn n m 
(m=l,2,3), 

where the values of constants rn' amn and bm are given in Table 3. This is a 

relaxed version of an optimal redundancy allocation problem. Nakagawa, 

Nakajima and Hattori [18] have solved the above problem with integral con­

straints on x and different values of b. The optimal value of the above 
n m 

problem is -0.95473 and its optimal solution is shown in Table 3. As noted in 

Example 2, Condition (C
4

) requires that the objective function should be decom-
r xn} 

pose~oby using ~n(xn,y)=1.l-(l-rn) y (n=1,2, ... ,27) and ~28(x28,x29,x30) 

= - IT {l-(l-r )xn}. Table 4 shows the computational results. All the details 
n=28 n 

Table 3. Constants and the Optimal Solution of Example 3. 

1 2 3 4 5 6 7 8 9 10 
n 11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

.90 .75 .65 .80 .85 .93 .78 .66 .78 .91 
r .79 .77 .67 .79 .67 .94 .73 .79 .68 .98 n 

.90 .86 .95 .92 .83 .97 .89 .99 .88 .98 

5 4 9 7 7 5 6 9 4 5 
aln 6 7 9 8 6 4 3 9 7 4 

9 8 6 3 4 5 7 6 8 7 

8 9 6 7 8 8 9 6 7 8 
a 2n 9 7 6 5 7 8 4 9 3 9 

5 3 4 5 2 6 1 10 7 6 

2 4 10 1 5 5 4 8 8 10 
a 3n 7 3 1 2 4 12 6 5 4 3 

5 9 2: 5 7 8 6 3 12 5 

3.031 4.491 5.333 4.211 3.407 2.571 4.146 5.335 4.041 2.654 
x* 3.899 4.393 5.813 4.345 5.500 2.291 4.851 3.959 5.642 1.879 n 

2.958 3.286 2.539 2.785 3.771 1.995 3.183 1.609 2.904 1.869 

(700, 680, 585) 

( -5 -4 2.366xlO-4) 5.l73xlO ,1.760xlO , 

Table 4. Computational Results for Example 3. 

o 0 000 
(m. s.) 

0 Initial Value (xl, ... ,x30'~1'~2'~3) Iteration Time s28 

a 7 477 (-40,-43.5,-30.5) 
b 10 673 (-104,-107,-94) 

(1, ... ,1,0.1,0.3,0.4) 13 873 (-513,-488,-419) 

a=(2.5, 4, 5, 4, 3, 2.5, 4, 5, 4, 2.5, 4, 4, 5.5, 4, 5, 2, 4.5, 3.5, 5.5, 1. 5, 

3, 3, 2.5, 3, 4, 1. 5, 3, 1.5, 3, 2, 1, 1, 1) 

b=(3, 4, 5, 4, 3, 2, 4, 5, 4, 2, 3, 4, 5, 4, 5, 2, 4, 3, 5, 1, 2, 3, 2, 2, 3, 

1, 3, 1, 2, 1, 0.1, 0.3, 0.4) 
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are the same as in Table 1. 

The above three examples show that the D.D.P. algorithm or the modified 

D.D.P. algorithm with Newton's method has both very rapid convergence property 

and rather large convergence domain. Since Corollary 2 implies that the com­

putation time of the D.D.P. algorithm with Newton's method grows only linearly 

with N, the above examples suggest that the D.D.P. algorithm or the modified 

D.D.P. algorithm with Newton's method will solve large-scale nonlinear program­

ming problems with several hundred variables within few minutes. 

8. Convergence Proofs 

This section deals with the proofs of Theorems 2 and 3. Equation (2.2) 

and Condition (C
3

) imply that for n=l, ... ,N, 

(S.l) 11 sk_ s * 11 ~ 110 (sk l,xk)-O (sk l,x*(sk 1» 11 +110 (sk l,x*(sk » n n n n- n n n- n n- n n- n n-l 

-0 (sk l'x*) 11 +11 0 (sk l'x*)-o (s* l'x*) " n n- n n n- n n n- n 
k k k 

~ anl (On+1I X~(sn_l)-X~(s~_l) 11 )+an2 " sn_l-s~_lll ' 

where Snl and Sn2 are Lipschitz-constants of an· Since by Lemma 1, 

11 X~(s~_l)-X~(s~_l) 11 ~ 11 J:11I 11 Kn 11 11 s~_l-s~_lll for s~_l 100:-1
, 

(S.l) implies that for n=l, ... ,N, there exist nonnegative numbers a~ (£=1, ... , 

n) such that 

(S.2) 

Consequently, for n=l, •.• ,N, 

(S.3) 

where for n=l, the summation over £ is assumed to be zero. Therefore, in order 

to prove that {X*} is a point of attraction of the D.D.P. algorithm or the 
n 

modified D.D.P. algorithm, it suffices to prove that as k~, 1I0k/l ~ and that 

to any small number El>O, there corresponds a number E2 such that 11 0° 11 <E
Z 

implies /I ok 11 <El for all k; this is just uniform asymptotic stability of the 

origin of a system of difference equations for ok, if it exists. 

To begin with, in order to prove Theorem 2, a system of difference equa­
k tions for 0 generated by the D.D.P. algorithm will be derived. From (4.S) and 

(4.14) it follows that for n=2, •.. ,N-l, 

(S.4) 
~ k k ~l~ k k k+l k 
U (X,s l)-[J K (X,s 1)](5 l-s 1). n n n- n n n n- n- n-
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Consequently, since ok+l=, 11 xk+l_X*(sk+l) 11 , for n=2, ... ,N-l, 
n n n n-l 

(8.5) ok+l ~ Ilu (Xk,sk l)-x*(sk 1)11+1111 (Xk,sk l)-U (Xk,skn 1)11 
n n n n- n n- n n n- n n -

+11 _x*(sk+ll)+x*(sk l)_[lK (X*(sk 1) ,sk 1) (sk+ll_sk 1) 11 
n n- n n- n n n n- n- n- n-

-1 k k ~-l ~ k k 11 11 k+l k 11 
+11 I n Kn(X~(sn_l),sn_l)-Jn Kn(Xn,sn_l) sn_Csn_l' 

Similarly, (4.4), (4.12) and (4.16) imply that 

(8.6) o~+l ~ 11 Ul (X~,s~)-xt(so)11 +11 Ul (X~,s~)-Ul (X~,s~) 11 

and 

(8. 7) o~+l ~ 11 UN(X~, s~_l)-~(s~_l) 11 + II-~(s~~~)+~(s~_l) 

-J~l~(~(s~_l) ,s~_l) (s~~~-s~_l) 11 

+ 11 J~l~(~(s~_l) ,s:_l)-J;l~(~,s:_l) 11 11 s:~~-s:_lll . 

Moreover, Condition (C
3

) and Lemma 1 imply that for n=2, .•. ,N, there exist 

nonnegative numbers Y~ [23, p.73] and Y~ such that 

(8.8) 11 x*(sk+l)_X*(sk )+J-1K (sk+l_sk ) 11 ~ nil sk+l_sk 112/2, 
n n-l n n-l n n n-l n-l Yl n-l n-l 
-1 k k -1 k k n k 

(8.9) 11 I n Kn(X~(sn._l),sn_l)-Jn Kn(Xn,sn_l) 11 ~ y2 0n 
and 

(8.10) 11 
-1 k k -l~ k k I 

J K (X*(s l)'s l)-J K (X,s 1) I n n n n'- n- n n n n-

+ 11 J-111 11 K 11 11 J -3 11 ). n n n n 

The following lemma is essential in evaluating the right-hand sides of (8.5) 

through (8.10). 

Lemma 3. Suppose that Conditions (Cl) through (C
8

) are satisfied. Then 

for n=l, ... ,N-l, there exist nonnegative numbers c~;l, d~i (!I-=n+l, ... ,N, i=1,2, 
n, k n "1C n-l 

3), n and en (£=1, ... ,N) such that for X EO
X 

and s lEO , 
n h N n n- s 

(1') 11 F (k) F~ 11 'I n+l(",k)l+p 
n+ 1 s n - n+ 1 ~ £=~+ 1 c n u!I- ' 

(ii) 

(iii) 

(iv) 
k k ~ k k 

11 J (X,s l)·-J (X,s 1) 11 n n n- n n n-

(v) I 
k k ~ k k 

IK(X,s l)-K(X,s 1)11 n n n- n n n-

(vi) 
k k ~ k k 

11 U (X,s l)'-U (X,s 1) 11 n n n- n n n-
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(vii) 
~-l k k 

11 J (X, s 1) 11 ~ Tl , n n n- n 

k+l k ~ n k 
(viii) 11 s -s 11 ~ L eo<'ln· 

n n £=1 x, x, 

Proof: Since by (3.27), (4.5) and Condition (C
3
), there exists a nonneg-

ative number ~l such that 

11 k ~ 11 11 k ~k+l 11 11 k ~ k+l FN(sN_l)-FN = ~(x~(sN_l»-~(xN) ~ ~ ~(sN-l)-XN 11, 

(4.4) and Condition (C
7

) imply that (i) holds for n=N-l. Similarly, from 

(3.28), (3.29), (4.6) and (4.7) it follows that (ii) and (iii) hold for n=N-l. 

Therefore Condition (C
8

) and Lemma 2 imply that (iv) through (vi) hold for 

n=N-l, because without loss of generality, (O;_1)2~(O~_1)1+P~O;_1. Now suppose 

that (i) through (vi) hold for n. Equations (3.24) and (4.9) and Condition 

(C3 ) imply that: for nonnegative numbers ~2' ~3' ~4 and ~5' 

IIF (sk l)-rkll = II~ (x*(sk l),F +1(0 (sk l,x*(sk l»»-~ Gk+l,'F
k

+
l

) 
n n- n n n n- n n n- n n- n n n 

a ~k+l ~k k k ~k+l k 11 
- ~, ~ (x ,F -+1)'Y 0 (5 l'X) (x -x) 

vy n n n . x n n- n n n 

~ (~2+11 -#- ~n 11 11 wk+lll II'Y 0 11) 11 X*(sk l)-xk+lll oy n x n n n- n 

+ ~3(o~)2/2 + (~4+~511 'YFn+llll~xonl! O~) 11 Fn+l (s~)':F~+l11 
+ 11 ~ ~ 11 11 'Y er 11 ~ 11 w +l(sk) - 'Y'Fk 111 . oy n x n n n n n+ 

Since O~(O~)l+P~(O~)l+P, the above inequality, Condition (C
7

) and the assump­

tion that (i) and (ii) hold for n prove (i) for n-l. In a similar way, (i 1) 

and (iii) can be proved for n-l. Consequently, Condition (CS) and Lemma 2 

imply that (iv) through (vi) hold for n-l. The proofs of (i) through (vi) are 

concluded. From perturbation lemma [23, p.45j it follows that if 11 J-l(Xk , 

k 11 11 k k ~ k k 11 11 -1 k ~ nil s 1) ~~6' J (X ,5 l)-J (X ,5 1) ~1;'7 and ~6~7<1, then J (X ,5 1) n- n n n- n n n- n n n-
< / ( _) ( ) () k+ L (0 k+l k+l-~ ( k -~6 1 ~6 ~7· Hence iv leads to vii. Since sl -01 ,xl )and Xl -Ul Xl' 

0), for the Lipschitz constant B
1l

, 

11 s~+l_s~ 11 ~ sl111 Vl (X~,O)-X~~ 11 ~ Sll {II X!-X~ 11 + 11 Ul (X~,O)-X! 11 

11 
~ k k 

+ U
l 

(Xl ,O)-U
l 

(Xl ,0) 11 }. 

Consequently, Condition (C
7

) and (vi) of Lemma 3 imply that 

11 
k+l, k I < k P k ~ 1 ' k l+p 

sl -sll-Bll{(l+al(Ol»(\+~/!i,3(O) }. 

This proves (viii) for n=l. Suppose thal: (viii) holds for n. Then (S.4) im­

plies that for Lipschitz constants Bn+ll and Sn+12' 

11 s~:t-s~+lll ~ Sn+ll { 11 X~+l (s~) .. x~+lll + 11 Un+l (X~+l' S~)-X~+l (s~) 11 

11 
~ k k k k 11 

+ Un+l (Xn+l,sn)-Un+l (Xn+l,sn) }+{Bn+12 
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Therefore Condition (C
7

) and (vi) and (vii) of Lemma 3 prove (viii) for n+l. 

The proof of Lemma 3 is concluded. 

By using Condition (C
7

) and (iv) through (vii) of Lemma 3, combination of 

(8.5) with 

(8.11) 

Since O~O~~{(O~)2+(O~)2}/2, (8.11) and (viii) of Lemma 3 imply that for n=2, ... , 

N-l, there exist nonnegative numbers q~ and r~ such that 
N N 

ok+l ~ \ l1(Ok)l+p+ \ n(Ok)2 
n L ql 1 L r 1 1 ' 

1=n 1=1 
(8.12) 

where q:=a
n 

and q~=d~3 (1)n). In ~ similar way, (8.6) and (8.7) imply that (8. 

12) holds for n=l and n=N, where r
1

=O (1=1, ... ,N). Consequently, by using NXN 

matrices Q(O)=(q~(01)P) and R(O)=(r~o1) with q~=O (1<n) and ri=o, (8.12) can be 

rewritten as 

(8.13) 

Clearly, in order to prove uniform asymptotic stability of the origin of ok, it 

sufficies to prove uniform asymptotic stability of the origin of the following 

system of difference equations: 

(8.14) 

When the constant p in (C
7

) is positive, Q(o) and R(o) are continuous in 0 and 

Q(O)=R(O)=O. Therefore 11 Q(O)+R(O) 11 <1 for <5 belonging to an appropriate neigh­

bourhood of the origin. This implies that the origin is uniformly asymptoti­

cally stable [11]. Setting p=O in (8.14) yields 

(8.15) 

n n n n 
where qn=an , q1=d13 (1)11) and q1=O (1<n). Thus Condition (C

7
) implies that all 

eigenvalues of Q are less than one in absolute value. Moreover R(O) is conti­

nuous in 0 and R(O)=O. Therefore the origin is uniformly asymptotically stable 

[11] . Thus it has been proved that the optimal solution {X*} of (P) is a point 
n 

of attraction of the D.D.P. algorithm. 

Since (8.3) implies that 
N N 
L 11 xk_x*11 ~ PI L ok = PIli okll , 

n=l n n n=l n 
in order to show the convergence rate of the D.D.P. algorithm it suffices to 

show the convergence rate of 11 okll , where 
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N 1 t-l 
01 = max{l+ L 11 J~ 11 11 KJLII Bn }. 

n JL=n+l k k 
JL -norm by 11 -11 , that is, 11 0 11 =maxo . 

00 00 oonn 
From (S.13) it follows Denote the 

that 

11 ok 11 $ °2 11 ok-Ill ~II ok-Ill, 
N 

where 02=max{ I(q~+r~) L Consequently, in 
.Q. n=l 

lim sup 11 ok 11 Ilk $ °2 11 00
11 Em 

k+oo 

because 11 okll oo-~o as k-+oo. This proves that 

the case of p>O, 
k-l. Ik 

sup( IT 11 oJ II)P = 0 
k-+oo j=l 00 

when p>O, the convergence of the 

D.D.P. algorithm is R-superlinear. Similarly it can be proved that when p=O, 

the convergence is R-linear. 

Let us proceed to the proof of Theorem 3. From Condition (C
7

) and (6.1) 

it follows that 

11 V (Xk,sk 1; JL)-xn*(sk
n

_l ) 11 
n n n-

This implies that Vn satisfies Condition (C7) with p=O in Theorem 2. Since Vn 

satisfies also Condition (CS) in Theorem 2, in much the same way as in the 

proof of Theorem 2 it can be proved that the optimal solution {X*} of (P) is a 
n 

point of attraction of the modified D.D.P. algorithm. Moreover, since there 
k k k k 

exists positive integer kO such that for all k~kO' V (X ,s 1,JL)=U (X ,s 1) n n n- n n n-
(n=l, ... ,N) and the integers JL in Steps If and 5 are always zero, the rate of 

convergence of the modified D.D.P. is thE! same as that of the D.D.P. algorithm. 

The proof of Theorem 3 is concluded. 

9. Conclusion 

In this paper, the D.D.P. algorithm and the modified D.D.P. algorithm for 

solving large-scale nonlinear programming problem (P) have been proposed and 

their local convergence has been proved. Moreover, it is shown that the rates 

of convergence of the present algorithms with Newton's method are R-quadratic. 

Numerical examples show the efficiency of' the present algorithms. Since the 

present algorithms are based upon Kuhn-Tucker conditions for subproblems (P ) 
n 

decomposed by dynamic programming, they inherit desirable properties of dynamic 

programming. In particular, both the opE!ration count and the magnitude of the 

required core memory for the D.D.P. algorithm with Newton's method grow only 

linearly with the number of variables. Thus the numerical examples suggest 

that the present algorithms with Newton's method will solve large-scale non­

linear programming problems with several hundred variables within few minutes. 

Throughout this paper, it is assumed that (P) satisfies Condition (C2). 
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If (P) satisfies Condition (Ci) and the functions o~l in (2.6) are twice con­

tinuously differentiable, then the results obtained in this paper remain valid 

with some modification. 

In order to start the present algorithms, it is necessary to obtain an 

initial guess {XO} belonging to an neighbourhood of the optimal solution {X*}. 
n n 

The conventional 

tial guess {xo}. 
n 

method in [15]. 

dynamic programming with coarse grid will provide a good ini-

Then a good initial guess {AO} and ~O will be obtained by the 
n 

This approach, however, will take much time. Therefore it is 

hoped to investigate a' global stabilization of the present algorithms. 

Finally, it should be noted that unless the matrices J n given by (3.17) 

and (3.l8) are singular, the present algorithms can be performed even if the 

initial guess {XO} is far from the optimal solution and/or infeasible. In this 
n k 

case, however, the present algorithms generate sequences of {X } which converge 
n 

to some points {X'} or diverge unboundedly, where {X'} may be an local optimal 
n n 

solution of (P) in which some constraints are dropped. If {X'} satisfies all 
n 

inequalities (3.5) through (3.7) and (3.ll) through (3.l3), then it is an local 

optimal solution of (P). Moreover if (P) is a convex program, then it is the 

optimal solution of (P). Since the convergence of the present algorithms is 

very rapid and their convergence domains are quite large, the present algo­

rithms can solve rather easily large-scale nonlinear programming problems by 

adjusting the initial values {XO}. 
n 
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