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Abstract An algorithm for solving 2-stage linear programs. especially useful for 11 program arising from a nested 

multi·level approach to multi-period planning [3] is presented. The proposed algorithm is of a two·level scheme and 

similar to Beale's method [4], but the procedure is more systematic and simpler. Computational experience is reported 

for a series of small test problems. The results show that our algorithm is more efficient than a Beale-Iike method. and 

moreover that the number of times for adjusting given initial values of linking variables is unexpectedly small for the 

test problems, which may also imply an aspect of usefulness of the algorithm for large real problems, especially when a 

good initial value can be obtained for the linking variable. The algorithm can be also extended to a weakly coupled 

three or more-stage case. 

1, Introduction, 

The following dynamic linear program i.s very familiar to us in real plann­

ing problems, especially, arising in multi-period planning such as production 

planning, economic planning and so on : N 
i i 

(1.1) 

i 
where AO and 

i i 
and bO' b , 

Maximize E c x 
i=l 

s,. t. 

Ai i 
b

i 
0 

x 
0 

Ai i 1y i 1y i-l b
i 

x + 
i i 

0 (i=1,2, N), 0 N 
0, x y :> , y y = = 

, 
and m x n matrices respectively, 

i 
c is an n-rowvector, Ai are m.x n 

i il. 
x and y are m

i
-, m-, n- and m··column vectors respectively. The 

i linking variable y denotes an allocation of resources common to two periods, 
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172 T. Aonuma 

This type of program generally becomes very large in size, and therefore compu­

tational difficulties often arise in solving it by a direct simplex method 

within the limited capacity of the computing system concerned. On the other 

hand, we sometimes have question concerning a necessity of solving accurately 

such a large model in order to prepare a plan for the uncertain future. Because, 

in real problems, data for the more distant future in the model usually include 

much uncertainty and it has been often observed that, under fluctuating circum­

stances, more discrepancy arises between the program for each period obtained 

by a dynamic model and the achievement of the program, according as it is a 

program for a more distant future from the planning point. Taking account of 

this respect, we have presented a simplified approach, called a nested multi­

level approach, to multi-period planning in [1] and [3]. In that approach the 

problem is reformulated by a 2-stage linear program which consists of both the 

first submodel representing a program for the first period and the second re­

presenting a macro-plan for the remaining periods. The latter may be regarded 

as an aggregated plan for implementing a global grasp of management activities 

required in the future. The programs for the planning horizon of N periods are 

approximately obtained by solving a series of those 2-stage programs generated 

successively. 

We present a two-level algorithm useful for solving a 2-stage linear pro­

gram, especially in the nested multi-level approach. In the nested multi-level 

approach, we need to deal with two qualitatively distinct submodels, which are 

connected to each other by linking variables. For that purpose, our algorithm 

is designed so as to have the following functions: 

(1) Two submodels can be separately optimized in a sense of two-level planning 

[10] [13]. This implies that each submodel can be respectively dealt with at 

its pertinent organizational unit through a so-called in-house computer network, 

and, computationally, within a high-speed memory of given size, it can solve 

larger problems using auxiliary memory than can conventional methods. 

(2) The interactive method [7] can be easily dealt with in the algorithm to 

structure the preference attitude of a decision-maker for each pair of subobjec­

tive values of two submodels in the optimizing process. 

It is not our real intention that, only from an aspect of computational 

efficiency, we compare our algorithm with a direct simplex approach in which 

an expensive computer with large core memory is needed. We would like to con­

sider both the aspect of physical limitations in our own computing system and 

that of organizational and procedural convenience for using the approach con­

cerned. Algorithms for solving linear programs with the staircase structure 

have been developed by several authors, for example, [4], [8], [11] and so on. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Two-Level Algorithm for Two-Stage LP 17] 

It seems that the most typical and latest algorithms accompanied by computa­

tional experience are Glassey [8} and Ho & Manne [ll}o However, those algorit.hms 

for a 2-stage case, which are completely equivalent to Dantzig & Wolfe's method 

[5}, are of a column-generation scheme. Ac,~ordingly, two subproblems are not 

separately optimized for given y and a priori information for the initial value 

of the linking variable can not be complet,~ly used. These are the main reasons 

why the methods are not so suitable for our purpose mentioned above o 

The essential idea of our algorithm i::; similar to Beale's method [4} in 

respect of both preserving the special structure of the problem and parametriz­

ing the linking variables, but there are some distinctions in its procedure <lnd 

approachl ). In our algorithm, a direction-::inding problem and coupling problem 

will be newly introduced in order to define a plural number of new parameters 

at every step and to obtain a linear relatLonship (called Parameter Transforln­

ation Matrix later) between the linking vaJ~iables and the new parameters more 

systematicallyc If we restrict the candidates of the entering basic variable 

to only one variable at each step in our direction-finding problem, then our 

algorithm is conceptually close to Beale's method except that several steps for 

defining the new parameters in his algorithm is reduced to solving our coupling 

probleme In order to investigate the computational efficiency we compared our 

algorithm with a simple version of ours as restricted to one candidate of the 

entering basis in the direction-finding problem instead of a direct representa­

tion of Beale's method [4}, because his procedure did not seem to be quite sys­

tematic and suitable for computer programming. The computational experiments 

show that our algorithm mostly works better than his method. Concerning a com­

parison with a direct simplex method, a remarkable result from our computational 

experience was that the number of times of solving the coupling problem, which 

is required to adjust a given initial value of the linking variable toward the 

optimum, was considerably less than our estimation for our small test problems. 

This fact implies an aspect of usefulness (If our two-level approach, because, 

in real problems, mostly we can understand the problem itself well enough to 

estimate the tendency of the value of the linking variable to attain the optimum 

and , therefore, may choose a good initial value for the variable, 

The algorithm is of a feasible method for a given initial feasible solution 

and terminates in a finite number of steps. In terms of coordination it involves 

two aspects of the resource-adjusting and price-adjusting coordinations [6},[10} 

1) In Beale's algorithm, after one basic variable in the submodel is exchanged, 
a series of steps follows it, defining one new parameter at an individual step, 
and that, at some steps among them an additional constraint needs to be added 
to m constraints for the definitions of the linking variables, ieeo, the number 
of constraints becomes fluctuant 0 Computational experience for his method has 
not been seen as yet. 
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174 T. Aonuma 

in a two-level system. By making slight modifications, the algorithm also can 

be effectively applied to weakly coupled three or more-stage cases such that 

the total number of linking variables is, roughly speaking, less than or equal 

to the maximum number of constraints among the submodels. 

The two-level algorithm will be presented in Section 2 and also the finite­

ness of the algorithm will be proved with several theorems. In Section 3 compu­

tational experience will be reported for a series of small test problems. In the 

final section an interactive approach to a preference optimization will be des­

cribed briefly. 

2. A Two-level Algorithm. 

We attempt to solve the following two-stage problem [p] by a two-level 

approach2) . 

Maximize 
1 1 2 2 

c x + c x 

s.t. 

[p] Alxl + y bl 

Y + A
2
x

2 
b2 

1 2 

° x , x , y > 

Although we assume for the sake of simplicity that the coefficient matrix of y 

is an identity matrix, it need not be so in our algorithm. A case in which y 

has nonzero objective coefficient ° be c can reduced to the above, for example, 

by replacing either c 1 to c l _ cOAl or c 2 
to c 2 + cOA2. We can also assume in 

order to simplify the notations without loss of generality that constraints 

d ' i i b i , (1 1) 'd d b d 1 h h correspon lng to A
O 

x = ° ln . are VOl an two su mo e save t e same 

number of constraints, as will be easily seen in the future discussion of the 

algorithm. 

First, we decompose [P] into two subproblems PI and P
2

• For this purpose, 

let the allocation of common resources be fixed at y=y(k) (k=0,1,2, " ), so 

as to make the subproblems feasible. We assume that such an initial value 

can be found. Then, [P] can be equivalently represented as follows 3): 
1 2 

To find x , x 

(0) 
y 

and A such that 

Z(y(k)) = max 1 1 
c x + 

2 2 
c x dual variables 

s.t. o 
u 

1 
u 

2) ,I¥ general, the objective function may be represented bX U(zl,z2), where zi 
= clx and U is a concave function and increasing in each z . Our algorithm can 
be easily extended to this type of nonlinear case, as will be mentioned later. 
3) A notation x' denotes the transposition of x in this article. 
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1 :~ x , x > 0, 

2 
u 

175 

where A denotes a parameter needed to adjust optimally the given allocation y(k~ 
and Tk a non-singular m by m matrix which :ls called Parameter Transformation 

Matrix (PTM hereafter) to be defined later" and TO = I (identity). We assume 

that PA is bounded and that two subproblems generated by A = 0 are also bounded 

for any feasible y(k) 

After solving two subproblems Pl(y(k», Zl(y(k» max clxl s.t. Alxl = 
1 (k) 1 (k) 2 (k) 2 2 2 2 2 (k) b - Y and x ~ 0, and P2 (y ), Z (y ) = max c x s.t. A x = b + Y 

and x
2 ~ 0, let B~ be an optimal basis matrix of Pi' x i * the optimal solution 

to P., ~i(y(k» the value of the corresponding basic variable, and ui the dual 
l 

solution. Let us define the following coupl.ing problem : 

Primal Coupling Problem. 

Z(A) (u 
2 1 max -lr)'TkA dual variables 

s. t. 

- TkA < y(k) 
jJO 

P (A) -1 sI (/k» Bl TkA < jJl c = 
-1 S2(y(k» - B2 TkA < jJ2 

The dual coupling problem to P (A) can be handled more easily since the varia-
c 

bles jJ. (i=0,1,2) are nonnegative. Let D (I') denotes it and an optimal solution 
l -1 2 1 c 

to DC(A) be p = Dk Tk(u - u ) ~ 0, where Dk is the basis matrix of DC(A). The 

following results are straightforward from the fundamental theorems on linear 

programming. 

Lemma 1. A triplet (xl *, x2*, y(k» is an optimal solution to [pj if and 

only if there is a dual solution ui to Pi(y(k» such that i) ul ~ u2 and (u l 

u2),y<k) = 0, ii) (ui'Ai - ci)xi * 0 (i=1,,2). And, the corresponding dual 
i 012 i i. 

solution (u *, i=0,1,2) to PA can be obtained as u * = u - u and u *=u (l=l,2). 

Lemma 2. (1) If (u2_ Ul)'Tk 0 (Le., p = 0), the corresponding subprob­

lem solutions and y(k) constitute an optimal solution to [Pj. (2) Let A* be an 

optimal basic solution to P (A). Then, Z(y") = Z(y(k» + 6Z(A*) for y* = y(k) + 
c 

TkA*, and Sl(y*) = Sl(y(k» - B~lTkA* and S2(y*) = S2(y(k» + B;lTkA* hold. 

Si(y*) corresponds to the simplex criterion of jJi in D (A*) and y* that of jJO. 
c 1 2 

(3) There are at least m zero elements among the components of S (y*), S (y*) 

and y* in total. The number of zero elements is exactly m under the non-degenE~r­

acy assumption, which we shall assume hereafter. 

Let the sets of indices r i (i=0,1,2) be rO = [j: yj Oj and r i [ all 
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176 T. Aonuma 

rows such that the corresponding element of Si(y*) is zero 1 (i=1,2). Then,lr
o
' 

rl~ r21 , the number of elements of rOJrl~r2' is equal to 

the assumption, where m.= Ir. I. In addition, it is easily 
1 1 

m = mO+ ml + m2 under 

noticed that f. corre-
1 

sponds to the basic variables of D (A). 
c 

Let us define a new PTM, T~, and a cor-

responding parameter A by 

(2.1) 

and 

(2.2) 

T* 
k 

y = y* + T~ A. 

Then, a canonical form of P
A 

for the newly defined parameter A can be represent­

ed in a simplex tableau form as follows 

Maximize z 

s. t. 

Z(y*) z + cl 1 x
N 

p' A + c2 2 xN 

y* Y T* k 
A 

(2.3) Sl(y*) 1 + 
Al 1 B-lT* A x

B 
A x

N + 1 k 

S2 (y*) B-lT* 2 A2 2 
A + x

B 
+ A x

N 2 k 
i i 

0 i=1,2 ), y, xB' x
N 

> 

where.x~ and x~ denote the basic and non-basic variable of each Pi respectively, 

and c1 
> 0 and p ~ 0 4). The next lemma follows clearly from the derivation of 

the primal coupling problem. 

Lemma 3. Let Z(y) represent the sum of two subobjective functions Zl(y) 
2 1 2 

+ Z (y) for given y. Then, the triplet (S (y*), s (y*), y*), which is obtained 

in (2) of Lemma 2, gives the maximum of Z(y) for the optimal bases B 's chosen 
i 

in p.(y(k» ( i=1,2 ). 
1 

If we assume for the sake of simplicity that all rows in fi are put in a 

consecutive order and the first mO elements of ~O are in rO' the last ml ele­

ments of ~l in rI' and the first m2 elements of ~2 in f2' then T* and the two 
-1 

linking matrices Bi T* in (2.3) have the following structures respectively: 

I 0 0 U
l VI W

l 
0 0 I 

m 
B-lT* B-lT* 

m2 
(2.4) T* 

0 

1 2 
U

o Vo Wo 0 I 0 U2 V2 W2 ml 
where U. is an (m-m

i
) by mO matrix, V. an (m-mi ) by m

l 
matrix, W. an (m-mi ) by 

1 1 
Ai 

1 

m
2 

matrix. Let us introduce the following notations : , a part of A corres-
i Ai Ai ponding to I ; p , the corresponding part of p ; A

r
, a part of correspond-

m. 
1 

4) We may sometimes omit the superfixes k and i hereafter if no confusion 
arises. 
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ing to r .. Then, p can be written as p' = (pO" pl, 
~ 

2, ) p • 

177 

When we solve two subproblems separat,=ly after fixing y at y*, in constrast 

with Lemma 1 (i) the corresponding shadow?rice 1Tl of the common resource is not 
2 

necessarily identical to 1; for y* > ° even if y* has been optimal to [Plo It is 

rather more usual by our computational exp'=rience that they are different each 

other. A simple example has been shown in [2), in which the optimal solutions to 

two subproblems and y* attain an optimal solution to [P) although the corres­

ponding shadow prices 1T i ,s (i=1,2) do not 5atisfy the relation (1Tl_ 1T 2),y* = ° 
in Lemma 1. The next theorem states a relationship between the shadow prices of 

subproblems when each subproblem is separately solved, and the global optimality 

of [plo 

(2.5) 

Theorem 1. Let 

ill, = 1Tl, + 

i 
1T be an optimal 

1 -1 (0, p ') (B
l 

), 

dual solution to Pi(y*). If 

and il2 , = 1T 2 , + (p2"O)(B;1) 

1 2 are dual feasible solutions to P
i
(i=l,2) respectively, the triplet (x *,x *,y*) 

is an optimal solution to [Plo 

Proof: It is sufficient to show that (i) and (ii) in Lemma 1 hold for ui 

in (2.5). First, we shall show that (i) holds. Let D be an optimal basis matrix 
-1 1 2 

T = (D )' and p' = (1T - 1T )'T. From (2.4), 
1 2 1 -1 2 -1 

(1T - 1T )'T + (O,p ')Bl T - (p ',O)B2 T 

_p , + (0, p 1 , ,0) 

> ° and (ill_ il2)'y* 

+ (O,O,p2,) = _(pO, ,0,0). 

( Al A2) This means u - u 
-1 

T are equal to (-I ,0). Next, 
m 

o 
(ill 'AI cl)xl* = (1T l 'AI 

The first term is zero because 1Tl 

0, because the first mO rows in D' 

_ cl)xl* + (O,pl')B~IAlxl*. 

is an optimal solution to Pl(y*). The second 
-1 1 1 1 

term also becomes zero because all components of Bl A x * S (y*) correspond-

ing to pl belong to r
l 

and should be zero from (3) in Lemma 2. This shows that 

(ii) holds for al. Similarly, we can prove it for il
2 

In order to improve a feasible solution in the canonical form (2.3) a 

direction-finding problem should be considered. The direction-finding problem 

in the primal-dual method is described in a dual form as follows [14): 

Associated Restricted DuaZ FPobZem ( i 

Max + 

s.t. 
(2.6) Ai i 

ArxN + 
i 

xN 
> 0, 

I 

.1,2 ). 
i" i p 1\ 

Ai 
m. 

1 
Ai, 

< 0 

< (K,K, , ,K) , 

where K is any positive number. Let an optimal solution to (2.6) be (x~,A*). 

Then, -cx~ + P'A*~ ° holds because ~N = 0, A = O)becomes a feasible solution, 
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and it is known that a feasible basic solution to (2.3) is optimal if and only 

if max (_ci~ + pi'Ai) = 0 (i=1,2). An optimal solution (~,A*) to (2.6) with 

(-cx~ + p'A*) > 0 gives a usable feasible direction to PA' There must be at 

least one positive A~ in the direction because of c > 0 and p > O. Thus, we have 
J 

the following lemma. 

Lemma 4. If P
A 

is not optimal, there is a usable feasible direction that 

has at least one A~ > 0 among the components. 
J 

It is easily seen that Arx~ + A~ = 0 holds except a degenerate case because 

of p > 0 and the special structure of the constraint matrix of A in (2.6). There­

can be rewritten equivalently as max -(c + p'Ar )~ subject to ~ > fore, (2.6) 

O. If (c + p 'A ) 
r :: 0, we have always -(c + p'A )x* 

r N 
= 0 and vice versa. Thus, we 

have proved the following Bea1e's result by another approach. 

Theorem 2 (Bea1e [4]). Let x
i

* be an optimal solution to Pi(y*). Then, 

the triplet (x
1
*,x

2
*,y*) is an optimal solution to [P] if and only if 

(2.7) (i) + (H) + 
2 A2 

(p ',O)A ;0. 

Considering the result of Lemma 4, we shall attempt to solve the follow­

ing direction-finding problem restricted to Ai ; 0, instead of (2.6): 

Maximize 

s .t. 

A~~ ~ 0 x~ > 0, 

h i (Ai + i'AAi) If (2 3) . i 1 h . 1 i were p = - c Pr' . ~s not opt ma , t ere ~s at east one Pj > 0 

from Theorem 2. Each left-hand side of the inequalities (2.7) represents the 

simplex criterion of x
N 

after each objective coefficient of the basic variable 

x. £ r is changed from c. to c. + P. respectively. In a practical procedure we 
J J J J 

can construct [F.] from each subprob1em P.(y), simply by changing the objective 
~ ~ 

coefficients in r i . [F i ] has either a bounded optimal solution, x~ = 0, or un-

bounded solutions. 

Theorem 3. Assume that the degenerate linear program [F.] is solved by 
~ 

the perturbation method of A.Charnes. Then, if [F
i

] has a bounded solution, 
i 

there must be at least one basic variable which has p. > 0 in the optimal basis. 
J 

Proof: Let xB(£)·> 0 be an optimal basic solution for sufficiently small 

£ > 0 and 1im xB(£) = O. Suppose that the objective coefficient of x
B 

is PB ~ O. 
£+0 -

If PB F 0, we have PBxB(£) < O. This contradicts the optima1ity of x
B

(£), 

because x = 0 is always feasible. If PB = 0, the corresponding dual solution 

must be identically zero, which shows that the solution can not be a feasible 

dual one because of some p. > O. This also contradicts the optima1ity. 
J 
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i i i i 
Let 8 =A~8N,Es].be any basic matrix oE [F i ], where 8

N 
denotes the basic 

columns among A1r and E1 denotes unit vectors corresponding to the slack varia-
s . 

bles in the basis. Actually, the unit vectors and 8~ may be mixed. For the sake 

of simplicity, we assume they are separated as above. We shall change a present 

basis of Pi to a new basis which consists of the present basic variables in the 

rows of the basic slack variables of [F.] co:rresponding to Ei and of the new 
. 1 S 

basic variables corresponding to 8~. In addition, we transform Pi to a canonical 

form for the modified new basis. 

based on 8i . 

We call those operations 8-transformation of Pi 

Lemma 5. An optimal basic solution to Pi(y*) and the corresponding y* 

are invariant under the 8-transformation. 

Proof: Because every pivot row in 8-transformation belongs to ri' in 

which the basic variables attain zero. 

Theorem 4. If we define a new PTM T and the corresponding new linking 

parameter A as 
I o 

(2.8) T 

(2.9) y 

T 

m 
o 

o 
o 

y* + T A 

, and 

respectively, the transformed matrix for A in the canonical form (2.3) after 

carrying out 8-transformation based on 8
i 

is represented as follows: 

(2.10) 

solution ~O ~l ~2 
-'------

z (y*) 

y* 

I 

o 

o 

m 
o 

o 

1 
- a 

o 

o 

o 

2 
a 

criterion row 

i i 
where P8 is a row vector which consists of the elements of p corresponding 

to the new entering basis 8~, p~ is the part of pi corresponding to E~, and a
i 
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is a matrix which consists of the remaining part of Ai for the columns corres­

ponding to S~ and of zero vectors corresponding to E~. 
Proof: To carry out S-transformation for PI in (2.3) is equivalent to 

multiplying it by an inverse matrix HI , 

1 0 1 0 _(c~,O)(Sl)-l 
(2.11) o I o I al(sl)-l 

o 0 o 0 (Sl)-l 

where I represents an (m-ml)-dimensional identity matrix. The coefficient matrix 

of A is transformed to 
0, 1, 2, 0, (-cS,O)S-l_pl, 2, -p -p -p -p -p 

(2.12) HI U
l VI W

l 
U

l 
-1 

V - as W
l 1 -1 

0 I 0 0 S 0 ml 

This shows that the columns for AO and A2 are not changed. Similarly, only the 

part for A2 is changed after S-transformation for P2 · Let A be 
~O I 0 0 

o . 
A 

m 

(2.13) A ~l 
0 

(Sl)-l 0 Al 0 
~2 0 0 (S2)-1 A2 

which is the same as in (2.9). By substituting A into the transformed matrix 

(2.12), we have (2.10). 

T defined by (2.8) will be denoted by Tk at Step 4 for constructing Dc(A), 

called the second coupling ppoblem, in the future description of our algorithm. 

Theorem 5. When [F
i

] has a bounded optimal solution, we have a new value 

of y, by solving the second coupling problem D (A), which can increase the total 
c 

objective valu: 0: PA. 

Proof: D (A) is represented as the dualization of (2.10) in which the 
c 

signs of all elements in the objective row are reversed. It is easily seen from 

Theorems 3 and 4 that the present RHS of D (A) has become an infeasible solution. 
c 

This shows that the corresponding primal problem P (A) must have an optimal 
c 

solution A* such that ~Z(A*) > 0 under the non-degeneracy assumption. The claim 

follows from Lemma 2. 

Lemma 6. When [F.J is unbounded, there must be at least one slack varia­

ble in the relevant bas~s. Let the basis be Si= [s~,E;I, where Ei f 0. Let x 

be such a variable that the simplex criterion is negative and S-~a < 0, where 
A 00 = 

aoo denotes the coefficient vector of Xoo in Ar . Then, there must be at least one 

negative component of s-la
oo 

among the rows of the basic slack variables E!. 
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Proof. The first half of Lemma is clear from Lemma 4. We shall prove the 

latter half of Lemma for [F
l
]. 

-1 
(PB,O)B a", 

(2.14) 
-L 

-(eB,O)B a", 

The simplex criterion of Xoo is represented as 

-1 1 1 o > (PB,O)B aoo P", = Coo - (cB,O)B- aoo + (O,plEs)B- aoo ' 

where P'" = -(eoo + plaoo ) denotes the coefficient of x . The first two terms are 
-1 00 

non-negative because of Coo ~ 0 and B a", ~ O. Consequently, the last term has to 

be negative. This implies that there must exist at least one negative component 
-1 

of B aoo among the rows in which pIEs has a positive element Pk 

Lemma 7. If [F
i

] is unbounded, there exists at least one positive objec­

tive coefficient among the basic variables and xoo' 

Proof: Because PBxB + Pooxoo has to attain to infinity. 

Theorem 6. When [F
i

] is unbounded, we can always have the second coupling 

problem, DC(A), to increase exactly the objective value of PA . 

Proof: It is obviously possible from Lemma 6 to carry out a pivot opera-

tion for entering Xoo into the basis instead of some slack variable in the pres­

ent basis. The resultant basis has at least one variable whose objective coef­

ficient is positive from Lemma 7. For the same reason as in Theorem 5 a solution 

to DC(A) makes the objective value of P
A 

increase exactly. 

Corollary 1. In the unbounded case, the objective value of P.(y*) is 
~ 

neither changed by B-transform nor the pivot operation adopted in Theorem 6. 

Proof: Because both simplex calculations are related only to the varia­

bles in r .. 
~ 

The proposed algorithm is summarized as follows: 

Algorithm. 

Step O. Choose y(O) which makes Pi(y(O» feasible. Put TO 

Step 1. Solve Pi(y(k» (i=1,2). 

( ) i* Step 2. Construct Dc A and solve it. We have A*, x , y* 

= T (D-l ) , 

1. 

y(k) + 

Dk . Let a new PTM be T~ 

Step 3. If pi = _(e
i + 

i kA . k 
p I A~) < 

1 2 o for i=1,2, then the triplet (x *,x *,y*) 

is an optimal solution to [Plo Stop. 

Step 4. Sol·ve [F
i
]. Obtain the basis matrix Bi of [F.J in a bounded case. If 

i ~ 
it is unbounded, obtain the basis B after exchanging Xoo f?r a basic slack vari-

able. Transform :~ :0 
Then, construct D (A) _ c_ 

Step 5. Solve DC(A), 

Tk by (2.8) and let a new parameter A be y = y* + TkA. 

according to (2.10). 
(k+1) 

and put y = y* + 
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- --1 
Tk(Dk )', where Dk denotes the optimal basis matrix of Dc(A). Go to Step 1, 

regarding A as A in P
A

, 

Notes: 
i 1) We may choose another basis in [F

i
] that has as many positive Pj as possible. 

If it might be possible, the algorithm would be more efficient by Theorem 4. 

2) We can return to Step 3 at Step 5, by changing the basis of Pi to the new 

basis obtained by [F,] in Step 4. It has been seen by our computational experi-
l. 

ence that the amount of computation for this procedure with some additional rou-

tines is much less than that for the algorithm above, although the procedure be­

comes more complex. 

3) A multi-stage case can be dealt with likewise, if the total number of link­

ing variables is within the limitation on the number of rows of the LP subroutine 

built in the system for solving the coupling problems. 

Theorem 7. The proposed algorithm terminates in a finite number of steps 

under the non-degeneracy assumption. 

Proof: It has been proved in Theorems 5 and 6 that the objective value of 

P
A 

is always increased by the change of y(k). Moreover, the new basis matrix of 

P
A 

for y(k+1) which is represented as a pair of the optimal basis matirces for 
(k+1) (k+1). ., (k) P

1
(y ) and P

2
(y ) must be dl.fferent from the basl.s matrl.X chosen for y 

in the previous cycle because of Lemma 3. This implies a finite termination of 

the algorithm, because there are only a finite number of pairs of possible basis 

matrix for P
A 

in a course of selecting y(k) in the algorithm. 

3. Computational Experience. S) 

Four types of models were used for our test problems, in which Models I 

and 11 were for simple refinery production planning and Models III and IV were 

cutting stock problems of Eiseman's type. The total number of cases solved is 32, 

in which the types of some constraints, and their coefficients and RHS's are 

somewhat changed according to the assumed situations. Models I and 11 were adop­

ted as typical examples of problems in a great deal of real use and it is rela­

tively easy to estimate the tendency of the values of linking variables in these 

problems. The cutting prob1ems(III & IV) were adopted as an example such that 

the optimal basis and the values of linking variables are very much sensitive 

5) The author is much indebted to Mr. M. Morita, his student at Kobe University 
of Commerce, for helping to generate the test problems and also for computer 
programming, and also to Professors L.S. Lasdon, Case Western Reserve University 
and R.E. Marsten, Massachusetts Institute of Technology, for releasing SEXOP 
program for us. 
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to the pattern of demand, 1. e., the figures tn RHS. 

A test version of the algorithm, named PAIROP, was written in FORTRAN 

using SEXOP (Subroutines for Experiemnta1 Optimization [12]) for HITAC 8250 

Computer with 64K core storage and slow-speed auxiliary storage. Since the 

original SEXOP, which was released by Professor R.E. Marsten for us, was too 

large for our computer above and could not be maintained in core, it was operat­

ed by overlay between core storage and auxi1i.ary memory, and the dimensions for 

the working data area were considerably reduc:ed. 

Table 1 

Structure of the Test: Prob1ems* 

Model No. of Cases m n Densit:y: 

I 3 9 16 21.5 % 

II 4 10 20 19.5 

III 20 8 20 33.2 ( 1st period 
14 24.1 ( 2nd period 

IV 5 8 20 33.2 

* All problems are of 2-period and the submode1 in each period has the same 

size except Model Ill. 

** m = the number of rows in a period; n = the number of columns (including 

slacks); the density is for each submode1 (excluding linking variables). 

The rate of convergence can be investigated by referring to the number of 

times of solving the coupling problems, D (A) and D (A), which is also called 
c c 

the number of cycles required for optima1ity by the algorithm. The number of 

cycles is shown in Table 2. For the sake of simplicity, in all cases for Models 

III and IV the initial values of linking vari.ab1es were given as zero. The 

optimal solution and the corresponding basis varied much in every case. However, 

it should be noticed in Table 2 that the number of cycles is mostly one or two, 

which is unexpectedly small because, roughly speaking, it may be considered that 

solving the coupling problem once corresponds to the generation of each column 

for the subprob1ems in a column-generation mE!thod. This may show that the 

algorithm would work very efficiently even for larger real problems if a good 

initial value for the linking variable could be chosen. Though it was supposed 

that solving the second coupling problem would require more time because of thE! 

extra operations concerning B-transformation" the results in Table 2 show that 

the computing time is almost proportional to the sum of both numbers of times of 

solving D (A) and D (A) respectively. If let the number of cycles required for 
c c 

optimali ty be k and the computing time be t" then we have t = 15.0 + 7. 9k ( 

r2 = 0.95) for Model I & 11 and t = 12.2 + i'.2k (r2 = 0.96) for Model III & IV. 
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In order to compare our algorithm with Bealers method [4] in computational 

efficiency, we solved all 25 cases for Model III & IV again by restricting the 

entering basis in the direction-finding problem to only one variable6), which 

we call Beale-like method hereafter. Among them, four cases were different in 

both the computing time and the number of cycles required for optimality, and 

the others were almost the same in computing time and completely the same in 

the number of cycles. The results for four cases above appear in Table 3, in 

which our method is found to be 19% to 28% faster than the Beale-like method. 

It was observed that in those cases the plural number of variables with a posi­

tive p. entered into the basis in the direction-finding problem, and, in other 
J 

cases, only one variable with a positive P. entered into the basis even though 
J 

several variables were exchanged in the direction-finding problem. This result 

seems to endorse the note (1) mentioned below the description of our algorithm 

in Section 2. 

Table 2 

Number of Cycles required for Optimality 

Number of Cycles 

1) Model I & II 

Number of Cases 

Average CPU 
Computing Time* 
(sec. ) 

2) Model III & IV 

Number of Cases 

Average CPU 
Computing Time* 
(sec. ) 

1 

4 

23.75 

7 

19.14 

2 3 4 

2 o 1 

36.00 72.00 

13 4 1 

34.23 47.25 64.00 

Average 

2.4 

34.1 

2.9 

33.3 

* As an example of comparison with a direct simplex method, LPS/NDOS for HITAC 

8250 (Linear Programming System under New Disc Operating System in the 

Library) can be referred to. According to the Manual (Hitachi Co. ,August 

1973), the computing time for a nutrition problem of 13 x 21 size with a 

matrix of 26% density is reported to be 41 seconds for 18 iterations. 

Tables 4 and 5 show the estimated core storage requirements for the 

conventional simplex method and our algorithm respectively. It can be seen that 

our algorithm requires considerably less core storage than the conventional 

simplex method. 

6) See the description concerning the Beale-like method mentioned in Section 1. 
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Table 3 

Comparison of the Algorithm with Beale-like Method 

Our Algorithm Beale-like Method 

Cases Number of Cycles Com2uting Time Number of Cycles Com2uting Time 

No.l 2 
times 

38 
sec. 3times sec. 53 

No.2 2 36 3 50 

No.3 3 51 4 63 

No.4 2 31 3 38 

Table 4 

Core Storage Requirements for Conventional Simplex(words)'" 

Dimensions Model IV (m=10,n=20) 

Matrix 2m(m+2n) 1000 

RHS 2m 20 

Dual Variables 2m 20 

Cost m+2n 50 

Primal Variables m+2n 50 

Total 2m2+ 4mn + 6m + Lm 1140 

Table 5 

Core Storage Requirements for Our Algorithm(words)* 

Dimensions Bodel IV (m=10,n=20) 

Matrix 3m
2 

300 

RHS m 10 

Cost 3m 30 

Inverse 
2 

100 m 

Dual Variables m 10 

PTI1 
2 

100 m 

Linking Variables m 10 

Primal Variables 3m 30 

Total 5m
2 

+ 9m 590 

* Neglecting the working storages and minor items. 

4. An Interactive Approach to a Preference Optimization. 

We shall consider a case in which a decision-maker wishes to optimize his 

own implicit preference funciton U(zl,z2), structuring his preference attitude 

for each pair (zl,z2). It is supposed that the preference function depends 

mainly on the decision-maker's feeling for L.ncertainty in the future. It is 

185 
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bl d h U( 1 2).. .. h i reasona y assume t at z,z lS lncreaslng In eac z. 

with 

For example, let us consider a case such that there are two programs: A 

the pair (zl,z2) and B with the pair (zbl ,zb2) on a given line zl + z2 = z-
a all 2 2 

goal, where we 
1 

crease z much 

to increase z2 

assume z «zb and z »zb . The decision-maker may wish to in-
a a 2 

more at A than the unreliable z . On the other hand, he may wish 

much more at B. 

Geoffrion, Dyer and Feinberg [7] presented an interactive method to find 

a decision-maker's implicit utility function defined on multi-criteria. The 

method is equivalent to determining a weight a at each observed point (zl,z2) 
1 2 

such that z = z + az , where a may be the ideal marginal proportion of change 

for two subobjectives in this case. Our proposed algorithm has such a feature 

that we can adopt the interactive procedure easily. 
1 2 

We can separate the total objective Z into two subobjectives z and z in 

P
A 

as follows: 

zl(xl:A) = -elx~ - ~iA , and 2 2 
z (x :A) 

where 6 i = rri'T and p = 62 - ~l • The coupling problem in this case is defined 

on the basis of p+ (a-l)~2 instead of p. The objective functions of the direc-
1 1 1 1 tion-finding problems [F.] (i=1,2) can be represented as max [p + (1-a)~2Ar]xN 

2 l 222 . k 
for [F1 ], and max [p + (1/a-1)~lAr]xN for [F2], respectlve1y, where ~i denotes 

the component of ~i corresponding to r k . Examining the pair of the subobjective 

values (zl(y),z2(y)), the new value of y is obtained by the ordinary procedure 

in the interactive method, and the process is repeated. It is known that the 

process converges to the optimum under some condition [7], but we think that 

this approach is more siginificant in a case such that the optimization process 

must be stopped without attaining to an optimum. Especially, such cases may 

commonly arise in the actual planning in a large system. Unless such a case, it 

will be more practical to solve firstly an optimum for a predetermined value of 

a and then carry out a parametric analysis on a for the optimal solution. This 

solution-method corresponds to an extension of our algorithm to the case of the 

non-linear concave objective function U(zl,z2) which is increasing in each zi. 

Acknowledgement. The author is grateful to the referees and Professor Hiroshi 

Watanabe, the University of Tsukuba, for comments and suggestions which have 

results in a much improved version of the paper. 
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