A GENERALIZED CHANCE CONSTRAINT PROGRAMMING PROBLEM

Hiroaki Ishii
Toshio Nishida
Department of Applied Physics
Faculty of Engineering
Osaka University and
Yasunori Nanbu
Asahi Chemical Industry Corporation

(Received June 24, 1977)

ABSTRACT

This paper considers a generalized chance constraint programming problem having a controllable probability level α with which the chance constraint should be satisfied. Several properties of this problem are derived and, based on these properties, an algorithm is also proposed.

1. Introduction

Many types of chance constrained programming problem have been considered [1-7, 9, 10] since Charnes and Cooper [1] introduced chance constraints into mathematical programming problems. Especially, S. Kataoka [6] proposed an important problem called P model which dealt with randomness of coefficients in the objective function and gave an algorithm for an optimal solution giving the highest objective value to a chance constraint which should be satisfied with a fixed probability level α.

Though the larger α is favorable since constraints are to be satisfied with high probability, it may make the objective value smaller. Hence, we consider α to be a decision variable and optimize a linear function of original variable x and this decision variable α. That is, this paper generalizes Kataoka's idea to the case with controllable probability level α. Besides this generalization a different algorithm from his technique is proposed. It is based on a parametric approach.

In Section 2, problem P and its deterministic equivalent problem P^{\prime} are formulated. Section 3 treats subproblem p^{q} and auxiliary problems p_{R}^{q} used to solve p^{q}. Several useful properties of p^{q} and P_{R}^{q} are also derived. Based on these properties, Section 4 proposes a solution algorithm for p^{q}. In Section 5, some theorems useful to reduce the computational pains are derived. In Section 6, an algorithm for deterministic equivalent problem P^{\prime} is given. To illustrate our method, an example is also given in Section 7 . Finally, Section 8 summarizes our results and suggests further developements.

2. Problem Formulation

We consider the following generalized chance constraint programming problem P.

P: Minimize $\quad f-\lambda \alpha$

$$
\begin{aligned}
& \text { subjecto to Prob }\left\{c^{\prime} x \leqq f\right\} \geqq \alpha \\
& x \in S \\
& 1 \geqq \alpha>\frac{1}{2}
\end{aligned}
$$

where $S=\{x \mid A x \geq b, x \geq 0\}, c, x$ are n - vectors; b is an m-vector; A is an $\mathrm{m} \times \mathrm{n}$ matrix; λ is a positive scalar ${ }^{\dagger} ; f, \alpha$ are scalars. c is a random variable vector with multivariate normal distribution function $N(\bar{c}, V)$, where \bar{c} is a mean vector and V is a variance covariance matrix. V is assumed to be positive definite. We assume that $\min \{\vec{c} x \mid x \varepsilon S\}$ exists, i.e., finite.

Let $F(q)$ denote the distribution function of the standard normal distribution, $N(0,1)$. Then problem P can be transformed into the following deterministic problem $\mathrm{p}^{+\dagger}$. (For detail, see Appendix 1.)

$$
\underline{\mathrm{P}^{\prime}}: \quad \text { minimize } g(x, q) \Delta \underline{\underline{c}} x+q \sqrt{x^{\prime} V x}-\lambda F(q)
$$

$$
\begin{array}{ll}
\text { subject to } & x \in S \tag{2.2}\\
& q>0
\end{array}
$$

where $\quad q=F^{-1}(\alpha)$.
Problem p^{\prime} has a nonlinear objective function of x and q. In the next Section 3, several useful properties to solve P^{\prime} are derived in order to overcome the difficulty arising from this nonlinearity.
3. Subproblems p^{q}

For each $q>0$, the following subproblem p^{q} of p^{\prime} is defined.
$\underline{p^{q}}: \operatorname{Minimize} \bar{c}^{\prime} x+q \sqrt{x^{\prime} V x}-\lambda F(q)$
(3.1)
subject to $x \in S$
Let $x(q)$ and $g(q)$ denote an optimal solution of p^{q} and the optimal value, respectively. Then the following properties hold. (See Appendix 2 for proofs.)

Property (i) $x(a)$ is unique.
(ii) $\quad \bar{c}^{\prime} x(q)+q \sqrt{x(q)^{\prime} V x(q)}$ is a monotone increasing function of q.
(iii) $\sqrt{x(q)^{\prime} V x(q)}$ is a nonincreasing function of q.
(iv) $\bar{c} x(q)$ is a nondecreasing function of $q>0$.

In order to solve p^{q}, the following auxiliary problem P_{R}^{q} of p^{q} is considered for each $R>0$.

$$
\begin{align*}
& \text { Minimize } \frac{R}{q} \bar{c}^{\prime} x+\frac{1}{2} x^{\prime} V x \tag{3.2}\\
& \text { subject to } x \in S
\end{align*}
$$

Since P_{R}^{q} is a convex quadratic programming problem, the optimal solution of P_{R}^{q}, denoted by $x^{q}(R)$, may be found by a known method. Especially, Wolfe's long form [1l] may be suitable because it solves parametric quadratic programming problem $\mathrm{P}_{\mathrm{R}}^{\mathrm{q}}$ for all $R>0$.

By the convex programming theory, $x(q)$ is the x-part of the solution of the following Kuhn-Tucker condition:

[^0]\[

$$
\begin{gathered}
v+A^{\prime} u-\frac{q V x}{\sqrt{x^{\prime} V x}}=\bar{c} \\
A x-e=b \\
u^{\prime} e=0, \quad v^{\prime} x=0 \\
u, v, e, x \geqslant 0
\end{gathered}
$$
\]

where $v: n \times 1$ vector, $u: m \times 1$ vector (Lagrange multiplier), $e: m \times 1$ vector. While $x^{q}(R)$ is the x-part of the solution of the following Kuhn-Tucker condition :

$$
\begin{gathered}
v+A^{\prime} u-V x=\bar{c} \frac{R}{q} \\
A x-e=b \\
u^{\prime} e=0, \quad v^{\prime} x=0 \\
u, v, e, x \geq 0
\end{gathered}
$$

Therefore it is clear that if $x^{q}(R)$ satisfies

$$
\sqrt{x^{q}(R)^{\prime} V x^{q}(R)}=R
$$

then it is also an optimal solution of p^{q}. Giving the following definition

$$
\begin{equation*}
K^{q}(R) \triangleq \sqrt{x^{q}(R)^{\prime} V x^{q}(R)}-R, \tag{3.3}
\end{equation*}
$$

then the above condition becomes

$$
K^{q}(R)=0
$$

that is, $x^{q}(R)$ giving $K^{q}(R)=0$ may be sought. Above Kuhn-Tucker condition is a linear complementary equations with parametrized right hand side with respect to R / q. A solution of this equation is determined by a certain basis B, and $x^{q}(R)$ (the x-part of the solution) is therefore linearly dependent on R on the closed interval on which the same basis B maintains the nonnegativity of the solution. In other words, $x^{q}(R)$ may be represented on the interval as follows:

$$
\begin{equation*}
x^{q}(R)=\frac{R}{q} r_{B}+t_{B} \quad\left(L_{B} \leqq \frac{R}{q} \leqq U_{B}\right) \tag{3.4}
\end{equation*}
$$

where r_{B}, t_{B} are constant $n \times 1$ vectors determined by the basis B and L_{B}, U_{B} are the lower and upper bound specifying the interval, respectively. If \hat{R} with $k^{q}(\hat{R})=0$ is found, $x(q)$ can be obtained by

$$
x(q)=r_{B}\left(\frac{\hat{\mathrm{R}}}{\mathrm{q}}\right)+t_{B}
$$

(Hereafter \hat{R} for q is denoted by $R(q)$).
The condition (3.3) is equivalent to the existence of a root of the following quadratic equation Q in the interval $\left[q L_{B}, q U_{B}\right.$].
\qquad

$$
\left(q^{2}-r_{B}^{\prime} V r_{B}\right) R^{2}-2 r_{B}^{\prime} V t_{B} q R-q^{2} t_{B}^{\prime} V t_{B}=0
$$

Roots

$$
\beta_{1}, \beta_{2} \text { are given as follows: }
$$

$$
\beta_{1}=q \cdot \frac{r_{B}^{\prime} V t_{B}-\sqrt{D}}{q^{2}-r_{B}^{\prime} V r_{B}}
$$

$$
\beta_{2}=q \cdot \frac{r_{B}^{\prime} V t_{B}+\sqrt{D}}{q^{2}-r_{B}^{\prime} V r_{B}}
$$

where $D=\left(r_{B}{ }^{\prime} V t_{B}\right)^{2}+t_{B}{ }^{\prime} V t_{B}\left(q^{2}-r_{B}{ }^{\prime} V r_{B}\right)$.
Note that $q^{2}=r_{B}{ }^{\prime} V r_{B}$ cannot happen for $q>0$ as shown in Appendix 3.
Even if neither β_{1} nor β_{2} belong to $\left[q L_{B}, q U_{B}\right]$, some informations can be deduced as shown in the next Theorem 1. If either β_{1} or β_{2} and not both ${ }^{\dagger}$, belongs to the interval, we substitute β_{1} / q or β_{2} / q into the inequalities

$$
L_{B} \leqq \frac{\beta_{1}}{q} \leq U_{B}, \quad L_{B} \leqq \frac{\beta_{2}}{q} \leqq U_{B}
$$

respectively, and solve the inequality with respect to q (with fixed r_{B}, t_{B}) and determine the set of q (denoted by $I(B)$), in which same basis B is still optimal basis.

Theorem 1. $k^{q}(R)$ has a unique zero point $R(q)$ in $R>0$. Moreover,
(a) $\quad K^{q}(R)>0 \quad \Leftrightarrow \quad 0<R<R(q)$
(b) $\quad K^{q}(R)<0 \quad \Leftrightarrow \quad R>R(q)$

Proof : $K^{q}(R)$ is clearly a continuous function of $R^{\dagger \dagger}$.
By property (i) and the fact that $x^{q}(R)$ with $K^{q}(R)=0$ becomes $x(q), K^{q}(R)$ must have unique zero point $R(q)$. Therefore $R(q)$ separates interval $R>0$ into two intervals, so-called "positive interval" ($K^{q}(R)>0$) and "negative interval" $\left(K^{q}(R)<0\right)$. For sufficient large $R=R, x^{q}(R)$ is equal to $x \in S$ giving $\min \vec{c}^{\prime} x$. By the assumption of finiteness of this $x, \sqrt{x^{q}(R) \cdot V x^{q}(R)}$ becomes a finite fixed value for $R \geqslant \bar{R} \quad$ Therefore $K^{q}(R)<0$ for $R>R(q)$ is derived and $K^{q}(R)>0$ for $R<R(q)$ is also derived.
$+\quad$ It is easy to show that $\beta_{1}<0$ in case of $q^{2}-r_{B} V r_{B}>0, \beta_{1}, \beta_{2}<0$ in case of $q^{2}-r_{B}^{\prime} V r_{B}<0$ and $r_{B}^{\prime} V t_{B}>0$ even if β_{1}, β_{2} are real roots.
$\dagger \dagger$ Since $K^{G}(R)=\sqrt{x^{q}(R)^{\prime} V t_{B}(R)}-R$, continuity of $K^{q}(R)$ is implied by the continuity of $x^{q}(R)$. Continuity of $x^{q}(R)$ is well known according to the theory of the parametric quadratic programming.

For the optimal solution $x^{q}(R)$, the following properties hold. (Proofs are quite similar for properties (iii) (iv) and mitted.)

Property (v) : $x^{q}(R)^{\prime} \nabla x^{q}(R)$ is a nondecreasing function of R.
(vi) : $\bar{c}^{\prime} x^{q}(R)$ is a nonincreasing function of R.

4. Algorithm 1 for Subproblem p^{q}

In this section, an algorithm for P^{q} (A1gorithm 1) is proposed. In the algorithm, $R_{\ell}\left(R_{u}\right)$ is used to denote current lower bound (upper bound) of $R(q)$, respectively. First R_{ℓ} is set to 0 and R_{u} to a sufficiently large number M. Algorithm 1 starts with choosing an arbitrary positive number R_{1}. For each R, algorithm l calculates B, r_{B}, t_{B}, L_{B} and U_{B}. If neither β_{1} nor β_{2} belongs to $\left[q L_{B}, q U_{B}\right.$], then either R_{ℓ} or R_{u} is updated by using Theorem 1.
($R_{u}-R_{\ell}$) is at least halved after updating except the first iteration.
Next, R is set to $\left(R_{l}+R_{u}\right) / 2$ and same procedure is repeated. (Refer to Figure 1_{a}-Figure 1_{e} in the proof of Theorem 2.)

[Algorithm 1]

Step $0:$ Set $R \leftarrow R_{1}\left(n_{1}\right.$ is an aribitrary positive number ${ }^{\dagger}$), $R_{u} \leftarrow M(M$ is a sufficiently large number ${ }^{\dagger \dagger}$) and $R_{\ell} \leftarrow 0$. Go to Step 1 .
Step 1 : Solve P_{R}^{q} and find B, r_{B}, t_{B}, L_{B} and U_{B}. Go to Step 2.
Step 2 : If $k^{q}\left(q L_{B}\right)<0$, set $R_{u} \leftarrow q L_{B}$ and $R \leftarrow\left(R_{u}+R_{\ell}\right) / 2$, and return to Step 1; if $K^{q}\left(q L_{B}\right)=0$, set $\beta+q L_{B}$ and go to Step 4; if $K^{q}\left(q L_{B}\right)>0$, go to Step 3 .
Step 3: If $K^{q}\left(q U_{B}\right)<0$, solve Q-equation and set $\beta \leftarrow \beta_{2}$ or β_{1} (according to $L_{B} \leq \beta_{2} \leq U_{B}$ or $\left.L_{B} \leq \beta_{1} \leq U_{B}\right)$ and go to Step 4; if $K^{q}\left(q U_{B}\right)=0$, set $\beta \leftarrow q U_{B}$ and go to Step 4 ; if $K^{q}\left(q U_{B}\right)>0$, set $R_{\ell} \leftarrow q U_{B}$ and $R \leftarrow\left(R_{u}+R_{Q}\right) / 2$ and return to Step 1 .
Step 4: Set $x(q)+\frac{\beta}{q} r_{B}+t_{B}$ and terminate.

+ If an optimal solution of certain subproblem \hat{q} for $\hat{q}>q$ (or $\hat{q}<q$) is known, then $R_{1} \geqq \sqrt{x(\hat{q})^{\prime} V x(\hat{q})} \quad\left(R_{1} \leqq \sqrt{x(\hat{q})^{\prime} V x(\hat{q})}\right)$ should be taken as an R_{1}. $\dagger \dagger \quad M$ can be set to $\sqrt{x^{\prime} V x}$ using $x \in S$ minimizing $\bar{c}^{\prime} x$.

Remark : (1) Several methods to choose the next R are possible, and efficiency of Algorithm 1 seems to greatly depend on the choice method.
(2) If $K^{q}\left(q L_{B}\right)<0, K^{q}\left(q U_{B}\right)<0$ necessarily holds by Theorem 1. Thus the test for $K^{q}\left(q U_{B}\right)$ is not needed. In case $K^{q}\left(q U_{B}\right)>0, K^{q}\left(q L_{B}\right)>0$ holds and the test for $K^{q}\left(q L_{B}\right)$ is also omitted.
(3) $\left[q L_{B}, q U_{B}\right] \subseteq\left[R_{Z}, R_{u}\right]$ holds except the first L_{B}, U_{B}.

Theorem 2. Algorithm 1 terminates after finite iterations and it finds an optimal solution $x(q)$ of p^{q} upon termination.

Proof : (Finiteness) After each calculation of Step 1 , five cases (a), (b), (c), (d), (e) (as illustrated in Figure la, lb, lc, ld, and le below) are possible. (Note that the case of both $K^{q}\left(q L_{B}\right)<0$ and $K^{q}\left(q U_{B}\right)>0$ never occurs as pointed out in the above Remark.)

In case (d), (e), it is clear that

$$
\beta=q L_{B}\left(q_{B} U_{B}\right)
$$

and

$$
x(q)=L_{B} r_{B}+t_{B} \quad\left(x(q)=U_{B} r_{B}+t_{B}\right)
$$

holds respectively. In case (c), either β_{1} or β_{2} (but not both) must belong to $\left[q L_{B}, q U_{B}\right]$ according to the continuity and "the mean value theorem" with respect to $K^{q}(R)$. In case (c), (d), (e), algorithm 1 jumps to Step 4 and terminates. In case (a), (b), neither β_{1} nor β_{2} belongs to the interval $\left[q L_{B}, q U_{B}\right]$ by Theorem 1 . First, note that

$$
\begin{equation*}
q L_{B} \leq\left(R_{\ell}+R_{u}\right) / 2 \leqq q U_{B} \tag{4.1}
\end{equation*}
$$

holds as is easily known from the updating procedure of R in Step 2 or Step 3. Case a : R_{u} is set to $q L_{B}$ as $K^{q}\left(q L_{B}\right)<0$. Case b: R_{ℓ} is set to $q U_{B}$ as $K^{\left(q U_{B}\right)>0 .}$

In any cases, it follows from (4.1) that the difference $R_{u}-R_{\ell}$ is at least halved except the first execution of Step 2 and Step 3. Therefore, after finite iterations, case(c), case(d) or case(e) occurs since $R(q)$ belongs to a certain interval $\left[q L_{B}, q U_{B}\right]$ with $q U_{B}-q L_{B}>0^{\dagger}$.
(Validity) Termination condition itself proves validity of Algorithm 1. []

[^1]

Figure 1.a. Case (a)

Figure 1.b. Case (b)

Figure 1.c. Case (c)

Figure l.d. Case (d)

Figure 1.e. Case (e)
5. Prorerties of P^{q}

In this section, minimization of $g(x$,$) defined as (2.2) of Section 2$ is discussed. $g(x, q)$ is a convex function with respect to $q \geq 0$ for fixed x since

$$
\frac{\partial^{2} g(x, q)}{\partial q^{2}}=\frac{q}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} q^{2}\right) \geqq 0
$$

for $q>0$. For each $x \in S, h(x)$ is defined as follows:

$$
\begin{equation*}
h(x) \triangleq \operatorname{inff}\left(\left.g(x, q)\right|_{q}>0\right\} \tag{5.1}
\end{equation*}
$$

Then the optimal solution $q(x)$ giving $h(x)$ is given as follows:

$$
q(x)=\left\{\begin{array}{cc}
\sqrt{\log \left(\frac{\lambda^{2}}{2 \pi r^{\prime} V x}\right)} & \left(x^{\prime} V x<\frac{\lambda^{2}}{2 \pi}\right) \tag{5.2}\\
0 & \left(x^{\prime} V x>\frac{2}{2 \pi}\right)
\end{array}\right.
$$

by searching the zero point of

$$
\frac{\partial g(x, q)}{\partial q}=\sqrt{x^{\prime} V x}-\lambda f(q)
$$

because of convexity of $g(x, q)$ with respect to q, where $f(q)$ denotes the probability density function of the standard normal distribution $N(0.1)$.

Theorem 3. The optimal solution $\left(x^{*}, q^{*}\right)$ of p^{\prime}, if exists, satisfies

$$
\lambda f\left(q^{*}\right)=\sqrt{x\left(q^{*}\right)^{\prime} V x\left(q^{*}\right)} \quad \text { or } \quad q^{*}=\log \left(\frac{\lambda^{2}}{2 \pi x\left(q^{*}\right)^{\prime} V x\left(q^{*}\right)}\right)
$$

proof : Proof is easy and so it is omitted.
Since

$$
q^{*}=\log \left(\frac{\lambda^{2}}{\left.2 \pi x!q^{*}\right)^{\prime} V x\left(q^{*}\right)}\right) \leqq \log \left(\frac{\lambda^{2}}{2 \pi R_{\min }^{2}}\right)
$$

holds from this necessary condition of $\left(x^{*}, q q^{*}\right.$, if q^{*} exists, an upper bound of q^{*} (denoted by q_{u}) can be given by

$$
q_{u}=\left\{\begin{array}{cc}
\log \left(\frac{\lambda^{2}}{2 \pi R_{\min }^{2}}\right) & \left(2 \pi R_{\min }^{2}<\lambda^{2}\right) \tag{5.3}\\
0 & \text { (otherwise) } \\
0\left\{x^{\prime} V x \mid x \varepsilon S\right\} . &
\end{array}\right.
$$

where $R_{\min }^{2} \triangleq \min \left\{x{ }^{\prime} V x \mid x \in S\right\}$.
Here, we define a transformation T from $\Gamma=\{q>0\}$ to $\Gamma \cup\{0\} . T^{2}$ plays a principal role in our algorithm given in the next section.
T :

$$
T(q)=\left\{\begin{array}{cl}
\log \left(\frac{\lambda^{2}}{2 \pi x(q)^{\prime} \vee \times(q)}\right) & \left(x(q)^{\prime} \vee x(q)<\frac{\lambda^{2}}{2 \pi}\right) \\
0 & \text { (otherwise) }
\end{array}\right.
$$

Note that $T(q)$ is nondecreasing function of q because of property (iii) and Theorem 3 states a necessary condition of q^{*} is $q^{*}=T\left(q^{*}\right)$, that is, q^{*} is a fixed point of T. Unfortunately, this condition is not necessarily a sufficient condition.

Theorem 4. for $q_{1}>0$ and $q_{2}=T\left(q_{1}\right)$,
$\begin{array}{ll}q^{*} \not \&\left[q_{2}, q_{1}\right] & \text { in case } q_{1}>q_{2} \\ q^{*} \not \&\left[q_{1}, q_{2}\right] & \text { in case } q_{1}<q_{2} \quad \text { holds. }\end{array}$
proof: If $q_{1}>q_{2}$, for any $\hat{q} \in\left[q_{2}, q_{1}\right]$,

$$
T(\hat{q})-\hat{q}<T(\hat{q})-q_{2} \leq T\left(q_{1}\right)-q_{2}=0
$$

holds (since $T(q)$ is a nondecreasing function of q).
Therefore \hat{q} does not satisfy the necessary condition of q^{*}, In case $q_{1}<q_{2}$, the proof may be similarly done.

Now, next property (vii) shows that $I(B)$ is a continuous interval if not empty.

Property (vii) : $I(B)=\phi$ or $I(B)$ consists of a continuous interval.
proof : Solving either inequality

$$
L_{B} \leqq \frac{r_{B}^{\prime} V t_{B}^{-\sqrt{D}}}{q^{2}-r_{B}^{\prime} V r_{B}} \leqq U_{B}
$$

(5.4)
or

$$
L_{B} \leq \frac{r_{B}^{\prime} V t_{B}+\sqrt{D}}{q^{2}-r_{B}^{\prime} V r_{B}} \leq U_{B}
$$

with respect to q^{+}, results Table 1 which shows property (vii) .

[^2]6. Algorithm for P^{\prime}

First some notations are defined.

$$
\begin{aligned}
S_{N}: & \text { scanned region of } q \\
q_{m}^{\dagger}: & g\left(q_{m}\right) \Delta \min \{g(q) \mid q \varepsilon \overline{I(B)}\} \\
& \text { where - denotes ordinary "closure operation". } \\
v^{*}: & \text { current best value } \\
(\tilde{x}, \tilde{q}): & \text { current best solution } \\
q_{c}: & \text { current searched } q \\
B_{q_{c}}: & \text { optimal basis with respect to } q_{c} \\
q_{M}: & q_{M} \triangleq \min \left\{q \mid q \in I\left(B_{q_{c}}\right)\right\} \text { for } I\left(B_{q_{c}}\right) \neq \phi
\end{aligned}
$$

The following algorithm 2 starts with $q_{c}=q_{u}, S_{N}=\left(q_{u},+\infty\right), v^{*}=+\infty$, $\tilde{x}=\phi$ and $\tilde{q}=\phi$. In Step 1, it solves p^{q} using Algorithm 1 and find $x\left(q_{c}\right)$ and the optimal basis $B_{q_{c}} . \quad I\left(B_{q}\right)$ is then calculated by solving the inequality (5.4) and $g(q)$ on $I\left(B_{q_{q}}^{C}\right)$ is Getermined. Proceeding to Step 2, minimum point q_{m}^{\dagger} of $g(q)$ is calculated. If $T\left(q_{m}\right)=q_{m}, g\left(q_{m}\right)_{*}$ is compared with current best value v^{*} and $v^{*}, \tilde{q}, \tilde{x}$ is updated in Step 4 if $v_{\sim}^{*}>\underset{\sim}{g}\left(q_{m}\right)$. While in case $T\left(q_{m}\right) \neq q_{m}$, if $\left.S_{N} \cup_{T(B}\right) \supseteq(0,+\infty)$, current $\left(x(\tilde{q}), \tilde{q}, v^{q}\right)$ is optimal and algorithm 2 terminates $؟$ Unless $S_{N} \cup_{I}\left(B_{q_{c}}\right)$? ($\left.0,+\infty\right), S_{N}$ is updated and augnented. Next q_{c} is selected as follows; if $T\left(q_{M}\right)<q_{M}, q_{c}$ is set to $T\left(q_{M}\right)$: otherwise, q_{c} is set to $q_{M}-\varepsilon$ where ε is sufficiently small positive number. Then, returing to Step 2 and above procedure is repeated. (see also Figure 2).
[Algorithm 2]
Step $0:$ Set $q_{c}+q_{u}, S_{N}+\left(q_{u},+\infty\right), v^{*}++\infty, \tilde{x}+\phi$ and $\stackrel{\sim}{q}+\phi . \quad$ Go to Step 1.
Step 1 : Apply Algorithm 1 to problem $\mathrm{P}^{q_{c}}$ and calculate $B_{q_{c}}, x\left(q_{c}\right)$, $I\left(B_{q_{c}}\right)$ and determine $g(q)$ on $I\left(B_{q_{c}}\right)$. Go to Step 2.
Step 2: Calculate a_{m}. If $T\left(q_{m}\right)^{\dagger+}=q_{m}$, go to Step 4; otherwise, go to Step 3.

[^3]Step 3: If $S_{N} \cup I\left(B_{q}\right) \supseteq\left(0,{ }^{+\infty}\right)$, go to Step 5; otherwise, set $S_{N}+S_{N} \cup I\left(\dot{B}_{q_{c}}\right)$. If $T\left(q_{M}\right)^{\dagger}<q_{M}$, set $q_{c}+T\left(q_{M}\right)$ and $S_{N}+S_{N} \cup$ $\left(T\left(q_{M}\right), q_{M}\right)$, and return to Step 1 , otherwise, set $q_{C} \leftarrow q_{M}-\varepsilon(\varepsilon$ is sufficiently small number) and return to Step 2.
Step 4: If $g\left(q_{m}\right) \leftarrow v$, set $v^{*}+g\left(q_{m}\right), \tilde{x} \leftarrow x\left(q_{m}\right)$, and $\underset{q}{\tilde{\sim}} \leftarrow q_{m}$, and return to Step 3. Otherwise, return to Step 3 directly.
Step 5: Terminate. Current (\tilde{x}, \tilde{q}) is an optimal solution of p^{\prime} and v^{*} is the optimal value.

Figure 2. Illustration of computational process of Algorithm 2 at certain q_{c}.

Theorem 5 Algorithm 2 terminates after finite iterations and upon termination, it finds an optimal solution $\left(x^{*}, q^{*}\right)$ of P^{\prime}.

Proof: (Finiteness) It is sufficient to prove $S_{N} \cup I\left(B_{q_{c}}\right) \geq(0,+\infty)$ occurs after finite iterations. Whenever Step 1 is entered from Step 3, S_{N} is set to $S_{N} \cup I\left(B_{q_{c}}\right)$, that is, augmented by $I\left(B_{q_{c}}\right)$. This augmentation can be done only finite ${ }^{c}$ times, because $(0,+\infty)$ is covered by a finite number of $I(B)$. Finiteness is assured by the facts that the number of possible basis is finite. Algorithm 2 searches these $I(B)$ with jumping when $T\left(q_{M}\right)<q_{M}$ from right to left on the positive part of the real line (see Theorem 4).

Therefore, $S_{N} \cup I\left(B_{q_{c}}\right) \geq(0,+\infty)$ must occur after executing updation of S_{N} at finite times.
\dagger Even if $q_{M} \notin\left(B_{q_{c}}\right), T\left(q_{M}\right)$ can be also calculated by same reasons as q_{m}.
(Validity) Algorithm 2 scans $(0,+\infty)$ and finds all q_{m} on $I(B)$ except skipped interval $\left(T\left(q_{M}\right), q_{M}\right)$ with assurance that a^{*} does not exist in the latter interval by Theorem 4. Moreover, it is clear by Theorem 3 that optimal q exists among such q_{m} if exists. Therefore, upon termination, algorithm 2 has scanned all possible q_{m}. This proves validity of Algorithm 2.
7. Example

In order to illustrate our algorithm, we consider the following example. (See Figure 3):

$$
\bar{C}=\binom{3}{1}, \quad V=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad A=\left(\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right), \quad b=\binom{8 / 3}{6} .
$$

and $\lambda=2 \times 10^{4}$.

Figure 3. Illustration of computational process of the example in Section 7.

Then P^{\prime} becomes as follows:

$$
\begin{array}{r}
\mathrm{p}^{\prime}: \operatorname{minimize} 3 x_{1}+x_{2}+c \sqrt{x_{1}^{2}+x^{2}}-20000 F(q) \\
\text { subject to } \quad x_{1}+x_{2} \geq 8 / 3 \\
3 x_{1}+2 x_{2} \geq 6 \\
x_{1}, x_{2} \geq 0 . \quad q>0 .
\end{array}
$$

Step 0: $q_{c} \leftarrow q_{u}(=4.0866) . \quad S_{N} \leftarrow\left(q_{u}, \quad+\infty\right), v^{*} \leftarrow+\infty \quad \tilde{x} \leftarrow \phi$ and $\underset{q}{q} \leftarrow \phi$. Go to Step 1.
Step $1:\left(\right.$ Algorithm 1) ${ }^{\dagger}$
Step $0:$ Set $R \leftarrow R_{1}\left(=2 q_{u}\right), R_{u} \leftarrow M$ and $R_{\ell} \leftarrow 0$. Go to Step 1 .
Step $1: u_{1} \quad x_{1} \quad x_{2} \quad e_{1}$
$B=\left[\begin{array}{rrrr}1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 3 & 2 & 0\end{array}\right] \quad r_{B}=\binom{-6 / 13}{9 / 13} \quad r_{B}=\binom{18 / 13}{12 / 13}$
$L_{B}=14 / 9 . \quad U_{B}=3 . \quad$ Go to Step 2.
Step 2 : Since $k^{q}\left(q_{C} L_{B}\right)<0$, set $R_{u}+q_{C} L_{B}\left(=q_{u} \times \frac{14}{9}\right)$ and $R \leftarrow\left(R_{u}+R_{\ell}\right) / 2\left(=7 / 9 q_{u}\right)$, and return to Step 1 . $\begin{array}{llll}u_{1} & u_{2} & x_{1} & x_{2}\end{array}$
$r_{B}=\binom{0}{9} \quad r_{B}=\begin{gathered}2 / 3 \\ 2\end{gathered}$

$$
B=\left[\begin{array}{rrrr}
1 & 3 & -1 & 0 \\
1 & 2 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 3 & 2
\end{array}\right] \quad L_{B}=2 / 3 \quad U_{B}=14 / 9
$$

$$
\text { Go to Step } 2 .
$$

[^4]Go to Step 2.
Step $2: \quad K^{q}\left(q_{c} L_{B}\right)<0, \quad R_{u} \leftarrow q_{c} L_{B}\left(=2 / 3 q_{u}\right)$
$R+1 / 3 q_{u}$. Return to Step 1 .
Step 1: $u_{1} x_{1} \quad x_{2} \quad e_{2}$

$$
r_{B}=\binom{-1}{1} \quad t_{B}=\binom{4 / 3}{4 / 3}
$$

$$
B=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 3 & 2 & -1
\end{array}\right] \quad L_{B}=0, \quad U_{B}=2 / 3
$$

Go to Step 2.
Step 2 : Since $K^{q}\left(q_{c} L_{B}\right)=4 \sqrt{2} / 3>0, \quad$ Go to Step 3.
Step 3 : Since $K^{q}\left(q_{c} U_{B}\right)=2 \sqrt{10} / 3-2 / 3 q_{u}<0$, solve Q equation $\left(r_{B}^{\prime} V t_{B}=0 \quad r_{B}^{\prime} V r_{B}=2 \quad t_{B}^{\prime} V t_{B}=9 / 32\right)$ $\left\{\left(q_{u}\right)^{2}-2\right\} R^{2}-32 / 9 q_{c}^{2}=0$
and set $\beta+\beta_{2}\left(=0.4918 q_{u}\right)$ because of $q_{c}^{2}-r_{B}^{\prime} V r_{B}=q_{u}^{2}-2>0$. Go to Step 4.
Step 4 : Terminate.

$$
x\left(q_{c}\right)^{\prime}=\begin{array}{r}
0.8415 \\
1.8251
\end{array} \quad B_{q_{c}}=\left[\begin{array}{rrrr}
-1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 3 & 2 & -1
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
& r_{B_{q_{c}}^{\prime}}^{\prime}=(-1,1), \quad t_{B_{q_{c}}^{\prime}}^{\prime}=(4 / 3,4 / 3), L_{B}=0, U_{q_{c}}=2 / 3 \\
& I\left(B_{q_{c}}\right)=[-\sqrt{10}+\infty) \text { and } g(q)=(4 \sqrt{2} / 3) \cdot \sqrt{q^{2}-2}-20000 F(q) . \\
& \text { Go to Step 2. }
\end{aligned}
$$

Step $2: \quad q_{m}=3.9324 \quad q_{M}=\sqrt{10}$. Since $T\left(q_{m}\right)=q_{m}$, Go to Step 4.
Step 4 : Since $v^{*}(=\infty)>g\left(q_{m}\right)=-19992 \cdot 2811$, set
$v^{*}+g\left(q_{m}\right)(=-19992,2811)$,
$\tilde{x} \leqslant x\left(q_{m}\right)\left(=(0,8194,1.8472)^{\prime}\right)$ and $\tilde{q} \leftarrow q_{m}(=3.9324)$,
Return to Step 3.
Step 3 : Since $S_{N} \cup I\left(B_{q_{c}}\right)=[\sqrt{10},+\infty) \subset(0,+\infty)$
set $S_{N} \leftarrow S_{N} \cup I\left(B_{q_{c}}\right)(=(\sqrt{10},+\infty))$
As $T\left(q_{M}\right)=3.884726>q_{M}=\sqrt{10}=3.162277$, set $q \leftarrow q_{M}-\varepsilon$ and return to Step 1.
Since the serial computational routines are almost same as above, results only are enumerated.

$$
\begin{aligned}
& q_{c}=\sqrt{10}-\varepsilon: \quad u_{1} \quad u_{2} \quad x_{1} \quad x_{2} \\
& { }^{B} q_{c}=\left[\begin{array}{rrrr}
1 & 3 & -1 & 0 \\
1 & 2 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 3 & 2
\end{array}\right]{ }^{1} r_{Q_{C}}=\binom{0}{0} \quad t_{B_{q_{C}}}=\binom{2 / 3}{2}, \\
& { }^{L} B_{q_{c}}=2 / 3 \quad{ }^{U} B_{q_{c}}=14 / 9 . \\
& q_{M}=3 \sqrt{10} / 7<T\left(q_{M}\right)=3.884726 \text { and } S_{N} \leftarrow[3 \sqrt{10} / 7,+\infty) \text {. } \\
& q_{c}=3 \sqrt{10} / 7-\varepsilon: u_{1} x_{1} x_{2} e_{1} \\
& B_{q_{C}}=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & 1 & -1 \\
0 & 3 & 2 & 0
\end{array}\right] r_{B_{q}}=\binom{-6 / 13}{9 / 13} t_{B_{q}}=\binom{18 / 13}{12 / 13} \\
& { }^{L} B_{q_{c}}=14 / 9 \quad{ }^{U}{ }_{B} q_{c}=3 . \\
& I\left(B_{q_{c}}\right)=[1,3 \sqrt{10} / 7], q_{M}=3 \sqrt{10} / 7 \neq T\left(q_{m}\right) \text {, } \\
& T\left(q_{M}\right)>q_{M}=1 . \quad \text { and } S_{N} \leftarrow[1,+\infty) \text {. } \\
& q_{c}=1-\varepsilon: \quad v_{1} \quad u_{2} \quad x_{2} \quad e_{1} \quad r_{B} \quad\binom{0}{0} \quad t_{q_{q_{c}}}=\binom{0}{3} \\
& B_{q_{c}}=\left[\begin{array}{rrrr}
1 & 3 & 0 & 0 \\
0 & 2 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 2 & 0
\end{array}\right] \quad L_{B_{q_{c}}}=3 . \quad U_{B}=+\infty . \\
& \begin{aligned}
I\left(B_{q_{c}}\right)=(0,1], q_{M}=q_{m}=0, & \text { and } S_{N} \cup I\left(B_{q_{c}}\right) \geq\left(0,{ }^{+\infty}\right) .
\end{aligned} \\
& \text { Terminate }: x=(0.8194,1.8472) \text { and } q=3.9324 \text {. }
\end{aligned}
$$

8. Conclusion

The most difficult point in our algorithm is to find q_{m} in Step 2. Since $g(q)$ is a function of q only, we may manage to obtain q_{m} if the form of $g(q)$ on $I\left(B_{q}\right)$ is known. The second difficult point is a lack of sufficient condition about q^{*}. Especially in this problem, the lack of useful sufficient condition urges us to search all possible points with $T(q)=q$, among all positive q.

Note that for fixed α, our problem is equivalent to Kataoka's problem [6]. But even in such case, our method may be considered as a different approach.

Although the effect of x on the objective function was taken as $-\lambda \alpha$, there may be other ways to include the effect of α. In such cases, however, the problem may become more complicated and more difficult to solve. Admitting the linearity of the effect of α, in practical situation, the domain of α may be more restricted.

9. Acknowledgement

The authors would like to thank Professor H. Mine and Associate Professor T. Ibaraki of Kyoto University for their valuable comments and suggestions, and are greatly indebted to S. Shiode of Osaka University for completing this paper.

References

[1] Charnes, A. and Cooper, W.W. : Chance Constrained Programming. Management Science Vol. 6 (1959), pp73-79.
[2] Charnes, A. and Cooper, W.W. : Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints. Operations Research vol. 11 (1963), pp18-39.
[3] Charnes, A. and Kirby, M.J.L. : Some Special P-models in Chance Constrained Programming. Management Science Vol. 14 (1967), pp183-195.
[4] Eisinər, M.J., Kaplan, R.S. and Soden, J.V. : Admissible Decision Rules for the E-Model of Chance-Constrained Programming. Management Science Vol. 17 (1971), pp337-353.
[5] Gochet, W.F. and Padberg, M.V. : The Trianglular E-Model of ChanceConstrained Programming. Operations Research Vol. 19 (1971), pp105-114.
[6] Kataoka, S. : A Stochastic Programming Model. Econometrica Vol. 31 (1963), pp181-196.
[7] Kirby, M.J.L. : The current State of Chance-Constrained Programming. Proceedings of the Princeton Symposium on Mathematical Programming (Ed. H. W. Kuhn) Princeton University Press, Princeton, New Jersey, 1970, pp93-111.
[8] Mangasarian, O.L. : NonZinear Programming Mcgraw-Hill, 1969.
[9] Sengupta, J.K. : Stochastic Progranming North Holland, Amsterdam, 1972.
[10] Vajda, S. : Probabilistic Programming Academic Press, 1972.
[11] Wolfe, P. : The Simplex Methods for Quadratic Programming. Econometrica Vol. 27 (1959), pp382-398.

Hiroaki Ishii and Toshio Nishida:
Department of Applied Physics, Faculty
of Engineering, Osaka University,
Yamada-kami, Suita, Osaka, 565, Japan.

Appendix 1 Derivation of P^{\prime}

The chance constraint in (2.1) can be transformed into the following form by simplex subtrction and devision.
(A-1) $\quad \operatorname{Prob}\left(c^{\prime} x \leqq f\right)=\operatorname{Prob}\left(\frac{c^{\prime} x-\bar{c}^{\prime} x}{\sqrt{m^{\prime} V x}} \leqq \frac{f^{\prime}-\bar{c}^{\prime} x}{\sqrt{x^{\prime} V x}}\right)$
Since c is distributed according to $H(\bar{c}, V)$,

$$
\frac{c^{\prime} x-\bar{c}^{\prime} x}{\sqrt{x^{\prime} \sqrt{x}}}
$$

can be considered as a normalized random variable with zero mean and unit variance (that is, standard normal distribution). Therefore (A-1) is replaced by

$$
f \geqq \bar{c}^{\prime} x+F^{-1}(\alpha) \sqrt{x^{\prime} V x}
$$

where F is the distribution function of standard normal distribution, $N(\Omega, 1)$. Since minimum of f is attained when the equality holds. setting

$$
q=F^{-1}(\alpha)
$$

the objective function becomes as follows :

$$
\bar{E}^{\prime} x+q \sqrt{x^{\prime} V x}-\lambda F(q)
$$

Appendix 2 Proofs of Properties (i) - (iv)
(i) It is clear from the strict convexity of the objective function and the fact that S is convex set.
(ii) For $q_{2}>q_{1}>0$,

$$
\begin{aligned}
& \bar{c}^{\prime} x\left(q_{2}\right)^{\prime}+q_{2} \sqrt{x\left(q_{2}\right)^{\prime} V x\left(q_{2}\right)}>\bar{c}^{\prime} x\left(q_{2}\right)+q_{1} \sqrt{x\left(q_{2}\right)^{\prime} V x\left(q_{2}\right)} \quad\left(q_{2}>q_{1}\right) \\
& \left.\geq \bar{c}^{\prime} x\left(q_{1}\right)+q_{1} \sqrt{x\left(q_{1}\right)^{\prime} V x\left(q_{1}\right)} \quad \text { (optimality of } q_{1} \text { for } \mathrm{p}^{q_{1}}\right)
\end{aligned}
$$

(iii) For $q_{2}>q_{1}>0$, from the optimality of $x\left(q_{1}\right), x\left(q_{2}\right)$,

$$
\begin{equation*}
\bar{c}^{\prime} x\left(q_{1}\right)+q_{1} \sqrt{x\left(q_{1}\right)^{\prime} V x\left(q_{1}\right)} \leqq \bar{c}^{\prime} x\left(q_{2}\right)+q_{1} \sqrt{x\left(q_{2}\right)^{\prime} V x\left(q_{2}\right)} \tag{A-2}
\end{equation*}
$$

(A-3) $\quad \bar{c}^{\prime} x\left(q_{2}\right)+q_{2} \sqrt{x\left(q_{2}\right)^{\prime} V x\left(q_{2}\right)} \leq \bar{c}^{\prime} x\left(q_{1}\right)+q_{2} \sqrt{x\left(q_{1}\right)^{\prime} V x\left(q_{1}\right)}$
holds. By subtracting the right hand side of ($A-2$) from the left hand side of $(A-3)$ and the left hand side of $(A-2)$ from the right hand side of $(A-3)$,
(A-4)

$$
\left(q_{2}-q_{1}\right) \sqrt{x\left(q_{2}\right)^{\prime} V x\left(q_{2}\right)} \leqq\left(q_{2}-q_{1}\right) \sqrt{x\left(q_{1}\right)^{\prime} V x\left(q_{1}\right)}
$$

holds. The assumption $\left(q_{2}-q_{1}\right)>0$ implies

$$
\sqrt{x\left(q_{1}\right)} \cdot V x\left(q_{1}\right) \geqq \sqrt{x\left(q_{2}\right)^{\prime} V x\left(q_{2}\right)}
$$

(iv) From Property (iii),

$$
\begin{align*}
& \bar{c}^{\prime} x\left(q_{1}\right)+q_{1} \sqrt{x\left(q_{1}\right)^{\prime} V x\left(q_{1}\right.} \leqq \bar{c}^{\prime} x\left(q_{2}\right)+q_{1} \sqrt{x\left(q_{2}\right)^{\prime} V x\left(q_{2}\right.} \tag{A-5}\\
& \leqq \bar{c}^{\prime} x\left(q_{2}\right)+q_{1} \sqrt{x\left(q_{1}\right)^{\prime} V x\left(q_{1}\right)}
\end{align*}
$$

holds. (A-5) implies

$$
\begin{equation*}
\bar{c}^{\prime} x\left(q_{1}\right) \leqq \bar{c}^{\prime} x\left(q_{2}\right) \tag{व}
\end{equation*}
$$

Appendix $3 \quad q \neq \sqrt{r_{B}^{T V r_{B}}}$ for an optimal basis B
Assume $q=\frac{\sqrt{r_{B}^{\prime} V r_{B}}}{t_{B}^{\prime} V t_{B}}$. Then $\frac{R(q)}{q}=\frac{t_{B}^{\prime} V t_{B}}{2 r_{B}^{\prime} V t_{B}}$ from Q equation, that is,

$$
R(q)=\frac{t_{B}^{\prime} V t_{B}}{2 r_{B}^{\prime} V t_{B}} \quad \sqrt{r_{B}^{\prime} V r_{B}^{\prime}}
$$

holds. Since

$$
\begin{aligned}
& x(q)=\frac{R(q)}{q} r_{B}+t_{B} \quad \text { and } K^{q}(R(q))=0, \\
& x(q)^{\prime} V x(q)-R(q)^{2}=\frac{R^{2}}{q^{2}} r_{B}^{\prime} V r_{B}+2 \frac{R(q)}{q} r_{B}^{\prime} V t_{B}+t_{B}^{\prime} V t_{B}-R(q)^{2} \\
& =\frac{r_{B}^{\prime} V r_{B}\left(t_{B}^{\prime} V t_{B}\right)^{2}}{4\left(r_{B}^{\prime} V t_{B}\right)^{2}}+t_{B}^{\prime} V t_{B}+t_{B}^{\prime} V t_{B}-\frac{r_{B}^{\prime} V r_{B}\left(t_{B}^{\prime} V t_{B}\right)^{2}}{4\left(r_{B}^{\prime} V t_{B}\right)^{2}} \\
& =2 t_{B}^{\prime V t_{B}=0, \text { or } t_{B}=0 . \quad \text { (For } V \text { is positive definite matrix.) }}
\end{aligned}
$$

This implies $\frac{R(q)}{q}=0$, or $R(q)=x(q)^{\prime} v x(q)=0$, or $x(q)=0$.
Since again V is positive definite matrix,

$$
x(q)=0 \text { and } t_{B}=0 \text { together implies } r_{B}=0 \text { or } q=0
$$

We considers only $q>0$ and so $q=\sqrt{r_{B}^{\top} \sqrt{V r}}$ cannot happen.

Appendix 4 Kuhn-Tucker condition of Problem P_{R}^{Q} for the example.

$$
\begin{aligned}
& v+A^{\prime} u-V x=\bar{c}^{\prime} \frac{R}{q} \\
& A x-e=b, u^{\prime} e+v^{\prime} x=0, u, v, e, x \geqslant 0, \text { that is, } \\
& v_{1}+u_{1}+3 u_{2}-x_{1}=3 \frac{R}{q} \\
& v_{2}+u_{1}+2 u_{2}-x_{2}=\frac{R}{q}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}+x_{2}-e_{1}=8 / 3 \\
& 3 x_{1}+2 x_{2}-e_{2}=6 \\
& x_{1} v_{1}+x_{2} v_{2}+e_{1} u_{1}+e_{2} u_{2}=0, x_{1}, x_{2}, v_{1}, v_{2}, e_{1}, e_{2}, u_{1}, u_{2} \geq 0 .
\end{aligned}
$$

Appendix 5.
Table 1. I(B).

Case	Subcase	I (B)
$r_{B}^{\prime} V t_{B} \geqslant 0$		$\left\{q \mid A_{2} \leq q \leq A_{1}\right\}$
$r_{B}^{\prime} V t_{B}<0$	$A_{4} \geq A_{5} \& A_{4}>0$	$\left\{q \mid q>A_{8} \& A_{2} \geqq\right.$ Q $\left.{ }^{(1)} A_{1}\right\}$
	$A_{7}<0, A_{5}>0 \& A_{5} \leq A_{4}$	$\left\{q \mid q<A_{8} \& A_{2} \leqq 9 \leqq A_{1}\right\}$
	$\begin{aligned} & A_{7} \leqq 0, A_{6}<0, A_{5}<0 \& \\ & A_{3} \leqq A_{2} \leqq A_{1} \end{aligned}$	$\left\{q \mid q<A_{8} \& A_{2} \leqq \underline{\left.q \leqq A_{1}\right\}}\right.$
	$\begin{aligned} & A_{7} \leqq 0, A_{6}<0 \& \\ & A_{2} \leqq \min \left(A_{1}, A_{3}\right) \end{aligned}$	$\left\{q \mid q<A_{8} \& A_{1} \geqq q \geqq A_{9}\right\}$
	$\begin{aligned} & A_{7} \leqq 0, A_{6}<0 \& \\ & A_{1} \leqq \min \left(A_{2}, A_{3}\right) \end{aligned}$	$\left\{q \mid q<A_{8} \& \min \left(A_{2}, A_{3}\right) \geq q \geq A_{9}\right\}$
	$\begin{aligned} & A_{6} \geqq 0, A_{4}<0, A_{3}>A_{2} \& \\ & A_{1} \leqq \min \left(A_{2}, \sqrt{A_{6}}\right) \end{aligned}$	$\left\{q \mid q<A_{8} \& A_{2} \geq q \geq A_{1}\right\}$
	$A_{6} \geqq 0 \& \max \left(\sqrt{A_{6}}, A_{2}\right)$	$\left\{q \mid q<A_{8} \& A_{g} \leqq 9 \leqq A_{1}\right\}$
	$\begin{aligned} & A_{4}<0, A_{6} \geqq 0, A_{3} \leqq A_{2} \& \\ & A_{1} \leqq \sqrt{A_{6}} \end{aligned}$	$\left\{\mathrm{q} \mid \mathrm{q}<\mathrm{A}_{8} \& A_{1} \leqq \mathrm{q} \leqq A_{3}\right\}$
	$\begin{aligned} & A_{6} \leqq 0 \& \\ & \sqrt{A_{6}} \leqq A_{1} \leqq \min \left(A_{2}, A_{3}\right) \end{aligned}$	$\left\{q \mid q<A_{8} \& A_{9} \leqq q \leqq m i n\left(A_{2}, A_{3}\right)\right\}$

See also next page.

In Table 1,

$$
\begin{aligned}
& A_{1}=\sqrt{r_{B}^{\prime} V r_{B}+2 r_{B}^{\prime} V t_{B} / L_{B}+t_{B}^{\prime} V t_{B} / L_{B}^{2}} \\
& A_{2}=\sqrt{r_{B}^{\prime} V r_{B}+2 r_{B}^{\prime} V t_{B} / U_{B}+t_{B}^{\prime} V t_{B} / U_{B}^{2}} \\
& A_{3}=\sqrt{r_{B}^{\prime} V r_{B}+r_{B}^{\prime} V t_{B} / U_{B}}, \quad A_{4}=\sqrt{2 r_{B}^{\prime} V t_{B} / L_{B}+t_{B}^{\prime} V t_{B} / L_{B}^{2}} \\
& A_{5}=\sqrt{2 r_{B}^{\prime} V t_{B} / U_{B}+t_{B}^{\prime} V t_{B} / U_{B}^{2}}, A_{6}=\sqrt{r_{B}^{\prime} V r_{B}+r_{B}^{\prime} V t_{B} / L_{B}} \\
& A_{7}=\sqrt{r_{B}^{\prime} V r_{B}+r_{B}^{\prime} V t_{B} / U_{B}}, A_{8}=\sqrt{r_{B}^{\prime} V r_{B}} \\
& A_{9}=\sqrt{r_{B}^{\prime} V r_{B}-\left(r_{B}^{\prime} V t_{B}\right)^{2} / t_{B}^{\prime} V t_{B}} .
\end{aligned}
$$

Note that

(i) V is a positive definite matrix implies

$$
\begin{aligned}
& \quad r_{B}^{\prime} V r_{B}-\left(r_{B}^{\prime} V t_{B}\right)^{2} / t_{B}^{\prime} V t_{B} \geqq 0, \quad r_{B}^{\prime} V r_{B} \geqq 0, \\
& \quad r_{B}^{\prime} V r_{B}+2 r_{B}^{\prime} V t_{B} / L_{B}+t_{B}^{\prime} V t_{B} / L_{B}^{2}=\left(r_{B}+t_{B} / L_{B}\right) \cdot V\left(r_{B}+t_{B} / L_{B}\right) \geqq 0 \\
& \text { and } r_{B}^{\prime} V r_{B}+2 r_{B}^{\prime} V t_{B} / U_{B}+t_{B}^{\prime} V t_{B} / U_{B}^{2} \geqq 0, \text { similarly. } \\
& \text { (ii) } r_{B}^{\prime} V t_{B} \geqslant 0 \text { implies } A_{8}<A_{2}<A_{1} . \\
& \text { (iii) } r_{B}^{\prime} V t_{B}<0 \text { implies } A_{1}, A_{2}, A_{8} \geqq A_{9} .
\end{aligned}
$$

$$
A_{1} \geqq \sqrt{A_{6}} \text { implies } A_{S} \geqq \sqrt{A_{6}} \text { in case of } r_{B}^{\prime} V t_{B}<0 \text { and } A_{6}>0
$$

[^0]: $+\quad \lambda$ is a given constant for taking the effects of α into the objective function.
 $\dagger \dagger$ Though $x \neq 0$ is needed in the course of transformation from P to $\mathrm{P}^{\prime}, \mathrm{P}^{\prime}$ can include $x=0$ and p^{\prime} substituted $x=0$ corresponds to P substituted $x=0$.

[^1]: \dagger Even in the degenerate case, that is, $L_{B}=U_{B}$, another base \bar{B} exists such that $L_{\bar{B}}=U_{B}$ (or $U_{\bar{B}}=L_{B}$) and $U_{\bar{B}}-L_{\bar{B}}>0$ according to the theory of the paramet ${ }^{B}$ ic quadratic programing. ${ }^{B}$ Therefore, without any loss of generality, $q U_{B}-q L_{B}>0$ can be assumed.

[^2]: $\dagger \quad q=\sqrt{r_{B} V r_{B}}$ cannot happen as is shown in Appendix 3 if $q>0$ only considered.

[^3]: $\dagger \quad$ If q_{m} is not unique, then we take the smallest one among these q_{m}. $+\dagger$ Even if $q_{m} \notin I\left(B_{q_{c}}\right), T\left(q_{m}\right)$ can be calculated by continuity of $T(q)$ as $\lim T(q)$ and continuity of $T(q)$ is assured by the continuity of $x(q)$. $q \rightarrow q_{m}+0$

[^4]: $\dagger_{\text {Kuhm - Tycker condition in the example is shown in Appendix } 4 .}$

