
Journal of the Operations Research 
Society of Japan 

Vo1.21, No.1, March, 1978 

A GENERALIZED CHANCE CONSTRAINT 

PROGRAMMING PROBLEM 

Hiroaki Ishii 

Toshio Nishida 

Department of Applied Physics 

Faculty of Engineering 

Osaka University 

and 

Yasunori Nanbu 

Asahi Chemical Industry Corporation 

(Received June 24, 1977) 

ABSTRACT 

This paper considers a generalized chance constraint programming problem having a controllable 

probability level Cl. with which the chance constraint should be satisfied. Several properties of this 

problem are derived and, based on these properties, an algorithm is also proposed. 

1. I ntroduct; on 

Many types of chance constrained programming problem have been considered 

[1-7, 9, 10] since Charnes and Cooper [1] introduced chance constraints into 

mathematical programming problems. Especially, S. Kataoka [6] proposed an 

important problem called P model which dealt with randomness of coefficients 

in the objective function and gave an algorithm for an optimal solution giving 

the highest objective value to a chance constraint which should be satisfied 

with a fixed probability level a.. 
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A Generalized Chance Constraint Problem 

Though the larger a is favorable since constraints are to be satisfied 

with high probability, it may make the objective value smaller. Hence, we 

consider a to be a decision variable and optimize a linear function of 

original variable x and this decision variable a. That is, this paper 

generalizes Kataoka's idea to the case with controllable probability level a. 

Besides this generalization a different algorit~m from his technique is 

proposed. It is based on a parametric approach. 
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In Section 2, problem P and its deterministic equivalent problem pI are 

formulated. Section 3 treats subproblem pq and auxiliary problems P~ used to 

solve pq. Several useful properties of pq and P~ are also derived. Based on 

these properties, Section 4 proposes a solution algorithm for pq. In Section 5, 

some theorems useful to reduce the computational pains are derived. In Section 

6, an algorithm for deterministic equivalent problem pI is given. To illustrate 

our method, an example is also given in Section 7. Finally, Section 8 summa

rizes our results and suggests further developements. 

2. Problem Formulation 

We consider the following generalized ,::hance constraint programming 

problem P. 

p 

(2.1) 

where S {xl 

A is an m x n 

Minimize f - Aa 

subjecto to Prob {c'x ~ f ~ a 

x e: S 

1 > a > 
1 

= -2-

Ax ~ b, x~ 0 }, c, x are n·· vectors; 

matrix; A is positive scalar t f, a ; a 

b is an m- vector; 

are scalars. c is 

a random variable vector with multivariate normal distribution function N(e,V) , 

where c is a mean vector and V is a variance covariance matrix. V is assumed 
...J 

to be positive definite. We assume that min{c xl x e: S} exists, Le., finite. 

Let F(q) denote the distribution function of the standard normal distri

bution, N(O,I). Then problem P can be transformed into the following 

deterministic problem pI tt. (For detail, see Appendix 1.) 

pI ..J 

minimize g(x,q) ~ c x + qlx'Vx - AF(q) 

subject to x e: S 
(2.2) 

q > 0 
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126 H. /shii, T. Nishida and Y. Nanbu 

where -1 
q = F (a). 

Problem pI has a nonlinear objective function of x and q. In the next Section 

3, several useful properties to solve pI are derived in order to overcome the 

difficulty arising from this nonlinearity. 

3. Subproblems pq 

For each q > 0, the following subproblem pq of pI is defined. 

Minimize c'x + qlx'Vx - AF(q) 

(3.1) subject to x £ S 

Let x(q) and g(q) denote an optimal solution of pq and the optimal value, 

respectively. Then the following properties hold. (See Appendix 2 for proofs.) 

Property (i) 

Ci i) 

(i i i) 

(i v) 

x(q) is unique. 

c'x(q) + ql.'x"C-q')'7'-;'Vx""Cq"") is a monotone increasing function of q. 

Ix(q) 'Vx(q) is a nonincreasing function of q. 
I c x(q) is a nondecreasing function of q > O. 

In order to solve pq, the following auxiliary problem P~ of pq is 

considered for each R > O. 

pq 
R 

(3.2-) -

Minimize --..!!.- c IX + _1_ x'Vx 
q 2 

subject to X £ S 

Since P~ is a convex quadratic programming problem, the optimal solution 

of P~ , denoted by xq(R) , may be found by a known method. Especially, Wolfe's 

long form [11] may be suitable because it solves parametric quadratiC 

programming problem P~ for all R > O. 

By the convex programming theory, x(q) is the x-part of the solution of 

the following Kuhn-Tucker condition: 

t A is a given constant for taking the effects of a into the objective 

function. 

tt Though x#O is needed in the course of transformation from p to pI, pI 

can include x=O and pI substituted x=O corresponds to p substituted x=O. 
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v + A'u - g:Vx = c 
Ix'Vx 

Ax - e = b 

u'e = o. v'x o. 

u, v, e, x ~ 0 

where v: n x I vector, u: m x I vector ( Lagrange multiplier), e: m x I vector. 

While xq 
(R) is the x-part of the solution of the following Kuhn-Tucker 

condition: 

v + A'u - Vx 

Ax - e = b 

- R c -
q 

u'e = O. v'x 0 

u, v, e, x ~ 0 

Therefore it is clear that if xq(R) satisfies 

Ixq(R)' Vxq(R) = R 

then it is also an optimal solution of pq. Giving the following definition 

(3.3) ~(R)~ Ixq(R) 'Vxq(R) - R 

then the above condition becomes 

~(R) = 0 

that is, x
q 

(R) gi ving ~ (R) o may be sought. Above Kuhn-Tucker condition 

is a linear complementary equations \~i th parametri zed right hand side with 

respect to R/q. A solution of this equation is determined by a certain basis 

B, and xq(R) (the x-part of the solution) is therefore linearly dependent on 

R on the closed interval on which the same basis B lI"aintains the nonnegativity 

of the solution.. In other words, xq(R) may be represented on the interval as 

follows: 

(3.4) 

where PB' tB are constant n x I vectors determined by the basis Band LB: UB 
are the lower and upper bound specifying the interval, respectively. If R with 

kq cl?) = 0 is found, x(q) can be obtained by 
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A 

xCq) = r ( ~) + t B q B 
" (Hereafter H for q is denoted by H(q) ). 

The condition C3.3) is equivalent to the existence of a root of the following 

quadratic equation Q in the interval [ qLB, qUB ] 

C/ r 2 r 2 ' 0 r B VT'B)H - 2rB VtBqH - q tB vtB 0 

Roots SI' 13 2 are given as follows: 
, 

r
B 

Vt
B 

-If) 
qe '> , 

q" r
B 

Vr
B 

2 ' Note that q '" r B VT'B cannot happen for q > 0 as shown in Appendix 3. 

Even if neither SI nor 132 belong to [qLB, qUB]' some informations can be 

deduced as shown in the next Theorem 1. If either SI or 132 and not botht , 
belongs to the interval, we substitute Sl/q or S2/q into the inequalities 

13 13 
L < __ l<U L < __ 2 <U 
B= q = B ' B= q = B 

respectively, and solve the inequality with respect to q (with fixed rB' t B) 

and determine the set of et (denoted by ICB», in which same basis B is still 

optimal basis. 

Theorem 1. ~CH) has a unique zero point H(q) in H > O. 

Ca) K1 CH) > 0 <=> 0 < H < H(q) 

Cb) K1CH) < 0 <=> H> H(q) 
tt Proof: ~(H) is clearly a continuous function of H. 

Moreover, 

By property (i) and the fact that :JF (H) with K1 (H)=O becomes x(q), ~ CH) 

must have unique zero point H(q). Therefore H(q) separates interval H >- 0 into 

two intervals, so-called "positive interval" (~(H) > 0) and "negative interval" 

(K1 (H) < 0). For sufficient large Hd[ , x
q 

(H) is equal to x e: S giving 

min (i 'x. By the assumption of finiteness of this x, I xq (H) 'Vxq (H) becomes 

a finite fixed value for H ~ R Therefore ~(H) < 0 for H > H(q) is derived 

and ~ (H) > 0 for H < HCg) is also derived. 0 
2 ' t It is easy to show that SI < 0 in case of q -rBVrB> 0, SI' 132 < 0 in case 

2 ' , of q -r
B 

Vr < 0 and T'B vtB > 0 even if 81, 132 are real roots. 

tt Since ~(R) =J Xq(R)IVtB(R) - R , ~ontinuity of ~(R) is implied by the 

continuity of xq(R). Continuity of xq(R) is well known according to the theory 

of the parametric quadratic programming. 
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Fqr the optimal solution xq(R) , the following properties hold. (Proofs 

are quite similar for properties (iii) (iv) and omitted.) 

Property (v) 

(vi) 

xq(R)'Vxq(R) is a nondecreasing function of R. 

C'Xq(R) is a nonincreasing function of R. 

4. Algorithm 1 for Subproblem pq 

In this section, an algorithm for pq(Algorithm 1) is proposed. In the 

algorithm, Rn (R) is used to denote current lower bound (upper bound) of R(q), 
'" u 

respectively. First R£ is set to ° and Ru to a sufficiently large number M. 

Algorithm 1 starts with choosing an arbitrary positive number RI. For each 

R, algorithm 1 calculates B, r , t ,L and V. If neither SI nor S2 belongs 
B B B B 

to [qLB, qVB] , then either R£ or Ru is updated by using Theorem 1. 

(Ru - R~) is at least halved after updating except the first iteration. 

Next, R is set to (R9., + R) /2 and same procedure is repeated. (Refer to Figure 

la Figure le in the proof of Theorem 2.) 

[ Al gorithm 1 ] 

Step 0 

Step 1 
Step 2 

Step 3: 

Step 4: 

Set R"" RI (n is an aribitrary positive numbert ), R .... M(M is 
1 tt u 

a sufficiently large number ) and R9., .... 0. Go to Step 1. 

Solve P~ and find B, rB' tB' LB and VB. Go to Step 2. 

If kq(qLB) < 0, set Ru .... qLB and R"" (Ru+R£)/2, and return to 

Step 1; if Jfl(qLB)=O, set S"" qL
B 

and go to Step 4; 

if Jfl(qLB) > 0, go to Step 3. 

If Jfl(qvB) < 0, solve Q-equation and set S"" S2 or SI (according 

to LB;S S2;S VB or LB;S Sl,:s VB) and go to Step 4; if Jfl(qvB)::o, 

set S .... qV B and go to Step 4; if KJ (qV B) > 0, set R 9., .... qV Band 

R"" (Ru +R9.,) /2 and return to Step 1. 

Set x(q).... : r B + tB and terminate. 

t If an optimal solution of certain subproblemp~ for q > q (or q < q) is 
I"" I"" known, then RI.;: x(q)'Vx(q) (Rl;S x(q)'Vx(q) ) should be taken as an RI· 

-' tt M can be set to Ix'Vx using x £ S minimizing a x. 
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Remark: (1) Several methods to choose the next R are possible, and 

efficiency of Algorithm 1 seems to greatly depend on the choice method. 

(2) If ~(qLB) < 0, ~(qUB) < 0 necessarily holds by Theorem 1. 

Thus the test for ~(qUB) is not needed. In case ~(qUB) > 0, ~CqLB) > 0 

holds and the test for ~(qLB) is also omitted. 

(3) [qLB'qUB] ~ [R Z' Ru] holds except the first LB, UB' 

Theorem 2. Algorithm 1 terminates after finite iterations and it finds 

an optimal solution x(q) of pQ upon termination. 

Proof: (Finiteness) After each calculation of Step 1, five cases Ca), 

Cb), Cc), (d), (e) ( as illustrated in Figure la, lb, lc, Id, and le below) are 

possible. (Note that the case of both ~(qLB) < 0 and ~(qUB) > 0 never 

occurs as pointed out in the above Remark.) 

In case (d), (e), it is clear that 

and 

holds respectively. In case (c), either SI or S2 (but not both) must belong 

to [qL
B

, qu
B

] according to the continuity and "the mean value theorem" with 

respect to ~ (R). In case (c), (d), (e), algorithm 1 jumps to Step 4 and 

terminates. In case (a), (b), neither SI nor S2 belongs to the interval 

~LB' qUE] by Theorem 1. First, note that 

(4.1) qLB ~ (Ri +Ru )/2 ~ qUB 

holds as is easily known from the updating procedure of R in Step 2 or Step 3. 

Case a Ru is set to qL
B 

as f/(qLB ) < O. 

Case b R9. is set to qUB as RCqUB) > O. 

In any cases, it follows from (4.1) that the difference Ru - Ri is at 

least halved except the first execution of Step 2 and Step 3. Therefore, 

after finite iterations, case(c), case(d) or case(e) occurs since RCq) belongs 

to a certain interval [qL
B

, qUB] with qU
B

- qL
B 

> O~ 
(Validity) Termination condition itself proves validity of Algorithm 1. 0 

t Even in the degenerate case, that is, LB=U
B

, another base B exists such 
that ~ = U (or U- = L ) and UB - ~ > 0 according to the theory of 
the pa¥amet¥ic qua~rati~ programming. Therefore, without any loss of 
generality, qUB - qL

B
> 0 can be assumed. 
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7rT; TJ 

RQ, qLB (RQ,+Ru)/2 qU B 
(Kq( qL B) <0) (Kq( quB) <0) 

Figure l.a. Case (a) 

Figure l.b. Case (b) 

I J I I I J I I 
71 J rrrJ 

1//11/1 I I 11 I I I J I I r, } (, rJ 
qLB (RQ,+Ru)/2 qU B Ru 

(Kq(qLB»O) (Kq(qUB)<O) 

Figure l.c. Case (c) 

f+lH+II----l------II----,I----+111I11I1 
RQ, qLB (RQ,+Ru)/2 qUB Ru 

(Kq(qLB)=O) (Kq(qUB)<O) 
Figure l.d. Case (il) 

Figure I.e. Case (e) 
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'S. PrOr'erticsof pq 

. '. 
In this se.cti'on, minimization ofg(x,(!) defined as (2.2) of Section 2 is 

discussed. g(x,q) is a convex function with respect to q > 0 for fixed x since 

2 
~u.L 

dq2 

for q > D. For each x E 5, h (x) is defined as follows: 

(5.1) h (x) ~ inf{g ex, q) Iq> O} 

Then the optimal solution q ex) giving hex) 

r-2 
.Jlog ( A, 

2rrx Vx 
(5.2) 

o 

by searching the zero point of 

is given as follows: 

, 1. 2 
(x Vx<~) 

I 2 
(x Vx> 2fT ) 

because of convexity of g (x, q) with respect to q, where f (q) denotes the 

probability density function of the standard normal distribution N(O.I). 

* * , Theorem 3. The optimal solution (x , q ) of P , if exists, satisfies 

* * j *, * Af lq ) , x (q ) Vx (q ) or q 

proof Proof is easy and so it is omitted. 

Since 

* >.. 2 
log(----~*~I~--7*----q 

2rrx Cq ) Vx (q ) 
< 

1.
2 

log(------*~,~--~*-
2rrx (q ) Vx Iq ) 

>..2 
log (---:::--

2rrR 2. 
rn1n 

* * * 
holds from this necessary condition of (x ,:q), if q exists, an upper bound 

* of q (denoted by q ) can be given by 
u 

1.
2 

log (-----::2.---
2rrR . m1n 

(5.3) q = u 

2 ' 
where R min ~ min{x Vx I x E 5} 

D (otherwise) 

Here, we define a transformation T from r = {q > D} to r u { 0 }. 2' plays 

a princi'pal role in our algorithm given in the next section. 
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T: I 

(x(q) Vx(a) < log( I 

21TX (q) Vx(q) 
T(q) 

o (otherwise) 

Note that T(q) is nondecreasing function of q because of property (iii) 
* * * * and Theorem 3 states a necessary condition of q is q T(q), that is, q 

is a fixed point of T. Unfortunately, thi5 condition is not necessarily a 

sufficient condition. 

Theorem 4. for ql > 0 and q2 = T(ql)' 

* q ~ [ql' q2] in case ql < q2 holds. 

proof: If ql > q2' for any q € [q2' ql]' 

T(q) - q < T(q) - q2 ~ T(ql) - 02 = o. 

holds (since T(q) is a nondecreasing function of q). 

" Therefore q does not satisfy the necessary condition of q , 

ql < q2' the proof may be similarly done. 

In case 

[] 

Now, next property (vii) shows that I(B) is a continuous interval if not 

empty. 

(5.4) 

Property (vii) : I(B) = ~ or I(B) consists of a continuous interval. 

proof: Solving either inequality 

1"Vt -ID 
B B < 
2 

q - 1'SV1'B 

or 
I 

1'BVtB +ID 
2 I < 

q - 1'BV1'B 

with respect to q~' , results Table I which shows property (vii) 

t q ~j1'B ~1'B cannot happen as is shown in Appendix 3 if q > 0 only 
considered. 
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6. Algorithm for P 

First some notations ar~ d~fined. 

SN scanned region of q 

t 
qm g(qm) .~- min{g(q) Iq £ I(B)} 

where - denotes ordinary "closure operation". 

* v current best value 
'V 'V 

(x, q) current best solution 

qc current searched q 

optimal basis with respect to qc 

qM ~ min{q I q £ I(Bq )} for I(B ) ~ ~ 
c qc * 

The following algorithm 2 starts with q = q , tiN = (q , +00), V =+00, 
'V '\0 C U U 

x =~ and q=~. In Step 1, it solves pq using Algorithm 1 and find x(q ) and a 
the optimal basis B I(B) is then calculated by solving the inequality 

q q 
(5.4) and g(q) on I(~ ) is aetermined. Proceeding to Step 2, minimum point 
t qc 

q of g(q) is calculated. If T(qm) q, g(q ) is compared with current best 
m * * 'V 'V m m * 

value v and v , q, x is updated in Step 4 if v > g(q). While in case 

T(qm) ~ qm' if SNUT(Bq ) ~ (0, +00), current (x(q) , q.v~) is optimal and 

algorithm 2 terminates? Unless SNUI(Bq ) ~ (0, +00), SN is updated and 

augmented. Next qc is selected as follgws; if T(qM) < qw qc is set to 

T(qM): otherwise, qc is set to qM - £ where £ is sufficiently small positive 

number. Then, returing to Step 2 and above procedure is repeated. (see also 

Figure 2). 

'r 
tt 

[ Algorithm 2 ] 
* '\0 'V Step 0 Set qc+ qu' SN + (qu' +00), V + +00, X + ~ and q +~. Go to 

Step 

Step 2 

Step 1. 

Apply Algorithm 1 to problem pqc and calculate B9c ' x(qc) , 

I(Bqc ) and determine g(q) on I(Bqc )' Go to Step 2. 

Calculate q. If T(q )tt= q , go to Step 4; otherwise, go to m m m 
Step 3. 

If qm is not unique, then we take the smallest one among these qm' 
Even if q i I(Bq ), T(q ) can be calculated by continuity of T(q) as 

m c m 
1im T(q) and continuity of T(q) is assured by the continuity of x(q). 
q+qm+O 
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If SN UI(Bq ) ~ (0, +",,), g~ to Step 5; otherwise, set 

SN +- SN U I (Bqc) . If T(qMJ < qM' set qc +- T(qM) and SN+-SNU 

(T(qMJ.qMJ. and return to Step 1, otherwise, set qc +-qM-e: (e: is 

sufficiently small number) and return to Step 2. 

135 

" " IV IV If g(qm) +- v , set v +- g(q_), x+- x(q ), and q +- q , and return 
"I m m 

Step 4: 

to Step 3. Otherwise, return to Step 3 directly. 

Step 5: 
'\, '\, I " 

Terminate. Current (x,q) is an optimal solution of P and v is 

the optimal value. 

liS 

I E ] .L ~ /1 11 IN I J I (I J III I / 
-+O~--4---~x---~--------+---~x~*X-------]HJ~J~J+J+J+f+rJ+J+JhJhJ~J~J~J~J+J-

next qc =T( qM) qM 9m qc 
current I(Bqc ) 

Figure 2. Illustration of computational process 

of Algorithm 2 at certain qc' 

Theorem 5 Algorithm 2 terminates after finite iterations and upon 
"" , termination, it finds an optimal solution (x , q ) of P . 

Proof: (F-initeness) It is sufficient to prove SN U I(B
q ) ~ (0, +00) 

. C 
occurs after finite iterations. Whenever Step 1 IS entered from Step 3. 5

N 
is 

set to SN U I(B l ), that is, augmented by _r(B ). This augmentation can be 
'c ~ 

done only finite times, because (0, +00) is covered by a finite number of I(E). 

Finiteness is assured by the facts that the number of possible basis is finite. 

Algorithm 2 searches these I(E) with jumping when T(qM) < qM from right to left 

on the positive part of the real line (see Theorem 4). 

Therefore, SN UI(E ) ':leo, +00) must occur after executing llpdation of 
qc 

S at finite times. 
N 

t Even if qM t- I(E ), T(qM) can be also calculated by same reasons as qm' 
qc 
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(Validity) Algorithm 2 scans (0, +00) and finds all q on I(B) except skipped 
" m 

interval (T(qM),qM] with assurance that q does not exist in the latter 

" Moreover, it is clear by Theorem 3 that optimal q interval by Theorem 4. 

exists among such qm if exists. Therefore, upon termination, algorithm 2 has 

scanned all possible qm' This proves validity of Algorithm 2. 0 

7. Example 

In order to illustrate our algorithm, we consider the following example. 

(See Figure 3): 

and A 

o 

Figure 3. 

c = (3. 
1 ' 

v A b 

Feasible region of x 

(0.8194,l.8472),q*=3.9324 

'=(0.8415,1.8251) qu=4.0866 
"<\..+;=:-:--~ the point of Rmin =(4/3,4/3) 

(Rmin =4/"2/3) 

Illustration of computational process of 

the example in Section 7. 
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I 

Then P becomes as follows: 

t 

P 

Step 0 

Step 1 

I 

minimi ze 3x l + x
2 

+ J1---;-;Z - 20000 F (q) 
. I 2 

subject to xl + x 2 ~ 8/3 

qc ~ qu C= 4.0866). 

Go to Step l. 

(Algorithm l)t 

3x
l 

+ 2x
2 
~ 6 

Xl,x2~O. q>O. 

Step 0 
Step 1 

Set R ~ RI (=2q ),R ~ M u u and Ri ~ O. 

u l xl x 2 e l 

B [1 
-1 0 

-~] 0 -1 
=(6/13 ) 

1 1 1'B 9/13 1'B 

3 2 

14/9 . U B 3 Go to Step 2. 

Go to Step 1. 

= C8
/

13
) 

12/13 

LB 
Step 2 Since JfI (q cLB) < 0, set Ru +- qcLB(=qu 

14 x --) and 
9 

R~ (R + Ri )/2(=7/9 q ), u u and return to Step 1. 

u1 u2 xl x 2 

1'B =c) 

2/3 
1'B 

2 

[1 
3 -1 

J 2 0 
B 

0 1 

0 3 LB 2/3 liB 14/9 

Go to Step 2. 

Kuhm - Tycker condition in the example is shown in Appendix 4. 

137 
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Therefore, 

Step 2 
Step 4 

Step 3 

H. Ishii, T. Nishida and Y. Nanbu 

Go to Step 2. 

Step 2 

Step 1 

B = 

Step 2 
Step 3 

](1 (qcLB) < 0, R + q LB(=2/3 q ) u e u 
R + 1/3 q . Return u to Step 1. 

u
l xl x

2 
e

2 

= (~) e/3
) r B tB = 4/3 

[f 
-1 0 

-~] 0 -1 

1 1 L = o , UB = 2/3 • B 
3 2 

Go to Step 2. 

Since ~(qcLB) = 4~/3 > 0, Go to Step 3. 

Since ~(q UB) = 2~/3 - 2/3 q < 0, 
c , , u , 

solve Q equation (rBVtB= 0 rBVrB = 2 tBvtB = 9/32) 

{(q )2 _ 2}R2 _ 32/9 q2 = 0 
u e 

and set ~ + 62 (=0.4918 q ) because of 
2' 2 u 

qc - rBVrB = qu - 2 > O. Go to Step 4. 

Step 4 Terminate. 
0.8415 

li x(qc) = 1. 8251 
B 

qc 

r B 
qc 

(-1, 1) , tB' = (4/3, 4/3), LB 0, 
qc qc 

I(Bq ) = [_~ +00) 
C 

';'-=2-
and g(q) = (4~ /3)' q - 2 

Go to Step 2. 

q = 3.9324 
m * 

qM =~. Since T(q ) = q , m m 
Since v (="") 

* 
> g(q ) = -19992 '2811, set m 

v + g(q )(= -19992.2811), 

-1 

0 

1 

3 

U
B 
qc 

0 

-~] -1 

1 

2 

= 2/3 

- 20000 F(q). 

Go to Step 4. 

'" m x + x(q )(= (0,8194, m 
, '" 1.8472) ) and q + q (=.3.9324), 

m 
Return to Step 3. 

Since SNLJI(Bqc) ~ [~, +00) C:(O, +00) 

set SN + SN U I(Bqc ) (=t.Ii'i)", +00)) 

As T(qM) = 3.884726 > qM = liD = 3.162277, set q + qM - E: and 

return to Step 1. 

Since the serial computational routines are almost same as above, results 

only are enumerated. 
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LB 
qc 

3 

2 

o 
o 

2/3 

Xl 

-1 

0 

3 

x
2 

-lB ·G) 
q(J 

2 

UB = 14/9 . 
qc 

139 

{2~3 ), t8 
qc 

qM 3110/7 < T(qM) 3.884726 and SN ... [3110 /7, +00) • 

qc 3110/7 - £ u
l 

X x
2 

e
1 1 

[; 
-1 0 

-IJ 
0 -1 =(6/1

3 
) =(8/1

3 
) B = 1"B tB qc 1 9/13 12/13 q q 

3 2 
LB 

14/9 
UB 3 . qc qc 

I(Bq ) = [1, 
c 

3110 /7], qM = 3110 /7 # T(qm) , 

T(qM) > qM = 1. and SN ... [1, +00) • 

qc = 1 - £ : vI u
2 x

2 
e l 1"B 

=G) 
tB 

=G) qc qc 

~ 
3 0 

-~] 2 -1 
LB UB B = 0 3. +"". 

qc 1 qc qc 
0 2 

;(Bqc) = (0, 1], qM =,qm = 0* and SN UI(Bqc) ~(O, +00). 

Terminate X = ( 0.8194, 1.8472) and q = 3.9324. 

8. Concl usion 

The most difficult point in our algorithm is to find qm in Step 2. Since 

g(q) is a function of q only, we may manage to obtain qm if the form of g(q) on 

I(B ) is known. The second difficult point is a lack of sufficient condition 
q * 

about q. Especially in this problem, the lack of useful suffiCient condition 

urges us to search all possible points with T(q)=q, among all positive q. 

Note that for fixed a, our problem is equivalent to Kataoka's problem [6]. 

But even in such case, our method may be considered as a different approach. 
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Although the effect of rx on thE' objective function was taken as -Aa, there 

may be othE'r ways to includE' thE' effE'ct of a. In such cases, however, the 

problem may become more complicated and more difficult to solvE'. Admitting 

the linearity of the effect of a, in practical situation, the domain of a may 

be more restricted. 
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Appendix Derivation of pI 

The chance constraint in (2.1) can be transformed into the following form 

by simplex subtrction and devision. 
, -, j' -, 

(A-I) Pr>cb( c'x<.:.fJ = Prob(e x-a Xs: -a x 
- 1:::'Vx -/x'Vx 

Since a is distributed according to N(~, VJ, 

a'x - ~'x 
1X'Vx-

can be considered as a normalized random variable with zero mean and unit vari-

ance (that is, standard normal distribution). Therefore (A-I) is replaced by 

f~~'x + P-l(a.Jlx'Vx 

where P is the distribution function of standard normal distribution, N( 0,1 J. 

Since minimum of f is attained when the equality holds. setting 

-1 q = P (a.), 

the objective function becomes as follows 

c'x + qlx'Vx -AP(qJ. 

Appendix 2 Proofs of Properties (i) - (iv) 

(i) It is clear from the strict convexity of the objective function and the 

fact that S is convex set. 

( i i) For q 2 > -11 > ° , 
c'x(Q2) +qix (q2) 'Vx(q2) >c'x(q~:) +q/x(q2) 'V:::(q2) ( q2 >ql) 

~ ~'x(ql) +q/x(ql) 'Vx(ql) (optimality of q1 for pql). 

(iii) For q2 >q1 > 0, from the optimality of x(ql)' x(Q2) , 

(A-2) ~'x(ql) +q/x(ql) 'Vx(ql) ~~'x(q2) +q l /x(q2) 'Vx(q2) 

(A-3) ~ 'x(q;:;) +q i x ( q 2) 'Vx( q 2} ; ;; 'x(qlJ +q/x( ql} 'Vx( ql} 

holds. By subtracting the right hand side of (A-2) from the left hand side of 

(A-3.) and the left hand side of (A-2) from the right hand side of (A-3), 
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holds. The assumption (q2-q l) > 0 implies 

v'x(ql} 'Vx(ql} ~ v'x7q2} 'Vx(q2}' 

(iv) From Property (iii), 

(A-S) c'x(ql) +q/x(q]} 'vx(ql} ~c'x(Q2) +q l v'x(q2} 'Vx(q2} 

;c'x(q2) +q/x(ql} 'Vx(QI} 

holds. (A-S) implies 

c 'x(q ) < c 'x(q ) 
I = 2 

Appendix 3 q~v'piVPB 

Assume q=v'rBVPB 
£BVtB 

R(q) = 2rBVt
B 

holds. Since 

for an optimal basis B 
R() tBVtB Then~= 2 'Vt 

q PB B 
from Q equation, that is, 

R(g) . .0 
x(q) = P +t

B 
and K'(R(q)) =0, 

q B 

2 R2 R( ) 2 
x(q) 'Vx(q) -R(q) =7 PBVPB +2-T PBVtB+tBVtB-R(q) 

PBVPB (t
B

VtB)2, , PBVPB(tBVtB)
2 

4 (PBVt
B

) 2 - + tBVtB + tBVtB 4 (PBVt
B

) 2 

2t
B

Vt
B

=O, or t;B=O. (For V is positive definite matrix.) 

This implies ..!i.fsJ.l =0 ' or R(q) =x(q) 'Vx(q) = 0, or x(q)=O. 
Q 

Since again V is positive definite matrix, 

x(q)=O and tB=O together implies PB=O or q=O. 

We considers only q > 0 and so q = v'P;VP B cannot happen. 

Appendix 4 Kuhn-Tucker condition of Problem P~ for the example. 

- R v + A 'u - Vx = (J'-
q 

Ax-e=b, u'e+v'x=O, u, v, e J x~O, that is, 

R 
VI +uI +3u2 -xl = 3-q 

R 
v 2 +uI +2u2 -x2 =-q 

D 

o 
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x +X -e =8/3 
121 

3x I + 2x 2 - e 2 = 6 

xlVI +x2v 2 +e l u l +e 2u2 =o, xl' x'2' vI' v 2' el' e 2, u I ' u2 ;O. 

Appendix 5. 
Table 1. I (B) • 

Case Subcase I(B) 

rsVtB ~ 0 {q\A2;q;A,} 

A4~A5 & A4 > 0 {q I q>Aa & A2~ q ~A, } 

A7 < 0, A5 > 0 & A5;A4 {q I q<Aa & A2; q ;A,} 

I, 

A7 ~ 0, A6 < 0, A5 < 0 & {q I q<A8 & A2; q ;A, } 

A3 ; A2 ; A, 

A7 ~ 0, A6 < 0 & {q I q<Aa & A, ~ q ~Ag} 

A2 ; min (A, ,A3) 

rsVtB < 0 A7 '? 0, A6 < 0 & {qlq<A8 & min(A2,A3)~q~Ag} 

} 
A, ~ min (A2,A3) 

A6 ~ 0, A4 < 0, A3~A2 & 

A, ; min (A2NA6 ) 
{qlq<Aa & A2~q~A,} 

A6 f: 0 & maxVA;5,A2) {q I q<Aa & Ag~ q ~A, } 

A4<0, A6~0, A3,;A2 & {qlq<Aa & A,,; q ,;A3} 

Al;~ 

A6 ~ 0 & {qlq<Aa & Ag;:i q ;:imin(A2,A
3
)} 

VAi ;:iA,;:i min(A2,A3) 

See also next page. 

143 
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In Table 1, 

Note that 

(i) V is a positive definite matrix implies 
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