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ABSTRACT 

A latin square is an n x n square matrix each of which cells contains a symbol chosen from the 

set 11,2, ... ,n]; each symbol occurs exactly oncl~ in each row or column of the matrix. A partial 

latin square is a latin square in which some cells are unoccupied. We consider the problem of obtain­

ing necessary and sufficient conditions for a partial latin square to be completed to a latin square. 

For this problem A. B. Cruse has recently given a necessary condition associated with triply stochastic 

matrices. In this paper two sets of necessary condtions are given, one developed from network flow 

theory and another obtained from matroid theory. It is shown that the network condition is equiva­

lent to Cruse's condition and that the matroid condition is strictly stronger than either of the former. 

1. Introduction 

In the 18th century a latin square (1.S) 'Was regarded by Euler as a square 

matrix with n 2 cells of n different elements, each of which occurs exactly 

once 

* This work is a part of the research the author has done in the school of 
operations research in Cornell University. More details and related results 
are referred in [9]. 
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110 The Completion o[ Partial Latin Squares 

in any row or column of the matrix. The reference [2] contains an exhaustive 

study of known results and conjectures of the subjects relating to latin 

squares. 

The elements of the latin square, also called symbols, are the integers 

1,2, •.. , n. The integer n is called the order of the latin square. A par­

tial la tin square (PLS) is an nxn square matrix such that some cells of the 

matrix are left unoccupied. A (PLS) is said to be consistent if each integer 

from the set { 1,2, ... , n appears at most once in any row or column in the 

occupied cells of the (PLS). In the following sections (PLS) means consistent 

(PLS). An nxn (PLS) P is said to be completed to the nxn (LS) p' if, for all 

i, j, whenever the cell (i, j) of P is occupied by a symbol k, then this same 

symbol k also occupies the cell (i, j) of P'. Namely an nxn (PLS) P is said 

to be completed to the nxn (LS) p' if we can construct an nxn (LS) by putting 

appropriate symbols in unoccupied cells of the (PLS). In this work we focus 

on (PLS)'s whose occupied cells are arbitrarily chosen and the question of 

whether they can be completed to a corresponding (LS); i.e., necessary and 

sufficient conditions for the completion of partial latin squares (CPLS) are 

investigated. 

For the (CPLS) problem A. B. Cruse (1975, see [1]) proposed a necessary 

condition associated with a characteristic matrix of the (PLS). We briefly 

describe his condition (CC) in this section. 

Given an nxn (PLS) P there is an nxnxn three-dimensional (O,l)-matrix 

which we call the characteristic matrix for P. This matrix C (c
ijk

) is 

defined by putting c"
k 

=, 1 if the cell (i, j) of P is occupied by symbol k 
1.J 

and c
ijk ° otherwise. 

An nxnxn matrix S = ( Sijk ) with nonnegative real elements is called 

triply stochastic if it satisfies the equations 

(1.1) 

~ Sijk = 1, for any j, k £ N 
i£N 

1, for any i, k £ N 

~ Sijk = 1, for any i, j £ N. 
kEN 

It can be easily seen that triply stochastic matrices, all of whose elements 

consist of integers, are precisely the characteristic matrices for (L8)'s of 

order n. 

Let 10' JO, Ko be any subsets of the set N. We denote the set of elements 

of the form (i, j, k), where i£Io, j£JO and k£Ko, by IOxJoxKo. The element 
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T" Oyama 

(i, j, k) of the set IxJxK is said to be preassigned if the cell (i, j) is 

occupied by symbol k in the (PLS) P. Let P(IoxJuxKO) denote the set of pre­

assigned elements in the set IaxJoxKo. For the summation of the elements 

xijkls of the triply stochastic matrix or the characteristic matrix of the 

111 

(PLS) , we denote L xi"k by L xi"k' The following Theore,m 
iEIO' jEJO' kEKO J la, Jo, Ko J 

1.1, which is THEOREM 1 in [1], is used to derive (CC). 

Theorem 1.1. Any triply stochastic matrix S Sijk ) satisfies the 

equations 

(1. 2) 
n 

where 10 , J o , Ko are any subsets of the set N. Here 10 and 1101 denote the 

complement and the cardinality of the subset 10 respectively. 

From the above theorem we derive (CC) in the following way. Let P be a (PLS) 

and pI be an (L:3) of order n. If C = ( cijk 
) and Cl = ( cf.jk denote cha-

racteristic matrices for P and pI respectively, then P is completed to pI if 

and only if c
ijk 

~ c l
ijk 

holds for all indices i, j, k £ N. ( We write C ~ Cl 

in this case. ) Hence the inequalities in the following theorem, which are 

(CC) in THEOREM 2 in [1], express necessary conditions for an nxn (PLS) to be 

completed to an (LS) of order n. 

Theorem 1.2. In order for a given (PLS) P to be completed to an (LS) of 

order n, it is necessary that the preassignments in the (PLS) P satisfy the 

inequalities 

(1. 3) Ip(IO<JoxKO)I + Ip(IOxJoxKO)I 

~ ~ (IIol'IJol'IKol + IIol'IJol'IKol ), 

for all subsets 10 , J o, Ko of the set N. 

2. Network Condition (NC) 

The (CPLS) problem has very close relations to multi-commodity flow pro­

blem, graph coloring problem, time-tabling problem and machine scheduling 

problems. The details are shown in [9]. In this section we consider the 

relation of (CPLS) problem to multi-commodity flow problem for later use. 

Given a (PLS) P we construct the corresponding network as follows. Let 

I, J, K be the sets of rows, columns and symbols respectively; hence we have 
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112 The Completion of Partial Latin Squares 

I = J = K = N, where N = {l, 2, ••. , n}. The directed network G consists of 

the node sets K], I, J, K2' where K] = K2 = K, and the edge sets U, V, Y as 

follows. 

Nodes 

{ k I kEN}, I i i EN}, J j j EN}. 

Directed edges 

U { (k, i) k E KI' i E I, symbol k does not appear in row i in p} 

Y {(i, j) i E I, j E J, cell (i, j) in P is unoccupied} 

V { (j , k) j E J, k E K2, symbol k does not appear in column j in plo 

Capacity functions 

Let w(i, j) , c(i, j) denote the lower, upper capacities of the edge (i, 

j) • Then for any (k, i) E U, (i, j) E Y and (j , k) E V, we have 

w(k, i) w(i, j) w(j, k) 0, and 

c(k, i) c(i, j) c(j, k) 1. 

Example 2.1 We give an example of a (PLS) to illustrate the network G 

defined above. The example is to be used in Section 4. 

1 2 

2 3 
P 

3 

1 

Figure 2.1 (PLS) P 

Then the network G corresponding to the above (PLS) P is illustrated in Figure 

2.2 below. 
K] I J K2 

X 

Figure 2.2 X 

Network G 

X 

x 
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We consider the n-commodity supply-demand type flow problem in the network G. 

First we make the restriction that the flow of commodity k must be sent from 

the source k E K) to the sink k E K2 . The supply-demand conditions are given 

as follows. K), K2 are the sets of supply, demand nodes respectively. Let 

S(k) denote the amount of supply of commodity k) at the node kl E Kl and 

D(k2) denote the amount of demand of commodity k2 at the node k2 E K2' Then 

the conditions are 

{ (k l' i) 

{(j, k 2 ) 

(k l , i) E U} I, for any kl E Kl, and 

(j, k2) E V} I, for any k2 E K2' 

where IEI indicates the cardinality of the edge set E. Given a network G 

corresponding to the (PLS) P suppose there exists an integral feasible flow 

satisfying the above supply-demand conditions, then f~. = 1, where f~. is the 
~J ~J 

flow value of commodity k on the edge (i, j) E Y, indicates that the symbol k 

is assigned to the unoccupied cell (i, j) in P. Thus we obtain a completion 

of the (PLS) P. Conversely, if the (PLS) j~s completed to an (LS) of order n, 

obviously there exists an integral feasible flow satisfying the supply-demand 

conditions. The~refore the existence of an integral feasible n-commodity flow 

satisfying the above supply-demand conditions in the network G is equivalent 

to the completion of the corresponding (PLS). 

113 

Given a (PLS) P we had the corresponding network G as in Figure 2.2. For 

a given set Ko 5:~ K, we construct a subnetwork G(Ko) of G consisting of the 

node sets KO, I, J, K6, where KO K6 = Ko ~ K, and newly added source sand 

sink t (see Figure 2.3 below in Example 2.2). The edge sets are given as 

follows. 

Directed edges 

W(Ko) (s, k) k £ KO } 

U(KO) (k, i) k £ Kb, i f; I, (k, i) £ U } 

Y (i, j) i E I, j E J, cell (i, j) is unoccupied } 

V(Ko) (j, k) j £ J, k E Kti, (j, k), E V } 

Z(Ko) (k, t) k £ K6 } 

Capacity functions 

For any (s, k) E W(Ko), (k, i) E U(Ko), (i, j) E Y, (j, k) E V(KO), (k, 

t) E Z(Ko), we have 

and 

w(s, k) = w(k, i) 

c(s, k) 

c(k, i) 

c (k, t) 

c (i, j) 

w(i, j) 

00, 

c (j, k) 

w(j, k} w(k, t) o 

1. 
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114 The Completion of Partial Latin Squares 

Example 2.2 We use an example of (PLS) given in Figure 2.1, and let KO 

{l, 2} to illustrate the network G(Ko)· 

For any node sets X, Y, we denote the set of all edges that emanate from nodes 

x E X to nodes y E Y by (X, Y), and let c (X, Y) denote the sum of upper capa­

cities on the set of edges in (X, Y). Then our (Ne) is given in the following 

theorem. 

Theorem 2.1. In order for a given (PLS) to be completed to an (LS) of 

order n, it is necessary that the inequalities 

(2.1) I(Ko, 10)1 + I(fo , To)1 + l(Jo, Ko)1 > L: Nk , 
k E Ko 

for any la ~ I and Jo ~ J, 

should be satisfied in any subnetwork G(K o), Ko ~ K, of G. Here Nk denotes 

the number of edges emanating from node k E KO, or going into node k E K~, in 

G(KO)· ) 

Proof: If the (PLS) P can be completed to an (LS) of order n, there 

exists an integral feasible n-commodity flow satisfying the supply-demand 

conditions. Hence for any subset KO S K the subnetwork consisting of the node 

sets KO, I, J, Kb, where KO : K6 : Ko,and their adjacent edges has an integral 

feasible IKol-commodity flow satisfying the supply-demand conditions at the 

nodes in KO U K~. Therefore if we relax the IKol-commodity flow problem in 

the subnetwork to a single-commodity flow problem in the subnetwork G(KO), it 

is clear that a maximal flow from the source s to the sink t must have value 

L: N
k

. Applying the max-flow min-cut theorem (see THEOREM 5.1 in [7]) to 
kEKo 

the above network G(Ko), any cut separating the source s and the sink t should 
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have capacity greater .than or equal to L N
k

. Let la, Jo, L1, L2 be arbit·-
kEKo 

rary subsets of I, J, KO, K6 respectively and la, J o , L1, L2 be their comple·­

ments with respect to the setsI, J, KO, K6 respectively. We define a subset X 

and its complement X as follows. 

where we denote the set {s}, {t} simply by s, t, respectively. Then (X, X) is 

a cut separating the source s and the sink t since SEX and t E X. In order 

that we have a finite capacity L1 = L2 = q. is necessary since we have c(s, k)= 

00, for (s, k) E W(K o), and c(k, t) = 00, for (k, t) E Z(Ko). The cut capacity 

c(X, X) can be written as 

(2.2) c(X, X) = c(KC, la) + c(lo, J o) + c(J o , K6), 

for any la ~ I and J O ~ J, 

and the max-flow min-cut theorem requires that 

(2.3) c(X, X) > L N
k

, 
k E Ko 

for any node set X such that SEX and t £ X. 

Since we have 

(2.4) c (KC, la) L c(k, i) 1 (KC, la) 1 , 
(k, i) £ (KC. la) 

(2.5) cClo, J o) L c(i, j) 1 (la, J o) 1 , 
(i, j) £ (la, Jo) 

(2.6) c(J 0, Ka) L cU, k) 1 (J 0' K6) 1 , 
U, k) E (J 0, K6) 

substituting (2.4) - (2.6) into (2.2) and using the relation (2.3), we obtain 

(2.7) 1 (KC, 10)1 + 1(10' Jo)1 + I(Jo, K6)1~ L Nk , 
k £ Ko 

for any la S;; I and JO ~ J. 

We have assumed KC = K6 = KO and the inequalities (2.7) must hold for any sets 

KO s;; K. Thus the theorem is proved. D 

3. Network Condition (NC) and its Relati.on to Cruse's Condition (CC) 

Now we gi.ve a theorem showing the rE!lation between Cruse' s condition in 

(1.3) and network condi.tion in (2.1). 

Theorem 3.1. (CC) of (1.3) and (NC) of (2.1) are equivalent. 
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116 The Completion of Partial Latin Squares 

Proof: Let la, Jo, Ko be any subsets of the set N, and To, To, Ko be 

their respective complements in N. Since we have I = J = K = N, these sets la, 

Jo, Ko satisfy la ~ I, Jo ~ J and Ko c K. 

From the (NC) of (2.1) we get 

(3.1) I(Ko,Io)1 IKol ·1101 - Ip(IO x N x Ko) I , 

(3.2) I (TO, To) I ITo I· ITa I I P(To x To x N) I , 

(3.3) I (J 0, Ko) I I Jo 1·1 KO I I P (N x J 0 x Ko) I . 

Since we have Nk = n - Ip({k}) I, where P({k}) indicates the set peN / N x 

{k}) , 

(3.4) L N = L {n - Ip({k})I}. 
k E Ko k k E KO 

Substitutin~ the relations (3.1) - (3.4) into (2.1) shows that 

IKol'IIOI + ITol'ITol + IJol'IKol - Ip(I o )( N x Ko)1 

- Ip(To x TO x N)I - Ip(N x JO x Ko)1 > L {n - Ip({k})IL 
k E Ko 

Hence 

IKol'IIOI + 1101'1101 + IJol'IKol - n IKol 

(3.5) > Ip(Io x N xKo)1 + IpeTo x To x N)I 

+ I P (N x J 0 x Ko) I - I P (N x N x Ko) I . 

The left side of (3.5) can be rewritten as follows: 

(3.6) IKol'IIOI + IYol·ITol + IJol'IKol - (1 101 + IYol)'IKol 

= IKol'IJol + ITol'ITol - ITol·IKol· 

Furthermore, each term on the right side of (3.5) may be expressed as follows: 

(3.7) 

Ip(I O x N x Ko)1 

I P (la x To x N) I 
I P (N x J 0 A Ko) I 
Ip(N x N x Ko) I 

Ip(IO x J o x Ko)1 + Ip(Io x To x Ko)l, 

Ip(Io x Yo x Ko)1 + Ip(Io x J o x Ko)l, 

Ip(I o x J o x Ko)1 + Ip(Io x J o x Ko)l, 

Ip(I o x J o x Ko)1 + Ip(Io x To x Ko)j + 

Ip(To x Jo x Ko)1 + Ip(To x To x Ko)1 

Therefore substituting (3.6) and (3.7) into (3.5), we obtain 

(3.8) Ip(IO x Jo x Ko) I + Ip(Io x To x Ko) I 

< IKol'IJol + ITol'ITol - ITol·IKol· 

Thus the (NC) of (2.1) is equivalent to requiring that the inequality (3.8) 

holds for any subsets la ~ I, Jo ~ J and KO ~ K. 

On the other hand (CC) of (1.3) can be rewritten as follows: 

Ip(IO x JO x Ko)1 + Ip(Io x 10 x Ko)1 
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(3.9) ;s~ (IIol-IJol-IKol + ITol-iJol-IKol + ITol-ITol-IKol 

+ I la 1-1 30 I-I Ko I - I la I-I J 0 I-I Ko I - I la 1-1 30 I-I Ko I )-

Using the fact that 1101 + 1101 = IJol + ITol = IKol + IKol = n in (3.9), we 

get the relation (3.B). Thus (CC) of (1.3) is equivalent to requiring that 

the inequality (3.B) holds for any subsets la ~ I, J o ~ J and KO ~ K. 

Therefore we can conclude that (CC) of (1.3) is equivalent to the (NC) of 

(2.1) . [J 

4. Matroid Condition (MC) and its Relation to Network Condition (NC) 

A matroid M = (E, F) is defined as a finite set E and a nonempty family 

F of subsets of E, called independent subsets of E such that 

(1) every subset of an independent set is independent and 

(2) for every set A ~ E, all maximal independent subsets of A have the 

same cardinality, called the ranI: reA) of A. 

A base of a mat raid M is a maximal independent set of M. A set is called 

dependent relative to a matroid M if the set AcE is not a member of F. 

We give a simple example of matroid called p-uniform matroid defined on 

a finite set E. Bases are those subsets of E which contain exactly p ele­

ments, where p ;s IEI, and independent sets are the subsets of E containing not 

more than p elements. The rank of any subset A £ E is given by min (IAI, p). 

We define a partition matroid which is to be used later on. Let PI' P2 , 

P be a partition of E (Le., UP. = E and p. n P. = ~ whenever i "j), 
m i 1. 1. J 

and let PI' P2' ..•• Pm be nonnegative integers. Then the independent sets 

are the collection of all sets IS E such that 11 n Pil ~ Pi for 1 ~ i ;srn. 

Any matroid that can be generated in such a manner (for a partition) is call.ed 

a partition matroid. 

Now we consider the following problem. Let Mlk = (E. Flk) and M2k = (E. 

F
2k

) be matroids on E for each k £ K = n. 2 •...• n}. Let rlk(A) and r 2k (A) 

be ranks in matroids Mlk and M2k of a subset A ~ E, respectively. for each 

k £ K. Then what are necessary and sufficient conditions for a set E to be 

partitioned into n sets Ik satisfying Ik £ Flk n F2k for each k £ K? We will 

add that special cases of the above problem, Le., Mlk = M2k = M for each 

k £ K. or Mlk .= Ml and M2k = M2 for each k £ K and Ml • M2 are strongly-base·· 

orderable (see[B]). have been solved in [3j, [4], [5] and [B]. But general 

case has not been solved. In the following theorem we give a necessary (but 

not sufficient) condition for this problem. 
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118 The Completion of Partial Latin Squares 

Theorem 4.1. Let MIle = (E, Flk) and M2k = (E, F2k) be matroids for each 

k E K, and let r
lk 

and r
2k 

be their respective rank functions for each k E K. 

Suppose the set E can be partitioned into n sets lk satisfying lk E Flk n F2k 

for each k E K. Then we have 

(4.1) IAI < 1: rOk (A), for all As:;; E, 
k E K 

where for each k E K 

(4.2) rOk(A) min ':rlk(H) + r2k(A~)}. 
H cA 

Proof: Let {lk' k E K} be a partition of the set E satisfying the condi­

tion lk E Flk n F2k for each k E K. Given a set A ~ E, suppose the set Hk SA 

minimizes rlk(H) + r2k(A~I) for each k E K. Then for all subsets AcE we have 

IAI = 1: lA n lkl 
k E K 

1: {I (A n lk) n Hkl + I (A n lk)"JIkl} 
k E K 

< 1: {rlk(Hk) + r 2k (A"Hk)} 
k E K 

l: min {rlk(H) + r 2k (A"H) } 
k E K H c: A 

1: rOk(A). 
k E K 

Thus the condition (4.1) is obtained. D 
We note that Edmonds has shown the following relation in [6]: 

(4.3) min {r lk (H) + r 2k (A"B) } 
H cA 

max 
HcA 

H E Flk n F2k 

The relation (4.3) holds for each k E K. Hence from (4.2) and (4.3), the 

condition (4.1) can also be written as 

(4.4) I A I < 1: max I HI, for all AcE. 
kEK HcA 

H E Flk n F2k 

We note that there exists.a case for which the condition (4.1) (or (4.4» 

is both necessary and sufficient for the set E to be partitioned into n sets 

lk satisfying lk E Flk n F2k for each k E K. Namely suppose for each k E K 

Mlk is a Pk-uniform matroid, where Pk is a nonnegative integer, and M2k is a 

general matroid. Then thE~ condition (4.1) (or (4.4» can be necessary and 

sufficient for the set E to be partitioned into n sets lk such that lk E FIk n 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



T.Oyama 

FZk for each k E K. 

Now we interpret the (CPLS) problem using the terminology of the above 

matroid partitioning problem. Given an nxn (PLS) P let I, J, K be the sets of 

rows, columns and symbols in P respectively, i.e., I = J K = N = {I, Z, ••• , 

n}, and let E be a set consisting of unoccupied cells in the (PLS). For each 

i E I and j E J, let Si' T. be the subsets of E consisting of unoccupied cells 
J 

in row i, column j, respectively, in the (PLS) P. Hence {Si' i E I} and {T
j

, 

j E J} are partitions of E respectively. For each i E I, j E J and k E K let: 

119 

sik = I if no cell in row i in P is occupied by symbol k, and 0 otherwise, and 

let tjk 1 if no cell in column j in P is occupied by symbol k, and 0 other-­

wise. We define matroids Mlk = (E, Flk) , MZk = (E, FZk) for each k E K as 

follows. For each k E K let Mlk be the partition matroid generated by a family 

of subsets {Si' iE I} and nonnegative integers {sik' i E I} and let MZk be the 

partition matroid generated by a family of subsets {T., j E J} and nonnegative 
J 

integers {t jk , j E J}. Then the problem of completing the (PLS) is equivalent 

to that of obtaining a partition of E into n sets Ik such that Ik E Flk n FZk 

for each k E K. Therefore our original problem of obtaining a necessary and 

sufficient condition for (CPLS) is equivalent to establishing a necessary and 

sufficient condition for the existence of a partition of E into n sets Ik such 

that Ik E Flk n FZk for each k E K. Consequently the condition (4.1) (or 

(4.4» provides a necessary condition for the completion of a (PLS). 

Condition (4.4) has an interesting interpretation in the case of (LS)'s. 

Since A is a subset of E, whose elements are unoccupied cells in the (PLS), IAI 

is the number of unoccupied cells in A. On the other hand max I HI 
H SA, H E Flk n FZk 

is the cardinality of the maximal consist.~nt assignment of symbol k into the 

set A. Thus the content of condition (4.'~) is that no completion is possible 

when for some eollection A of unoccupied I:ells, IAI exceeds the total of the. 

maximum assignments of individual symbols to the cells of A. 

In the following theorem we show that matroid condition (MC) given in 

(4.1) (or equivalently (4.4» implies network condition (NC) given in (Z.l); 

that is, given a (PLS) P which satisfies (MC), then it satisfies (NC). But we 

note that the converse is not true. 

Theorem 4.Z. Matroid Condition (MC) of (4.1) implies Network Condition 

(NC) of (2.1). 

Proof: Suppose we are given a (PLS) P with corresponding network G as in 

Section 2 and there exists a violating set to the condition (Z .1). That is, 
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suppose la S I, J a S J and Ko S K satisfy 

(4.5) I (Ko, la) I + I (la, J o) I + I (Jo, Ko) I < 

Then we will show that the set 

(4.6) A = {(i, j) I the cell (i, j) is unoccupied in the (PLS) P and 

i E To' j E J o} 

violates the (MC) of (4.4). From the definition of the set A in (4.6),we have 

I A I I (To, J 0) I 

I(K, 1 0)1 - 1(10. Jo)1 (since I(K, 1 0)1 = 1(10, Jo)\ 

(4.7) + I (la. Jo)l) 

I (KO, To)1 + I(Ko. 10)1 - I CIa. To)1 

I (Ko. fa) I + L: N - I (Ko, la) I - I (la, To) I . 
k E Ko k 

Combining (4.5) and (4.7), we obtain 

IAI = I (Ko. To)1 + l(Jo. Ko)1 + L: Nk - I(Ko• 10)1 - I (To. To)1 
k E Ko 

- l(Jo. Ko)1 > I (Ko, To)1 + l(Jo. Ko)l· 

Thus 

(4.8) IAI). I (Ko. 10)1 + l(Jo, Ko)l· 

On the other hand, in the (MC)'s of (4.1) and (4.4) we can recognize that 

rOk(A) = max IHI is equal to the value of a maximal flow from 
H ~ A. H E Flk C F2k 

the source k E Kl to the sink k E K2 in the subnetwork of G defined by nodes 

k E K1 • la £. I, J ° £. J and k E K2. Hence applying the max-flow min-cut theorem 

in this subnetwork, we obtain 

(4.9) rOk(A) ~ {I(k, X)I + 10e, y)1 + I(Y, k)l} 

for any X £ la and Y £ J O. 

where K, Yare the complements of X, Y in the sets la, J o respectively. 

We choose the subsets X. Y as follows, 

X = ~, Y = J O' for all k E KO, 
(4.10) 

X = To, Y = ~. for all k E KO. 

Then from (4.10) we obtain 

L: { I (k, X) I + I (K. Y) I + I (Y, k) I } 
k E K 

(4.11) L: l(Jo,k)l+ L: I(k, 10)1 
k E Ko k E Ko 

l(Jo. Ko)1 + I (Ko, To)l· 

From (4.9) and (4.11) we get that 
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(4.12) 

From (4.8) and (4.12) we obtain 

(4.13) 

(4.13) shows that the set A defined by (4.6) is a violating set to the (MC) of 

(4.1) or (4.4). Thus we can conclude that whenever we have a violating set to 

(NC), there exists a violating set to (MC); i.c., (MC) implies (NC). c=J 

Now we give an example showing that the converse of Theorem 4.1 is not 

true. 

Example 4.2 Consider the (PLS) illustrated in Figure 4.3 below. 

J 

I 

1 

Figure 4.1 (PLS) P 

121 

The above (PLS) P cannot be completed sinee symbols 2 and 3 conflict in cell 

(4.1). It is routine to check that this P satisfies (NC) of (3.1). But there 

exists a violating set A to the (MC) of (ii.4) , which is given by 

A = {(2, 1), (3,1), (4,1), (4,2), (4, 3)}. 

The above set A corresponds to the shaded area in the (PLS) P of Figure 4.1. 

Namely we have 
4 

I AI == 5 > l: max IHI 
k 1 H SA, H £ Flk n F2k 

o + 1 + 1 + 2 = 4 

We noted that neither of these necessary conditions given in (3.1) and 

(4.1) was sufficient for the completion of (PLS)'s (an example showing this 

is given in [lJ), but there are some special cases in which network condition 

of (3.1) can be both necessary and sufficient. These cases are given in [9]. 
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Moreover we can consider another necessary condition based on the triply sto­

chastic matrix. In [9] the relation between this condition and matroid condi­

tion is investigated and some results are shown. 
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