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ABSTRACT 

This paper studies, as a continuation of previous work [8), an optimal stopping problem with­

out recall in which the decision-maker observes a sequence of iid bivariate random variables which 

appear sequentially one by one in a Poisson manner. The problem can be interpreted as deciding to 

buy a house which has the two-dimensional worth, for example, the values for husband and for his 

wife. The concept of equilibrium neutral functions is introduced, and by using it an explicit solution 

of the problem is derived by means of finding a unique solution of some simultaneous differential 

equations. Some examples are included to illustrat,e the computations required by an "equilibrium 

neutral strategy". 

1. Introduction and Summary 

Let (X., Y.), i = 1, 2, ..• , n, be independently and identically distrib­
~ ~ 

uted bivariate random variables that can be observed sequentially. The common 

distribution function H(x, y) of each of the observation (X., Y.) is assumed 
~ ~ 

to be known by the decision-maker. When a random variable is observed it is 

either accepted, or rejected never to be accepted later. Only one observa­

tion, can be accepted, and if the player has not accepted until the final 

observation, then he is obliged to accept this one. 

For univariate random variables Xi' many authors have studied the problem 

of finding the stopping policy which maximizes the expected value of the 

observation accepted. (See, for reference DeGroot [2, Chapter 13]). There 
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46 When to Stop: Bivariate Target Values 

are quite few works for this problem for bivariate random variables, and as 

far as the present author knows his study [8] is the only one biginning work. 

In [8] the concept of equilibrium neutral values was introduced, and by using 

it a stopping policy was derived which "optimizes ll
, in some appropriate sense, 

the expected values of the observation accepted. 

In the present paper, we shall investigate some consequences of deleting 

the requirement that the number of the offers (i.e., length of the planning 

period) is deterministical1y known and fixed. We will consider the optimal 

stopping problem in which the offers are presented sequentially one by one 

and randomly in a Poisson manner during some given time interval. Associated 

with the offer newly presented at time, is a bivariate random variable (X , , 
Y J, which takes on the values (x , y). Whenever an offer is presented with , , , 
values (x , y ) the decision-maker is asked to decide whether he accepts the , , 
offer and terminates the process, or rejects the offer and continues his 

search process. We assume that any decision must be made immediately after 

the arrival time of an offer -----hesitation is not permitted. Suppose that 

the offers arrive in a Poisson manner with arrival rate A. It is assumed 

tqat if T
l

, '.2' ••• be the realized arrival times of offers, (X ., Y .), i = ,1 ,1 
1,2, ••• , are iid non-negative valued bivariate random variables each with 

the common cdf H(x, y). Let F(x) and G(y) be the marginal cdf of X and Y, 

respectively, such that ° < E(X) = ~ < 00 and ° < E(Y) = v < 00. Extension of 

the theory to the three-or-more dimensional random variables is immediate at 

least conceptually. 

If one acts in disregard of the values of Yi'S and wants to maximize the 

expected value of the observation X accepted, then his problem is solved as 

follows (See, Karlin [6], Albright [lJ and Sakaguchi [9]) : Let 

uO(t) = the expected payoff obtainable by following an optimal policy under 

the condition that t units of time remain before the deadline and 

any offer has not been accepted previously. 

Then uO(t) satisfies the differential equation 

where TF(z) is the mean-shortage function defined by 

( OOz J (1 - F(x) )dx. 

An optimal policy is as follows : Whenever an offer has just arrived with 

values (x, y) at the inst.ant with time t remaining, 
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~ ~ 1 I) 

XL~)u(t) 

We find that (1) has a unique solution, whi,~h is non-negative, concave and 

non-decreasing. 

Similarly if one acts in disregard of t.he observations of Xi's and wants 

to maximize the observation of the Y accepted, define vO(t), similarly as in 

uO(t), interchanging the roles of X and Y. Then vO(t) satisfies 

(1' ) ° v (0) = ° , 
° and an optimal policy is described by (3), 1fith x and u (t), replaced by y 

and vO(t), respectively. 

Our main concern in the problem we wan'~ to discuss in the present paper 

is to find how to stop optimally, in some appropriate sense, if we cannot be 

in disregard of anyone variable and have a think of both of X and Y with 

equal importance. An outline of the paper is as follows: In Section 2 the 

concept of equilibrium neutral functions is introduced, and by using it an 

explicit solution of the problem is derived through finding a unique solution 

of some simultaneous differential equations.. The reduction to a non-cooper­

ative non-zero-sum differential game is suggested. In Section 3 some examples 

are included to illustrate the computations required by an "equilibrium 

neutral strategy". 

2. Equilibrium Neutral Strategy. 

We shall consider a class of stopping policies in which the decision­

maker has a pair of "neutral" functions u(t) and v(t), in the sense that his 

search process is terminated by accepting the first offer. such that X > u(t) T= 
andY ~ v(t), where t is the time remaining before the deadline at the 

T 
instant of the arrival of the T-th offer. 

In what follows in this paper, we occasionally use the term "time", which 

means the future time remaining before the deadline. No confusion will occur 

by this. Let ~[tlu(·), v(·)] be the expected payoff from the observations 

of X's under the condition that any offer has not been accepted previously by 

time t, and a pair of neutral functions u(·) and v(·) is employed thereafter. 

Let ~ [ t iu( • ), v(·)] be defined similarly for Y. 
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48 When to Stop: Bivariate Target Values 

Now borrowing the concept of the equilibrium from non-cooperative game 

theory, we want to find a pair of neutral functions u*(·) and v*('), such that 

a unilateral departure from this pair by either u(') or v(') will result in a 

lower payoff. More precisely, for any t > 0. 

Ml[tlu*(')' v*(·)] = max M [tlu('), v*(·)] , 
u(.) on [O,t) 1 

(4) 

Ml[tlu*('), v*(·)] = max M [tlu*('), v(·)] . 
v(.) on [O,t) 2 

A pair of functions u*(·) and v*(·) is said to constitute an equilibrium 

neutral strategy if it satisfies (4). 

For any t > 0, let F[Y ~ vet)] be the conditional cdf of X given that 

Y ~ vet), and similarly G[X ~ u(t)], the conditional cdf of Y given that X > 

u(t). Consider the simultaneous differential equations 

u'(t) = Pr.{Y ~ v(t)}TF[y ~ v(t)](u(t)) , 

(5) 
v'(t) = Pr.{X ~ u(t)}TG[X > u(t)](v(t)) , 

with the initial conditions u(O) = v(O) = 0, and we shall assume that our 

bivariate distribution H(x, y) is such that the equations have a unique solu­

tion. Then we prove the following : 

Theorem Under the above mentioned assumption, let (u*('), v*(·)) be the 

unique solution of Eqs (5) with u(O) = v(O) = 0. Then this is an equilibrium 

neutral strategy. Moreover we have, for any t ~ 0, 

~ [ t I u* ( . ), v* ( . ) ] u*( t) , 

(6) 
M2 [ t I u* ( . ), v* ( . ) 1 = v* ( t) . 

Proof For any pair of neutral functions u(·) and v('), define 

~ [ t \ v( . )] :: _ max ~ [ t l:ti( . ), v(·)] , 
u(') on [O,t) 

(7) 
M2[tlu(')] :: _ max M

2
[tlu('), v(')] 

v(·) on [O,t) 

Then considering what can happen in some small time interval ~t and employing 

the Principle of Optimality in dynamic programming, we have the expression 
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hex, y)dy 

dXSex> hex, Y)d;l~[t -6tlv(,)]] 
v( t-tlt) J 

+ (1 - AlIt)~[t - lit I y(.)] + o(lIt) , 

where hex, y) is the pdf of the cdf H(x, y). If H(x, y) is discontinuous, a 

slight modification will be needed. 

Rearranging terms, dividing both side!> by lit, and taking the limit as 

lit ~ a, we obtain 

(8) 

..£.. M* [t I v( . )] 
dt 1 

A max (ex> {x _ ~[tlv( ')]}dx r ex> hex, y)dy 
ua J ua J v(t) 

A (ex> {x-Mtltlv(')]}dX S·ex> h(x,y)dy. J ~ [ t I v( . ) J v( t ) 

Note that Mtltlv(.)] is equal to the optimal choice of the neutral value for 

X at time t, provided that the neutral funetion v(·) for Y will be employed 

thereafter. 

Also a similar argument as in above gives 

(8' ) "£"M*ltlu(.)] = A (ex> {y .. M*[tlu(')]}dyfex> h(x, y)dx, 
dt 2 JM~[tlu(.)] 2 u(t) 

and that M~[tlu(')] equals the optimal choice of the neutral value for Y at 

time t, provided that the neutral function u(·) for X will be employed there-

after. 

Let (u*(·), v*(·)) be a unique solution of the simultaneous differential 

equations 

u'(t) - >--f ex> (x - u(t»)dx f ex> hex, y)dy , 
u(t) vet) 

v'(t) = AS ex> (y _ v(t»dy J ex> hex, y)dx . 
vet) u(t) 

with u(a) = v(a) = a. This is equivalent to (5) by interchanging the order 

of the integrations. Then, by (8) and (8'), we find that 

49 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



50 

M![t 

M*[t 
2 

When to Stop: Bivariate Target Values 

v*(·) 1 u*(t) 

u*(·) 1 V*(t) 

Since a pair of neutral functions u*(·) and v*(.) satisfies (4), if and only 

if 

~[t 

M*[t 
2 

v*(·) 1 

u*( .)] 

~[t I u* ( . ), v* ( • ) 1 

M2 [t I u* ( • ), v* ( • ) 1 

it follows that (u*(.), v*(.)) is an equilibrium neutral strategy and (6) is 

true. This completes the proof of the theorem. 0 
The above theorem implies the following important fact : the pair of 

functions u(') and v(.) defined by the simultaneous differential equations 

(5), or equivalently, (9), plays two roles. (Hereafter we shall omit the 

asterisks in u*(t) and V*(t).) First it constitutes an equilibrium neutral 

strategy for the search process, and secondly, (u(t), v(t)) is the equilibrium 

expected payoffs for a play of the remaining period t. In a later section 

we shall show that some elementary bivariate distributions give, relatively 

easily, explicit solutions of the simultaneous differential equations (5). 

Remark Our derivation of the equations (8) and (8') suggests that the 

problem we are considering is nothing but a non-cooperative non-zero-sum 

differential game, in which the payoffs to player 1 and player 2 are ~(T) 

and M2(T), respectively, the differential equations are 

~ (t) AS 00 (x ~ (t))dx r 00 h(x, y)dy , 
u(t) J v(t) 

~(O) = 0 , 

f
oo 

A (y 
v(t) 

o • 

and the controls satisfy, in 0 ~ t ~ T, 

o ~ u(t) ~ sup {xl F(x) < l} , 

o ~ v(t) ~ sup {yl G(y) < l} 

For the detailed expository disc·ussions about the differential games with 

a special emphasis on their applications to economic analysis, see, for exam­

ple, Intriligator's book [5; Chapter 15]. Also, one of the earliest and 

hence the easiest example of zero-sum differential games is, as far as the 

present author knows, Zaehrisson's tank duel tlO]. Here the problem has 
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M'(t) = '(t, M(t), u(t), vet)~, M(O) = c 

each of tbe controls being restrieted in some given interval of 

real numbers during ° ~ t ~ T. 

To prove the following corollaries, it is worth stating the properties 

of the function TF(z) defined by (2). It is continuous, non-negative, convex 

and strictly decreasing on the set where it is positive. 

~ ~-Z, lim {TF(z)-(~-z)}= ° (where ~ ::: EX :: 5'" xdF(x», 
z+-o> 0 

TF(z) = -\l-F(z»). 

Furthermore TF(z) 

lim TF(z) = 0, and z __ 

Corollary 1 Each of u(t) and v(t) is non-decreasing and concave in 

t ~ O. 

Proof. The proof will be shown for u(t) only. Non-decreasing property 

is evident from (5) and non-negati vi ty of the mean-shortage function. Also 

(9) gives 

A-lu"(t) = {u' (t) a: + v' (t) a~} . r :(X-U)dx i :h(X,Y)dY 

_ u' (t) ('" dx ('" h(x,y)dy _ v' (t) (CO (x-u(t) )h(x,v(t»dx 
J u(t) J v(t) J u(t) 

in which all of the two integrals and the two derivatives are non-negative. 

This proves the concavity of u(t). 

Corollary 2 Assume that X and Y are mutually independent. ° Let u (t) 

denote the expected payoff in an optimal play for the 

on the observations of X!S 
1. 

for Y!s only, in disregard 
° 1. v (t), for any t ~ O. 

only, in disregard of Yis. 

of X!s. Then we have u(t) 
1. 

planning period t based 

Define vO(t) similarly 

° ° ~ u (t) and v(t) ~ v (t) 

Proof. If X is independent of Y, then (5) becomes 

u' (t) 

(la) 
v' (t) 

Since u~t) and vO(t) satisfies the differential equations (1) and (1') re­

spectively, the assertion of the corollary follows. 
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52 When to Stop: Bivariate Target Values 

3. Examples 

The behaviors of the equilibrium neutral strategy (u( t), v( t» depend! 

on the form of the distribution of the observation, especially on the shapes 

of upper tails. In this section we show four simple examples which may help 

understanding the theory in cases of three distributions: Bernoulli, uniform 

and exponential. 

Let Fly] denote, the conditional cdf of X given y, and G[x], that of 

y given x. Sometimes it is convenient to rewrite (5) as 

u' (t) 

(5' ) 
V' (t) 

These expressions will be used in the following examples. 

Example 1 Bivariate Bernoulli distribution. Let 0 ~ a
l 

< a2 . If (X,Y) 

is a bivariate Bernoulli random variable with marginal parameters p, q, where 

o < p, q < 1, and coefficient of correlation p, then the probability function 

on (X,X) is given by: 

Y = al 
Y = a2 

X a
l 

p q + d P q d p (=l-p) 

X a
2 p q - d P q + d P 

q (=l-q) q 

where d = p(ppqq)1/2 and Ipl ~ 1. (Hamdan and Martinson [4]) For this dis­

tribution we have 

{ 
(P+d/q)a

l 
+ (p-d/q)a2 - u , o ~ u ~ a l 

(p-d/q) (a2-u) al ~ u ~ a2 

o , u > a2 

{ (p-d/q)a
l 

+ (p+d/q)a2 - u , O~u~al 

(p+d/q) (a2-u) al~u~a2 

o , u > a2 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



M. Sakaguchi 

and J: TF[y](U)dG(y) is, as a flIDction of u and v, 

0 < u < a = = 1 a
l < u ~ a2 u > a

2 

0 - p(a2-u) ~ v ~ al pal + pa2 - u 0 

al < v ~ a 2 (pq-d)a + 
1 

(pq+d)a2 - qu (pq+d) (a2-u) 0 

v > a2 0 0 0 

which is continuous in u, but discontinuous in v. 

For simplicity we set p=q. Then, by symmetry, u(t) = vet), and the 

pair of differential equations (5) reduces to a single 

{ 
- - u(t), if 0 < u( t) < a

l pal + pa
2 

(12) A -lu' (t) 2 u(t» , al ~ u(t) (p +d) (a2 if ~ a2 

o , if u(t) > a 2 

Intergration gives 

u(t) ,{ 

where tl is given by a 1IDique root of u(t) 

1 pal + pa2 
tl = I log 

(a2-a
l

)p 
(14) 

The equilibrium neutral strategy at the decision instant (t; x,y) is 

now apparant. If the observation is other than x=y=a2 , then the decision 

is: 

~ Accept 1. the observation, if t) ~> 1 t
l

. L Reject J L J 
If the observation is x=y=a2 , then accept it independently of t. 

Furthermore note that, if we disregard one variable of the bivariate 

(X, Y), we have TF(u) given by (11) with d=O, and Eq. (1) becomes 
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54 When to Stop: Bivariate Target Values 

° + pa2 - u (t), if ° < u(t) < a
l 

_ uO(t), 

0, if u(t) > a
2

, 

giving, after integration, 

with tl defined by (14). Since Idl ~ pp one easily find that u(t) ~ uO(t), 

although X and Y are dependent each other. 

Example 2. Bivariate uniform distribution. A class of bivariate pdf's 

with given marginal pdf's f(x) and g(y) is given by 

(15) h(x,y) = f(x)g(y) {l + y(1-2F(x»(1-2G(y»} 

where F and G are the corresponding marginal cdf's and y is an arbitrary con­

stant with -1 ~ y ~ 1 (Gumbel [2]). It is easy to check that the bivariate 

cdf is 

(16) H(x,y) = F(x)G(y) {l + y(l-F(x»(l-G(y»} 

and that x is independent of y if and only if y=O. This class of bivariate 

distributions is theoretically important because of its simple form and the 

fact that the constant y actually measures the degree of dependency between 

the component variables, independently of f(·) and g(.) (Sakaguchi [7]). 
For this class of bivariate distributions it is easy (Sakaguchi [S])to obtain 

(17) 

where F2 is the cdf of the maximum of the two iid r.v., each with cdf F. 
00 --

We also have the similar expression forJruTG[xJ(V)dF(X). 

Now for bivariate uniform distribution put F(x) = G(x) = x for ° ~ x ~ 1. 

Substituting this into (17) and considering symmetry, we find that the simu­

ltaneous differential equations (5') reduce to a single 

(lS) u(O) 0. 

and, of course, u(t) == vet). 
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The differential equation (18) has, ifY=Q (independence), a unique 

solution 

t ~ 0. 

This function is concavely increasing from 0 at t=O and approaches to 1 as 

t + 00. One easily find that u(t) ~ uO(t), where uO(t) = At/(At+2) is a unique 

solution of Eq. (1), with TF(Z) = (l-z)2/2. 

Example 3. Bi variate exponential distribution. Let 

H(x,y) = F(x)G(y), F(x) = l_e-x/~, G(y) = l_e-Y/ v• 

-u/~ Then, since TF(u) = ~e etc., Eq. (10) in this case becomes 

u' (t) 

v' (t) 

Integrating we get 

, -\.u(t)/~ + v(t)/v}, 
"\le 

, -tu(t)/~ + v(t)/v/. 
"ve 

1 
u(t)/~ = v(t)/v = 2 log (l+2At). 

° ° Q One easily find that u(t) ~ u (t) and v(t) ~ v (t), where u (t) = u log(l+At) 
- 0 

is a unique solution of Eq. (1), and v (tJ = v log(l+At), that of Eq. (1'). 

Example 4. Mixed-type bivariate distribution. Let 

{ 

-1 -x/~ 
~ e ' 

h(x,y) = 
0, 

ifO~y~l 

if otherwise, 

that is, X is exponentially distributed with mean ~, and Y, which is inde­

pendent of X, is uniformly distributed over the unit interval. Then Eq. (la) 

becomes 

if ° ~ v(t) ~ 1 
(20) 

if v(t) > 1 

(21 ) v'Ct) = { 
if ° ~ v(t) ~ 1 

° if v(t) > 1. 

Integrating (20) we obtain 

eu(t)/~ = 1 + A): (l-v(t
1
»dt

1
, 
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56 When to Stop: Bivariate Target Values 

which, combined with (21), gives an integral-uifferential equation 

A 2 S t v'(t) = "2(l-V(t)) /{l + A ° (l-v(tl ) Jdtl }· 

With V( t) == S: (l-v( t
1

) ) dt
l

, this becomes a second-order differential equation 

V" (t) V(O) 0, V' (0) 1. 

Integrating twice we get 

V' (t) (1 + AV(t) )-1/2 , and (1 + AV(t))3/2 3 l+"2 At • 

Hence we obtain 

u(t)/\.l 

vet) 

log(l + AV(t)) = ~ log(l + ~ At) 

1 - V'(t) 1 - (1 + 1 At)-1/3 
2 

4. Conciuding Remark 

As with any model, the model presented here is merely one abstraction 

of realit~ There may be various way of treating the probelm differently. 

One situation, indeed of interest, is the one where the objective of the deci­

sion-maker is to maximize the probability of "win" with a given bivariate 

distribution function. (~be problem in the univariate case was already solved 

by Sakaguchi [9 J.) One must describe the model as follows : We refer to 

an observation which is the efficient one so far, that is, there is no obser­

vation greater than (in the bivariate sense) the present one among the pre­

vious observations, as a candidate. The event in which we accept a candidate 

which happens to be the efficient one through the whole planning horizon is 

called a "win". We are asked to fined a stopping policy which maximizes the 

probability of win. We can derive some dynamic programming equation which 

will determine the optimal strategy, but the critical difficulty comes from 

the explosive nature of the underlying state space. 
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