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ABSTRACT

In this paper we consider an optimal control problem for partially observable Markov decision
processes with finite states, signals and actions over an infinite horizon. It is shown that there are e-
optimal piecewise-linear value functions and piecewise-constant policies which are simple. Simple
means that there are only finitely many pieces, each of which is defined on a convex polyhedral set.
An algorithm based on the method of successive approximation is developed to compute e-optimal
policy and e-optimal cost.

Furthermore, ‘a special class of stationary policies, called finitely transient, will be considered.
It will be shown that such policies have attractive properties which enable us to convert a partially

observable Markov decision chain into a usual finite state Markov one.

I. Introduction

The partially observable Markov process, introduced by Dynkin [5], con-
sists of two stochastic processes, the core process {Xn, n=1, 2, ...}, which

cannot directly be observed, and the signal process {Sn’ n=1, 2, ...}which
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becomes known at each decision epoch n=1, 2, ... . The core process is a Mar-
kov chain and the signal process is probabilistically related to the core
process by the conditional probability Yie of observing a signal 6 given that
the core process is in state i. Dynkin shows that the state occupancy proba-
bility represents a sufficient statistic for the complete past history.

Zstrﬁm [1] also considered a similar model with finite states and finite ac-
tions over a finite horizon, using the method of successive approximation to
find e-optimal cost vectors, however, it is only applicable toproblems in two
dimensions. Smallwood and Sondik (8] have indepéndently obtained similar re-
sults. Later, Sondik [9] extended this model to the inifinite horizon and
introduced the class of finitely tranient policies. White [10] has considered

a partially observable semi-Markov process with a finite horizon where the con-
troller knows the times of the core process transition. Sawaragi and Yoshikawa
[7] also studied the partially observable control problem with countable states
states, uncountable action sets and infinite horizon, where they have explicit-
ly showed that such partially observable models can be transformed into an
ordinary complete observable one.

In this paper, under the setting of [8], we shall consider an optimal
control problem with discounted cost over an infinite horizon. We introduce
three concepts of simple partitions, simple policies, and piecewise linear
functions. Using only these concepts we present an algorithm to find an ap-
proximation to the optimal cost function. We also show that we can construct
an e—dptimal simple stationary policy. We are guaranteed to obtain an e-
approximation of the optimal cost function in finite steps, and each step we
only need to find a finite number of vectors by linear programming. Also, an
application to a machine maintenance model will be discussed.

Furthermore, in this paper a special class called finite transient, of
stationary policies will be considered. We shall show that such policies have
very attractive properties and are useful for approximating an optimal policy.
If policies are finitely transient, partially observable Markov decision pro-~
cesses can be reduced without loss of generality into finite state Markov
decision processes with complete observation.

Sondik [9] has originally introduced the concept of finite transientness
of policies for the model with finite sets of states, signals and actions over
infinite horizorn. However, many parts of his paper are unclear. These will
be revised and clarified by giving a different definition of finitely tran-
sient policies. The same notation and symbols as in Sondik's paper are

adopted here except where confusion occurs.
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2. Statement of the Problem

Consider a Markov decision process (called the core process) with state set
Q=1{1, 2, ..., N}, with finite action set A, with probability transition matrices
{P?, a ¢ A}, and with immediate cost vectors {q®, a ¢ A}. Let X be the state
at the n~th transition. Assume that the process {Xn, n=0, 1, 2, ...} cannot be
observed, but at each transition a signal is transmitted to the decision maker.
The set of possible signals S={1, 2, ..., ©}is assumed to be finite. For
each n, given that Xn=j and that action a is to be implemented, the signal en
is independent of the history of the signals and actions {8y, ag, 01, @1, ..,
fn-1, ap-1} prior to the n-th transition and has conditional probability denot-
ed by y?e=P[en=e|xn=j, al. At time n=0, 1, 2, ..., let m=(m,) be the
state probability (N-vector).  For a transition probability pa= (Pij) and an
information structure I‘a=diag(yi.le) put Qg = paI‘:.

If the current state information vector is m, a signal 6 is observed and

action a has been chosen, then the next state information is given by

(1) T(x]|s, a)=m§a_}
where

{o|n, a}=mQil with 1=(1, ..., nt.
Let

N N
I={reR : Zi=1 ni—l, ﬂi>0 Vi}
We define A as the family of mappings § : Tx I +A where T= [0, «»). Each ele-
ment of A is called a policy. Given an initial distribution w(0) and a policy
§, the subsequent information vectors m(n) form a Markov process. Our dis-
counted control problem for an initial distribution (0) =7 1is described by

min B[ £ 8% n()g®® ")y,

6 n=0

Seh
where E is the expectation with respect to the signal, B, 0<B <1, is the dis-
count factor and the cost at time n is given by the inmer product Trqa with
action a. Let C(m[6) be a cost of a stationary policy & at an initial value
7. Then it is well known (see [2], [3]) that C('rr|6) satisfies

) c(r|s) = nq® + 8zie|r, s}c(T(nle, 8)]6) .
3]
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Let C*(m) be the optimal cost, then the following is true (see [2], [4]) .

Theorem 1. There exists an optimal statiomary policy &% with C(r|é&%)
=C*(m). Also, C*(7m) satisfies

(3) c*(m) =min{1rqa+6 I {6[11, a}C*(T(ﬂle, a))}
acA 6eS

for any m e 1.

An e-optimal cost function C is one satisfying

(%) lc* - cl=supf c* (m) -c(n
mell

dlze.

A policy & such that C=C(+|8) satisfying (4) is an e-optimal policy.
For finding an e-optimal policy and its cost function we define simple
partitions, simple policies and piecewise (abbreviated, hereafter, by p.w.) lin-

ear functioms.

Definition 1. A partition {Vi}?=1 of N is called simple if each v, is a
convex polyhedral set, where a convex polyhedral set is the solution set of a
finite system of linear inequalities, i.e.,

V,={mell: v ,7<0, j=1, 2, ..., n;}

ij i

where v,. € RN and v, .7 is the inner product of v,. and 7.
ij ij ij

Remark 1: Inequalities of the form vm <0 contains those of the form vm

<a, o scalar. In fact vr<ao is equivalent to (v-al)mw<O0.

Lemma 1. Let Py= {Vi} and P, ={wj} be two simple partitions of TN. Then,
the product partition Py« Pp = {Vi N Wj} is again simple.

Proof: Here we omit Vi N wj if vi N wj =¢. The sets vi N wi are

disjoint and are convex polyhedral sets., Hence P; + P, is simple.
Definition 2. A stationary policy & is called simple with respect to a

simple partition {Vi} if <S(11)=a:.L on Vi, i=1, 2, ..., m,

Definition 3. A real valued function £ on I 1is called piecewise linear

if £(w) =fi1r on Vi’ i=1, 2, ..., m, where {Vi} is a simple partition and fi

€ RN.

Example: Define an information structure as a mapping from the set of
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states (unobservable) of the core process to the set of distinctive signals 8.
The decision maker chooses an information structure from the set of available
structures and decides upon an action for the system.

Let a= (a), ap) be the pair of actions, a; for the system control and ay
for information acquisition. More precisely, we have

a = a) _ap
Pij(e) Pi7Y50

[S]
a a . .
s ZP ! ZY~gq(l’ Js ea ajl, 6,2)

ﬂqa= z ﬂ .
i=1 *j=1"Jg=17

i
where q(i, j, 6, aj, ap) is the immediate cost of the core process when a state of
the core process moves from i to j and a signal © observed under actions a; for
the system and a; for the information structure, and 7= (my, ..., ﬂN) is the
probability vector with an interpretation L is the probability that the core
process is in state 1i.

Consider a machine maintenance and repair model (e.g., Smallwood and Son-
dik [8]) as an application of partially observable models. But this model is a
modification of Smallwood and Sondik's. The machine consists of two internal
components. The states of the core process Xn==i, i=1, 2, 3, have the follow-
ing interpretation. If i=1, then both components are broken down, if =2
either one is broken down and if i =3 both of them are working. Assume that
the machine produces M finished products at each period and the machine cannot
be inspected. The actions aj; for the machine control are to repair and not to
repair the machine. The actions ap; for information acquisition are the numbers
of a sample to choose out of the M finished products. The signals 0 are the
number of defective products in the sample, which forms the signal process
{en, n=1, 2, ...}. The core process {Xn’ n=1, 2, ...} is the unknown states
of the components of the machine. Let ﬂi==P{Xn==i}, i=1, 2, 3 and put 7
= (my, Ty, m3). Then, the process {(Xn, Grg, n=1, 2, ...} becomes a partially
observable machine maintenance and repair model with actions a= (aj, a) and

. . a
immediate cost mq .

3. Finitely Transient Policies

In this section a special class of simple stationary policies, called fi-
nitely transient, will be studied. The class of such policies has very
attractive properties even though all stationary policies do not belong to such
a class.

Define, for a simple policy &,

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



6 K. Sawakiand A. Ichikawa

k k-1

(5) D =U{n: T{n|6, 6}eD
8

where DO —UDO =U{nell: iJTr— 0} which forms the boundary set of the partition

i ’
{V } correspondlrJlg to a simple policy §. Let Vk= {Vlj{}?_ be the collections
K =

1
of sets whose boundaries «':1reLUODL and then V© is a refinement of vk - l, k>1,

where V = {V }-

Definition 4. A simple policy ¢ is called finitely transient if there

is an integer k <« such that

k k
T(vjie, S)va(j,e) for all 3

where T(Vle, 8) ={T(1T|6, §) : meV} and v(j, 8) is the index of the set contain-

ing T{nle, 8§} for nsVlj{ . Let k6 be the smallest such integer.

Lemma 2. Dk=¢> for all k>Kk

< if and only if § is finitely transient with

the index k
Proof: Suppose that § is finitely transient with the index k(g’ that is,

k

k(i §
T(vj le, §)cv

LG, 8) for all 6.

k k

D 6=¢ because T(Vj 6|8, 8) is the set of all possible state information at the
ké—th period and \’li( is open in T for all, i, k. Let Ls be the set function
defined as LG(B) =U{r: T(r|6, 8) e B}

0
Dk=U{1T : T(nl8, 8) eDk_l}

9

=L6(Dk—l)
k

=LG(D0)

If Dk=L§(DO)=¢, then
Dk+l=L5(¢>)=¢

Hence, by induction Dk= ¢ for all k_>_k(5 .

Conversely, suppose that Dk=¢ for all k>k and
that

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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T(Vlj(|6, <5)¢V1: for some 6.

(i,8)
So, there exist w1}, Trzerk such that for sone 6 T(1T1|6, §) and T(nzle, §) do not
belong to the same set V‘:(j, 6) .

Then, there is a constant A, 0< <1, such that A’T(nlle, )+ (1-17)
T (n2]6, §)eD¥and A° is given by x'=xniQ‘;/ng. A T( |8, &)+ (1-A")T(n2]e, §)
=T(Awl+(1-2)n2le, &). By letting m=2Anl + (1~x)n2, T(r|6, §) e DX which is

a contradction.
a a

Lemma 3. Let Qe;Qe2

5"
policy § is finitely transient if there exists an integer k< « such that

a
"Q6E= (Q% )k and 0 be a zero row vector. A simple

vij(Qg)k>g or <0 for all 6, a, i, j.

k 1

Proof: D =U{n:T(n|e, 8) e DX~
6

}
U U {n:v,. @557 =0}
PR ij" "e
6 i, j
Since 7,0 and .7, =1, DX= ¢ if v, (@) >0 or 0 for all ®, a, i, j. By
i= ii 7 ij e - = PRy A
Lemma 2, this completes the proof.

Remark 1. 1In Lemmas 2and 3, the assumption concerning § being simple is
crucial. A counter example is presented as follows: suppoese that there are

only two states N=2 and ny=1-1m92>0.

a 1if m dis rational
s(m) =1 ! !

a 5 otherwise

Define,

which is stationary but not simple. Then D(S is the uncountable discontinuous
set which never becomes empty. Therefore, a finitely many partition {V}i does

not exist.

Theorem 2. Let § be a simple policy. Then, the following are equivalent.

(i) & is finitely transient with the index k(S'

(i) C(n’lﬁ) is piecewise linear.

Proof of [(i)~ (#)]: Suppose that we have a ginitelz many partition Vk

= {V;.{} for k>k

= X hi i
. Let C(m|8)=ma,, meV, and o, = + do
8 rl9) 3 N 3 4 BEQG v, 9)

= k
C(n|8)=ma, ,meV,
DRSS
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aj aj
T TR g, )

é
=nqb +gzin|e, 5}__1(29_ o . for all m & V&
{rle, s} V(> ® J

for 6 finitely transient

= mq®
mq +Bg{n|6, 81IT(~w|8, G)av(j, 8)

nq5+Bg{1T|9, s¥c(r(nle, 8)|8)

(UsC) (m)

8) =C(-

Since C(°[(S) is the unique solution of U(S , C(* 8) .

§) , we have C(n|6)

Proof of [(i) +(i)] : From piecewise linearity of C(-
= 1roEj for 7 ¢ VIJ.( with the partition {V?} for k>k and &§(m) =aj , TE Vlj< .

So C(T(r|6, 8)|8) =T(n]e, 5)av(j, 6) for m e Vl:j(.

Then, we must have T(1T|6, §) eVl\j(, for all m ¢ Vljc and all 6. So

i, ©)
k k
C
T{Vj|6, 8} Voli, 0) for all 6.

Corollary: 1If a policy 6 is finitely transient with the simple partition

{Vj} , then its cost C(Tr|6) can be computed by solving the following equations;

(6) C(n|6)=1raj forner,j=1, 2, ve., m
and

?3 %3
(7) ocj=q +BgQe av(j, 8) * j=1, 2, ..., m.

The proof immediately follows from Theorem 1. Note that the set of equations
(7) has a unique bounded solution (see Appendix) and that m need not be equal

to the number of actions.

4. Properties of Ua and U,

This section 1s a study of the properties of Ua and U, . Most of these
properties will be used later in the development of the algorithm to find e-

optimal approximations to C* and &% .
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Let F be the space of real valued functions on II with sup norm. Then F is a
Banach space (B-space). Let Il be equipped with the Euclidean norm, and let C
be the subset of continuous functions in F. Then C is a closed linear subspace

(hence is itself a B-space) of F. Define operators Ua s U, on F by

(Uaf)(n)=nqa+8 s{6|n, a}e(T(x|6, a)), feF,
8es

U, £)(m =min{1rqa+6 Z{6|1r, a}f(T(n|e, a)l.
acA 6eS

Lemma 4. (1) Ua , U, are contraction mappings with contraction coeffici-

*
ent B.
@) Ua » U, are monotone, i.e., if f, geF with f<g, then U,f
<U,g and Uaf ang .
(i) They map C into itself, thus fixed points of these opera-

tors are continuous functions.

Proof: The properties (i), (ii) are standard. (See [2], [6]). (i) Ua
clearly maps C into self. (U*f)(w) is the minimum of finite number of continu-
ous, hence it is also continuous, provided f is continuous.

From Lemma 4 we get some information on C* and &* .

Lemma 5. The fixed point of U, exists and is the optimal cost function

C*, which is continuous.

Before stating our main results, we need two lemmas.

Lemma 6. Let f be a piecewise linear function w.r.t.{Vi} on II. Define a
stationary policy §

Then (‘Sf is simple.

Proof: Let {Vi} be the simple partition for £. Define

£ by U,f, namely, 6f(1r) =a; if ay minimizes (Uaf) (m .

Vi(a, 8)={mem :Tode,a)eviL
Then for each a, 6, {Vj(a, 6)} is a simple partition. In fact Vy(a, 8) is given
by

“ngij

T <0 37k 2o my s
or equivalently,

mQgVig < 0, 3=1, 2, ...y my,

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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where Vij characterizes V4. Let {V?’e} be a simple partition defined by

N . a
i’eVi(a, 8) (see Lemma 1), then Uaf is linear on each Vi,e

More precisely,

z a
W £)(m) = nq®+8, = Q2 Ix,a
a 6es o Vi,e(“)fi’

, a
where yx a (n) = {l it E:V:'LS, and fi is a vector defining f.

V. 0 otherwise.
i,0
Since § is defined by minimizing finite number of piecewise linear functions,

it is simple.

Lemma 7. (i) 1If f is piecewise linear, then U*f is piecewise linear.

(ii) If f is concave, then U*f is also concave.

Proof: Uaf has the same property as f°s. By the definition of U,f, the

desired results are obtained.

Theorem 3. Let f5eF, and define
£ (m) = (UE__)(m).

Let 6n be the decision rule at stage n defined by U*fn—l .

(1) fn converges to C* .

(ii) If fy is piecewise linear, then so is fn for any n. Furthermore,
Gn is simple.

(#i) If fy is concave, then fn is concave.

(wv) 1f f1<fy, then fn+C*. If £, > £y, then fn+C* .
Proof: The assertions follow from Lemmas 4, 5, 6 and 7.

Remark 2. 1If we take fy(m) =C(r|6§) for some stationary policy §, then
fn+C* . In particular, if we take §(w) =a for all w, thus C(Tr[é) = fo(m) =
(I - BPa)-lqa, then fn is continuous concave and piecewise linear and fn+ C*.

Hence C* is continuous and concave.

Remark 3. Let fo(m) = minm qa, then fy is piecewise linear, concave and
continuous. Hence (i) and (?iie) hold. Since fn corresponds to the optimal
cost for the n-period problem with discounting, this case is essentially equiv-
alent to the results in [9]. If we further assume qaZO for any ae A, then
fn 4+ C* |

Next we shall discuss the rate of convergence.

Lemma 8. Let feF. If [|f - U f|| < (1-B)e, then ||c*x-£f|| < .

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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Proof: ||c* - f£]|

fA

[u,ex - U el + [[0,8 - £]]

A

sllox - €] + | 0,8 - £]].

After arranging, the result is obtained.

Theorem 4. If 8"||fq - U,fol| < (1-B8)e, then ||C* - £l <.

Proof: Since we have
2
| Ifn - U*fnl I I IU*fn_l - U*fn_ll |

|A

o112,y - Uty ||

A

3n||f0 - U*f‘|’

the theorem follows directly from Lemma 8.

Remark 4. 1If we calculate ||fy - U,fo||, then Theorem 4 tells us when to
stop. Furthermore, at each step n we know from ||fn - U*fn|| how many steps

(at most) we have to go after the step n.

5. Algorithm

Since T is uncountable, it is far from trivial to calculate C(w|8) which
may not be a piecewise linear funciton of m, except the case that § is finitely
transient. In this section we shall approximate C(n|6) by using the method of
successive approximation.

The method of successive approximation is a well known and popular method
for solving equations. The method is to start with a cost function fj, and to

iterate U,, constructing a sequence of cost functions fn = U*f =1,2,...

1 D
By Lemma 4, U, is a contraction mapping with fixed point C* ang ;y Theorem 3,
{fn} converges to C*, By Theorem 4, n can be chosen sufficiently large, so
that fn is an e-optimal cost function. In fact by taking logarithms of the
expression in Theorem 4,

(1-8)e
n > log [Ilfo-fllll/log g

is adequate.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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The next theorem provides a means of constructing an e-optimal policy
from an e'-optimal cost function and specifies the relationship between ¢ and
e'. The algorithm will first construct an ¢“optimal cost function. From this
cost function, an e-optimal policy is constructed.

Let f; be piecewise linear, and let Gn be defined by U*fn—l’ i.e.,

Gn(ﬂ) = aj if a;} minimizes (Uafn—l) (r). Then Gn is simple, and satisfies

U*fn-l = Udnfn—l’ where U5 for a stationary policy § is defined by
§(m)
(U ) (m) =g +pz{e|n, S(mIE(T(n|6, 8(M))) .
8esS
Theorem 5. If ||c*x - £ || <1-8 then ||C* - c(+|8)}]| < e.
) n-1 - 28 ? n -

Proof: It is easy to show that U, for any stationary policy 6 is a con-

§
traction mapping and that the fixed point is C(+|8), i.e., C(r|8) = USC('IG)(N).
Consider
[lox = o111 = 11, otl8) - v,erl]
< |ugcels ) - ug e[| + [|ug cx - ug £ ]|
n n n n
+ ||U*fn__1 - U*C*H

<alleCls) - cxl| +ellox - £ |1 +elle_, - cx]].

Here we used the equality U*fn—l = UG fn—l' Rearranging the above inequality

we obtain o

(a-stlec-ls ) -cx|| <28llex-£  ||<@-8)e.

n—1|

Hence ||C(+ 6n) -cx|| <€ .

If the state space is uncountable, or even countably infinite, then this
procedure is difficult to implement on a computer. However, since the partially
observable Markov decision process has the structure of piecewise linearity and
fp is p.w. linear, then each fn is p.w. linear and each Gn constructed as in
the previous theorem is simple (by Lemma 6). In this case, the «wost functions
and policies can be specified by a finite number of items - the inequalities

describing each cell of a simple partition and the corresponding action or

linear function.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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Algorithm to Find an e-optimal Simple Policy:

(1) Start with any p.w. linear function f,
(i) Compute f; =V, fj.

(#) Choose an integer n such that
n
8 |fg - £1]] < (1 - B,

where €' = (1-B)e/28. I.e., choose i larger than

-8’
to8 lag(gy - £a17)/108 &

(v) Compute fn = U*fn- successively until n=1ii.

1
(v) Consequently, we obtain fﬁ such that

- '
[lox - 1] < e

(d) Construct a policy § satisfying

Ugfs = Ugf.

Then 6 is e-optimal.
Remark 5. The algorithm can be started with fy = 0.

Remark 6. The termination criterion, n = fi, in the algorithm has the
advantage that ||fo - f1|| is computed only once. However, it has the disadvan~
tage that fi will probably be larger than necessary, causing unnecessary
iterations.

An alternative would be to compute | |:En - f at each iteration and stop

n—l||

whenever an - f (1-8)e'/B. Theorem 2 guarantees that fn is an €'~

=
optimal cost funczic])-n. However, the computations of an - fn—l” will, in
general, be expensive.

The best procedure is undoubtedly to check | lfn - fn-l” at some, but not
all, iterations. For exatixple, i might be computed based on | |fo - f1| | . Then

at some iteration n near %, recompute n based on | lfn - fu—l' f.
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Appendix

Lemma: The set of linear equations given by

a, a,
aj = q 7+ 8I 0
8

v(i, 8)° =1, 2, ..., m,

has a unique bounded solution.

Proof: Let a, = j for each j.

We may set quv(j 8) = Qiai if v(j, 8 =1, 1 =1, 2, ..., m.
’

Then we have

a = Qo+ Béiul + oot Béiam.
Let
» L & Q... Q.
o = . , q = . and Q= ‘
o q" a7 @5 «..ns a

Hence, we obtain

o =q + BQa, that is, a = (I - BQ)_I q
L)

where since ||BQ|| <1 for 0 < B < 1 with the sup norm, there exists

(1 - 837"
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