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ABSTRACT 

In this paper we consider an optimal control problem for partially observable Markov decision 

processes with finite states, signals and actions OVE,r an infinite horizon. It is shown that there are €­

optimal piecewise·linear value functions and piecl~wise-constant policies which are simple. Simple 

means that there are only finitely many pieces, each of which is defined on a convex polyhedral set. 

An algorithm based on the method of successive approximation is developed to compute €-optimal 

policy and €·optimal cost. 

Furthermore, a special class of stationary policies, called finitely transient, will be considered. 

It will be shown that such policies have attractive properties which enable us to convert a partially 

observable Markov decision chain into a usual finite state Markov one. 

I. Introduction 

The partially observable Markov proc:ess, introduced by Dynkin [5], con­

sists of two stochastic processes, the core process {X
n

, n=l, 2, ••• }, which 

cannot directly be observed, and the signal process {Sn' n" 1, 2, ••• } which 
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2 K. Sawaki and A. Ichikawa 

becomes known at each decision epoch n = 1, 2, •.. . The core process is a Mar­

kov chain and the signal process is ?robabi1istica11y related to the core 

process by the conditional probability Y
ie 

of observing a signal e given that 

the core process is in state i. Dynkin shows that the state occupancy proba­

bility represents a sufficient statistic for the complete past history. 

Astrtlm [1] also considered a similar model with finite states and finite ac­

tions over a finite horizon, using the method of successive approximation to 

find £-optimal cost vectors, however, it is only applicable toproblems in two 

dimensions. Smallwood and Sondik [8] have indep~ndently obtained similar re­

sults. Later, Sondik [9] extended this model to the inifinite horizon and 

introduced the class of finitely tranient policies. White [10] has considered 

a partially observable semi-Markov process with a finite horizon where the con­

troller knows the times of the core process transition. Sawaragi and Yoshikawa 

[7] also studied the partially observable control problem with countable states 

states, uncountable action sets and infinite horizon, where they have explicit­

ly showed that such partially observable models can be transformed into an 

ordinary complete observable one. 

In this paper, under the setting of [8], we shall consider an optimal 

control problem with discounted cost over an infinite horizon. We introduce 

three concepts of simple partitions, simple policies, and piecewise linear 

functions. Using only these concepts we present an algorithm to find an ap­

proximation to the optimal cost function. We also show that we can construct 

an £-optirnal simple stationary policy. We are guaranteed to obtain an £­

approximation of the optimal cost function in finite steps, and each step we 

only need to find a finite number of vectors by linear programming. Also, an 

application to a machine maintenance model will be discussed. 

Furthermore, in this paper a special class called finite transient, of 

stationary policies will be considered. We shall show that such policies have 

very attractive properties and are useful for approximating an optimal policy. 

If policies are finitely transient, partially observable Markov decision pro­

cesses can be reduced without loss of generality into finite state Markov 

decision processes with complete observation. 

Sondik [9] has originally introduced the concept of finite transientness 

of policies for the model with finite sets of states, signals and actions over 

infinite horizor.. However, many parts of his paper are unclear. These will 

be revised and clarified by giving a different definition of finitely tran­

sient policies. The same notation and symbols as in Sondik's paper are 

adopted here except where confusion occurs. 
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2. Statement of the Problem 

Consider a Markov decision process (called the core process) with state set 

rl = {l, 2, ... , N}, with finite action set A, with probability transition matrices 

{pa, a e: A}, and with immediate cost vectors {qa, a e: A}. Let X be the state 
n 

at the n-th transition. Assume that the process {X , n = 0, 1, 2, ••• } cannot be 
n 

observed, but at each transition a signal is transmitted to the decision maker. 

The set of possible signals S = {l, 2, ... , e} is assumed to be finite. For 

each n, given that Xn =j and that action a is to be implemented, the signal 6
n 

is independent of the history of the signals and actions {6a, aa, 61> aI, ... , 

6n-I, an-I} prior to the n-th 

ed by Y~6 = P [e = e 1 X = j, a]. 
J n n 

transition and has conditional probability denot­

At time n=O, 1, 2, ... , let ~= (~i) be the 

state probability (N-vector) .. For a transi.tion probability 
a a a a a 

information structure r = diag (y
j6

) put Qe ,= p r 8' 

a a 
p .. (P ij) and an 

If the current state information vector is ~, a signal 6 is observed and 

action a has been chosen, then the next state information is given by 

(1) 

where 

Let 

T .!. = (1, ... , 1) • 

We define !J. as the family of mappings 0 : T x JI+A where T= [0, (0). Each ele­

ment of !J. is called a policy. Given an ini.tial distribution ~(O) and a policy 

0, the subsequent information vectors ~(n) form a Markov process. Our dis­

counted control problel!l for an initial distribution (0) = ~ is described by 

i E [ ~ 8n~(n)qo(n, ~(n»], 
J1l n 8 L. .. 0 " 
oe:!J. n 

where E is the expectation with respect to the signal, 8, 0 ~ 8 < 1, is the dis­

count factor and the cost at time n is given by the inner product ~qa with 

action a. Let c(~lo) be a cost of a stationary poZicy 0 at an initial value 

~. Then it is well known (see [2], [3]) that C(~lo) satisfies 

(2) C(~lo)=~qo+8~{81~, 0}C(T(~18, 0)10). 
8 

J 
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4 K. Sawaki and A. Ichikawa 

Let C * (11) be the optimal cost, then the following is true (see [2], [4]) • 

Theorem 1. There exists an optimal stationary policy 0* with C(lIlo*) 

=C*(lI). Also, C*(lI) satisfies 

(3) C*(lI) =min{TIqa+ S 1: {elll, a}C*(T(lIl e , a»} 
a£A e£s 

for any 11 £ IT . 

An £-optimal cost function C is one satisfying 

(4) 11 C* - C 11= sup 11 C* (11) - C (11 I • ) i ~ £ . 
1I£l! 

A policy 0 such that c=C(·lo) satisfying (4) is an £-optimal policy. 

For finding an £-optimal policy and its cost function we define simple 

partitions, simple policies and piecewise (abbreviated, hereafter, by p.wJ lin­

ear functions. 

Definition 1. A partition {Vi}~=l of IT is called simple if each Vi is a 

convex polyhedral set, where a convex polyhedral set is the solution set of a 

finite system of linear inequalities, i.e., 

where v ij £ RN and V
ij

ll is the inner product of v
ij 

and 11. 

Remark 1: Inequalities of the form Vll < 0 contains those of the form VlI 

< a, a scalar. In fact VTI < a is equivalent to (v - (1)1I < O. 

Lemma 1. Let PI = {Vi} and P2 = {W
j

} be two simple partitions of IT. Then, 

the product partition PI • P2 = {Vi n W.} is again simple. . ] 

Proof: Here we omit Vi n Wj if Vi n Wj = cp. The sets Vi n Wi are 

disjoint and are convex polyhedral sets. Hence PI • P2 is simple. 

Definition 2. A stationary policy 0 is called simple with respect to a 

simple partition {Vi} if o(lI)=a
i 

on Vi' i=l, 2, ... , m. 

Definition 3. A real valued function f on IT is called piecewise linear 

if f(lI) = fill on Vi' i = 1, 2, .•. , m, where {Vi} is a simple partition and fi 

£ RN. 

Example: Define an information structure as a mapping from the set of 
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states (unobservable) of the core process to the set of distinctive signals 8. 

The decision maker chooses an information structure from the set of available 

structures and decides upon an action for the system. 

Let a = (al, a2) be the pair of actions, al for the system control and a2 

for information acquisition. More precisely, we have 

e 
a _ 'i' 'i' al 'i' a2 (' ) lIq -l.. 11, l.. P .. l..Y'eq 1., j, 8, ab a2 

i=l 1. j=l 1.J 8=1 J 

where q (i, j, e, ab a2) is the immediate cost of the core process when a state of 

the core process moves from i to j and a signal e observed under actions al for 

the system and a2 for the information structure, and 11= (111' •.• , 1IN) is the 

probability vector with an interpretation ~'i is the probability that the core 

process is in state i. 

Consider a machine maintenance and repair model (e.g., Smallwood and Son­

dik [8]) as an application of partially observable models. But this model is a 

modification of Smallwood and Sondik's. The machine consists of two internal 

components, The states of the core process Xn = i, i = 1, 2, 3, have the follow­

ing interpretation. If i = 1, then both components are broken down, if = 2 

either one is broken down and if i = 3 both of them are working. Assume that 

the machine produces M finished products at each period and the machine cannot 

be inspected. The actions al for the machine control are to repair and not to 

repair the machine. The actions a2 for information acquisition are the numbers 

of a sample to choose out of the M finished products. The signals e are the 

number of defective products in the sample, which forms the signal process 

{e , n= 1, 2, ... L The core process {X , n= 1, 2, ... } is the unknown states 
n n 

of the components of the machine. Let 11. =p{X =i}, i=l, 2, 3 and put 11 
1. n 

= (~l, 112, 113)' Then, the process {(X, e ), n=l, 2, ... } becomes a partially 
n n 

observable machine maintenance and repair model with actions a = (al, a2) and 

immediate cost lIqa. 

3. Finitely Transient Policies 

In this section a special class of simple stationary policies, called fi­

nitely transient, will be studied. The class of such policies has very 

attractive properties even though all stationary policies do not belong to such 

a class. 

Define, for a simple policy 0, 

5 
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(5) k I k - 1 D =Ubr: Th e, <5} ED }, k=l, 2, ... , 
e 

where DO = UD? = U{ 11 E IT : v .. 11= O} which forms the boundary set of the partition 
i ~ i, jlJ k km' 

{V.} corresponding to a simple policy <5. Let V = {V.}. 1 be the collections 
~ 1( k J J = 

of sets whose bounnaries 
o 

where V = {V. }. 

are U DL and then Vk is a refinement of V
k 

- 1, k :::'1, 
L=O 

J 

Definition 4. A simple policy f is called finitelb tr'ansient if there 

is an integer k < 00 such that 

k k 
T(v.le, a)CV (. e) for all.3 

J v J, 

where T (V le, a) = { T (11 le, 

ing T{ 11 le, <5} for 1IEV~ . 
J 

k 

a) : 1IEV} and v(j, e) is the index of the set contain­

Let k <5 be the smallest such integer. 

Lemma 2. D =4> for all k> k if and only if a is finitely transient with 
- is 

the index k 

Proof: Suppose that a is finitely transient with the index ka' that is, 

k. k 
T(v.Clle, a)CV (a. for all e. 

J v J, e) 

ka k 
D = 4> because T (V. a le, 6) is the se t of all possible state information at the 

J 
ko-th period and i'~ is open in IT for all, i, k. Let La be the set function 

defined as La(B) =uh: T(1I18, <5) E B} 
8 

D
k

=uh:T(1IIe, a)ED
k

-
l

} 
e 

= L<5(D
k

-
l

) 

k+l 
D = L (4)) = 4> 

<5 

Hence, by induction Dk = 4> for all k ~ ko . 

k 
Conversely, suppose that D = cp for all k> k and 

that 
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l'(v~1 e, 0) <tV~(j ,e) for some e • 

So, there exist rrl,rr2£V.
k 

such that for somee T(rr 1 Ie, 0) and T(rr 2 Ie, 0) do not 
]k 

belong to the same se t V\! (j, e) . 

Then, there is a constant A, O<A<1" such that A~T(rrlle, o)+(l-A~) 

T (rr 2 1 e, o)E;D
k 

and A~ is given by A~ = ArriQ::/rrQ:. A~T(rrll e, 0) + (1- A~)T(rr21 e, 0) 

=T(h 1 +(1-A)rr 2 18,6). By letting 'IT=A1[1 +(1-A)rr2 , T('lTle, O)£Dkwhich is 

a contradction. 
a

1 
a

2 
a k k 

Lemma 3. Let Qej Q
e2 

... Qek (Q~) and 0 be a zero row vector. A simple 

policy 5 is finitely transient if there exists an integer k< 00 such that 

Proof: 

a k 
V ij (Qe) > Q or < 0 for all 

Dk=U{rr:T(rrle,o)£Dk - l } 
e 

e, a, i, j 

a k 
=U U {rr:v .. (Qe) 'IT =O} 

e i, j l] 

k a k 
Since lTi'::'O and Li'lT i = 1, D = ~ if vij(Qe) > Q or 0 for all e, a, i, j By 

Lemma 2, this completes the proof. 

Remark 1. In Lemmas 2 and 3, the assumption concerning 0 being simple is 

crucial. A counter example is presented as follows: suppoese that there are 

only two states N=2 and 'lTL=1-rr2~O. 

Define, 

{

a if lT is rational 
o ('lTl) = j 1 

a otherwise 
2 

which is stationary but not simple. Then DO is the uncountable discontinuous 

set which never becomes empty. 

not exist. 

Therefore, a finitely many partition {V}. does 
l 

Theorem 2. Let 0 be a simple policy. Then, the following are equivalent. 

(i) 0 is finitely transient with the index k
o

' 

(K) C(lTlo) is piecewise linear. 

Proof of [(i) ->- (ii) 1: Suppose 

{V~} for k~ko' Let C(rrlo) = rra j 

that we have a finitelx many partition V
k 

.. k _ a j .i 
rr £ \i. and a. - q + S~ e a (. e) ] ] e \!], 

7 
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o 
=nqo+Sl:hrle, o} nQ e for alln e: Vk 

{nle, o} aV(j, e) j 

=nqo+Sl:hrle, o}T(nle, o)a (. e) for 0 finitely transient e v J, 

=nqo+Sl:{nle, ol"C(T(nle, 0)10) 
e 

Since C(·lo) is the unique solution of uo,c(·lo)=C(·lo). 

Proof of [(ii)+(i)] : From piecewise linearity of C(·lo) ,we have C(nlo) 

na for n e: V~ with the partition {V~} for k ~ k and 0 (n) = a., n e: v
k
J 
.. 

j J ~ J 

k 
for n e: V j . 

k k 
Then, we must have T(nle, 0) e:Vv(j, e) for alln e: Vj and all e. So 

T{v~le, o}Cvk( .. ') for all e. 
J v J, u 

Corollary: If a policy 0 is finitely transient with the simple partition 

{V
j
}, then its cost C(nlo) can be computed by solving the following equations; 

(6) 

and 

a. a. 
(7) aj=q J+B~QeJav(j, e)' j=l, 2, ... , m. 

The proof immediately follows from Theorem 1. Note that the set of equations 

(7) has a unique bounded solution (see Appendix) and that m need not be equal 

to the number of actions. 

4. Properties of Ua and U* 

This section is a study of the properties of U
a 

and U*. Most of these 

properties will be used later in the development of the algorithm to find e:­

optimal approximations to C* and 0* . 
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Partially Observable Markov Processes 9 

Let F be the space of real valued functions on IT with sup norm. Then F is a 

Banach space (B-space). Let IT be equipped with the Euclidean norm, and let C 

be the subset of continuous functions in F. Then C is a closed linear subspace 

(hence is itself a B-space) of F. Define operators U a' U* on F by 

(U*f)(1I)=min{ 1Iqa+ B E{eI1l, a}f(T(1IIe, a)}. 
ae:A ee:s 

Lerrma 4. (i) U
a

, U* are contraction mappings with contraction coeffici­

ent B. 
(:H.) U

a
, U* are monotone, Le., if f, ge:F with f~g, then U*f 

~ U*g and Uaf ~uag • 

(Di) They map C into itself, thus fixed points of these opera­

tors are continuous functions. 

Proof: The properties (i), (ii) are standard. (See [2], [6]). (:tIi) Ua 
clearly maps C into self. (U*f)(1I) is the minimum of finite number of continu­

ous, hence it is also continuous, provided f is continuous. 

From Lemma 4 we get some information on C* and 0*. 

Lerrma 5. The fixed point of U* exists and is the optimal cost function 

C*, which is continuous. 

Before stating our main results, we ne,ed two lemmas. 

Lemma 6. Let f be a piecewise linear function w.r.t.{Vi } on IT. Define a 

stationary policy of by U*f, namely, 0f(1I) = a i if a i minimizes (Uaf) (11). 

Then of is simple. 

Proof: Let {Vi} be the simple partition for f. Define 

Then for each a, e, {Vi (a, e)} is a simple partition. In fact Vi (a, e) is given 

by 

or equivalently, 
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where Vij characterizes Vi. Let {V~,e} be a simple partition defined by 

,n Vi(a, e) (see Lemma 1), then U f is linear on each V~ e 
~,e a ~, 

More precisely, 

where X a (IT) 

Vi,e 

a 1:: a 
(U/)(lT) = lTq +SeESlTQe ~XV~,e(lT)fi' 

{~ if IT E V~e, and fi is a vector defining f. 
otherwise. 

Since 0 is defined by minimizing finite number of piecewise linear functions, 

it is simple. 

Lemma 7. (i) If f is piecewise linear, then U*f is piecewise linear. 

(n) If f is concave, then U*f is also concave. 

Proof: Uaf has the same property as f's. By the definition of U*f, the 

desired results are obtained. 

Theorem 3. Let fa £ F, and define 

f (IT) = (U*f l)(lT). n n-

Let on be the decision rule at stage n defined by U*fn_
1 

(i) 

(n) 

(iil ) 

( :hr) 

f 
n 

If 

0 
n 

If 

If 

converges to C* 

fa is piecewise 

is simple. 

fa is concave, 

fl~fO' then f 
n 

linear, then so is f for any n. 
n 

then f is concave. 
n 

+ C*. If fl~fO' then f t C* • 
n 

Proof: The assertions follow from Lemmas 4, 5, 6 and 7. 

Furthermore, 

Remark 2. If we take fO(lT) =C(lTlo) for some stationary policy 0, then 

f + C* • In particular, if we take o(lT) = a for all IT, thus C(lTlo) fO(lT) = 
n a -1 a 

IT(I - BP) q, then fn is continuous concave and piecewise linear and fn + C*. 

Hence C* is continuous and concave. 

a Remark 3. Let fO(lT) = minlTq , then fa is piecewise linear, concave and 
aEA 

continuous. Hence (n) and (Di) hold. Since fn corresponds to the optimal 

cost for the n-period problem with discounting, this case is essentially equiv­

alent to the results in [91. If we further assume qa ~ 0 for any a E A, then 

fn t C* • 

Next we shall discuss the rate of convergence. 

Lemma 8. Let fEF. If Ilf - u*fll ~ (l-B)E, then Ilc*-fll ~ E. 
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~ s 11 C* - f 11 + I U*f - f 11 • 

After arranging, the result is obtained. 

Proof: Since we have 

the theorem follows directly from Lemma 8 .. 

stop. 

Remark 4. If we calculate I If 0 - u*fol I, then Theorem 4 tells us when to 

Furthermore, at each step n we knm~ from 11 f - U*f 11 how many steps 
n n 

(at most) we have to go after the step n. 

5. Algorithm 

Since IT is uncountable, it is far from trivial to calculate C(1TII) which 

may not be a piecewise linear funciton of 1T, except the case that I) is finitely 

transient. In this section we shall approximate C(1TII) by using the method of 

successive approximation. 

The method of successive approximation is a well known and popular method 

for solving equations. The method is to start with a cost function fa, and to 

iterate U*, constructing a sequence of cost functions fn U*fn_l , n = 1,2, ••• 

By Lemma 4, U* is a contraction mapping with fixed point C* and by Theorem 3, 

{f } converges to C*. By Theorem 4, n can be chosen sufficiently large, so 
n 

that fn is an ~-optimal cost function. In fact by taking logarithms of the 

expression in Theorem 4, 

is adequate. 

11 
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The next theorem provides a means of constructing an E-optimal policy 

from an E'-optimal cost function and specifies the relationship between E and 

E'. The algorithm will first construct an ELoptimal cost function. From this 

cost function, an E-optimal policy is constructed. 

Let fa be piecewise linear, and let on be defined by U*fn_l , i.e., 

0n(~) = a1 if a1 minimizes (Uafn_l ) (~). Then on is simple, and satisfies 

U*f
n

_
l 

= U
o 

f
n

_
l

, where Uo for a stationary policy 0 is defined by 
n 

(Uof)(~) =~qo(~) +(3E{el~, o(~)}f(T(~le, o(~») • 
e e: S 

Theorem 5. If 11 C* - f 11 < ~ E, then 11 C* - C ( 0 I 0 ) 11 ~ E. n-l - 2(3 n 

Proof: It is easy to show that U
o 

for any stationary policy 0 is a con­

traction mapping and that the fixed point is C(o lo),i.e., C(~lo) = UoC(olo)(~)o 

Consider 

11 C* - C (0 I 0 ) I I 
n Iluo C(olon) - u*c*11 

n 

~ Iluo C(olon) - Uo c*11 + Iluo C* - Uo fn_lll 
n n n n 

Here we used the equality U*f
n

_
l 

we obtain 

U
o 

fn_lo Rearranging the above inequality 
n 

Hence 11 C (0 I on) - C* 11 ~ E • 

If the state space is uncountable, or even countably infinite, then this 

procedure is difficult to implement on a computer. However, since the partially 

observable Markov decision process has the structure of piecewise linearity and 

fa is poW. linear, then each fn is p.w. linear and each on constructed as in 

the previous theorem is simple (by Lemma 6). In this case, the cost functions 

and policies can be specified by a finite number of items - the inequalities 

describing each cell of a simple partition and the corresponding action or 

linear function. 
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Algorithm to Find an E-optimal Simple Policy: 

(i) Start with any p.w. linear function fa 

(:ii) Compute f1 = U*f O. 

(~) Choose an integer n such that 

where E' (1- 8)£/26. I.e., choose ft larger than 

log [28//fo _ fl// l/log 6. 

(:hr) Compute fn = U*f
n

_
l 

successively until n = ft. 

(v) Consequently, we obtain fft such that 

II C* - fft II ~ E' . 

(~) Construct a policy 0 satisfying 

Then 0 is E-optimal. 

Remark 5. The algorithm can be started with fa = O. 

13 

Remark 6. The termination criterion, n = ft, in the algorithm has the 

advantage that Ilfo - flll is computed only once. However, it has the disadvan­

tage that fi will probably be larger than necessary, causing unnecessary 

iterations. 

An alternative would be to compute Ilf - fIll at each iteration and stop 
n n-

whenever Ilfn - fn_lll ~ (1-6)E'/8. Theorem 2 guarantees that fn is an e;'-
optimal cost function. However, the computations of Ilf - fIll will, in 

n n-
general, be expensive. 

The best procedure is undoubtedly to check I ~ - fIll at some, but not 
n n-

all, iterations. For example, fi might be computed based on I ~o - fIll. Then 

at some iteration n near ~2A, recompute n based on Ilf - f 1". 
n n-
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Partially Observable Markov Processes 

Appendix 

Lemma: The set of linear equations given by 

a. a. 
o.j q J + 8~ QeJo.V(j, e)' j 1, 2, ... , m, 

has a unique bounded solution. 

Proof: Let a. = j for each j. 
j J 

We may set Qeo.V(j, e) Q~ 0.. if v (j, e ) 
1 1 

i, i 1, 2, ... , m. 

Then we have 

Let 

0.1 I 
0. = ~J 

Hence, we obtain 

q 

1 
q 

m 
q 

and 

a = q + 8Qo., that is, 0. = (1 - SQ)-l q 

• 

-1 -1 Q1 Q2 

Q 

-m -m Q1 Q2 ..... 

where since 11801 I < 1 for 0 ~ 8 < 1 with the sup norm, there exists 

(1 - SQ)-l. 

15 

-1 
Qm 

-m Qm 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




