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Abstract This paper deals with a three-machine flow-shop problem in which some of the job sequences are in-

feasible. It is assumed that jobs are grouped into several disJoint subsets within which a job order is pre-determined. 

Once the first job in a group has started on a machine, then the entire group must be completed on the machine with­

out starting a job which does not belong to the group. It is further assumed that a precedence relation between groups 

is given such that the processing of the jobs in a group must be completed on each machine before the jobs in another 

group begin on the machine. It is shown that it suffices to consider only penmutation schedules for minimizmg the 

total elapsed time and then some restricted cases are solved. 

1. Introduction 

Johnson [41 considered the following problem (which will be called a 

three-machine n-job flow-shop problem). There are given jobs I, 2, ••. , n, 

each to be processed on three machines I, 11 and III in the same order I, 11, 

Ill. Each machine can handle only one job at a time and each job must be 

processed on only one machine at a time. Given the processing times on these 

machines, the problem is to find a job order for each machine so as to mini­

mize the total elapsed time necessary to process all these jobs. This problem 

was considered by many researchers. Johnson has shown that it is sufficient 

to consider only schedules in which the same job order occurs on three 

machines. Johnson [41, Arthanari et al. [1], Burns et al. [2], Szwarc [81 and 

Smith et al. (71 solved for some restricted cases. In all these papers, it is 

assumed that every permutation of n jobs is feasible. In most of the practi­

cal situations, however, certain orderings are prohibited either by technolog­

ical constraints or by externally imposed policy. Such situations may occur 
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232 T. Kurisu 

many times in everyday life: 

(a) If setup times are highly dependent on sequence, then one may group jobs 

with similar setups, sequence within these groups for minimum changeover 

time, and arrange the groups to minimize the total elapsed time. 

(b) If due-date is associated with each job, then it may be effective to 

process the jobs with earlier due-date before the jobs with later due­

date. 

(c) If there are jobs which should be re-processed after once they have been 

processed, then the first processing must be completed before the second 

one starts. 

The object of this paper is to obtain a schedule minimizing the total 

elapsed time subject to such general precedence constraints. 

2. Problem and Notation 

Consider a flow-shop consisting of n jobs 1, 2, ..• , n and three 

machines I, 11 and Ill. All jobs are to be processed on these machines 

according to the order I, 11, Ill. Each job can be processed at a time on a 

machine and each machine can process only one job at a time. Associated with 

each job i are processing times A., B. and C. on machines I, 11 and Ill, 
1- 1- 1-

respectively, and they are known prior to making scheduling decisions. 

An ordered set of jobs Ii = (8, t, ... , u) is called a string if and 

only if the jobs 8, t, ..• , u must be processed in that order, without pre­

emption between jobs, on each machine. Of course, there may be idle times, on 

machines 11 and Ill, between jobs in a string. However, once the first job in 

a string has started on a machine, then all jobs in the string must be pro­

cessed according to the fixed order to be completed on the machine without 

starting a job which does not belong to the string. We assume that the orig­

inal n jobs have been grouped into m strings 11 , 12 , '" , Im and we set X 

{Il , 12 , •.• ,I
m

}. Let n'i be the number of jobs in the string Ii and let 

A . . , B •• and C .. be the processing times on machines I, 11 and Ill, respec-
1-J 1-J 1-J 

tively, for the j-th job in the string I. (A .. , B .. and C •• are equal to A
k

, 
1- 1-J 1-J ~J 

Bk and Ck' respectively, for some k). We further assume that a precedence 

relation ">" on X is given such that if I. > I., then the processing of jobs 
1- J 

in t. must be completed on each machine before the jobs in I. start on the 
~ J 

machine. If t. > t. and if there is no string, I
k

, such that I. > Ik > l., 
~ J 1- J 

then we denote by Ii »Ij • It is convenient to illustrate these relation-
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ships on a precedence graph such as G* = (X, U) indicated in Fig. 1, where U 

denotes the set of arrows. The nodes of the graph represent the strings and 

the arrows represent "directly precedes" relationships between the strings. 

The precedes relationship exists between t'No strings if there is a path of 

arrows between them. 

and 

Fig. 1. Precedence graph G* 

Fot" a precedence graph G = (X, U), we set 

P(I i , G) 

Q(r., G) 
1.. 

{I. £ X 
J 

{I. £ X 
J 

I
j 

» I
i

}, 

Ii » I j }, 

peG) = {r. £ X 
1.. 

p(r., G) = cp} 
1.. 

Q(G) = {I. £ X I Q(I., G) = cp}. 
1.. 1.. 

peG) and Q(G) denote the sets of strings which can be sequenced first and 

last, respectively, in a feasible schedule. 

In the following, we develop algorithms to produce a schedule which mini­

mizes the total elapsed time for the three-machine flow-shop problem with 

precedence constraints represented by a precedence graph G. 

3. Permutation Schedules 

Much of the simplicity of the two-machine flow-shop problem can be 

attributed to the fact that it is sufficient to consider only permutation 

schedules, which are completely described by a particular permutation of the 

job identification numbers. Johnson has shown that it suffices to consider 

only permutation schedules, for three-machine flow-shop problems, when all 

jobs are simultaneously available. This is generalized by the following 

theorem: 
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234 T. Kurisu 

Theorem. In a three-machine flow-shop problem, for minimizing the total 

elapsed time subject to precedence constraints, it suffices to consider only 

schedules in which the same string order is prescribed on machines I, 11 and 

Ill. 

Proof: (i) If a feasible schedule IT' does not have the same string order 

on machines I and 11, then somewhere in the schedule for machine I there must 

be a string Ii that is ordered directly before a string Ij 
possibly with intervening strings on machine 11. Since I. 

J 
I. on machine 11 in IT', the positions of these two strings 

'Z-

where I. follows I. 
'Z- J 

is ordered before 

can be reversed on 

machine I without yielding the infeasibility of the schedule. Furthermore, 

this exchange does not cause an increase in the starting time of any job on 

machine 11, and therefore on machine Ill. Thus, this exchange does not cause 

an increase in the completion time of any job, and hence, not an increase in 

the total elapsed time. Therefore, we may consider only schedules in which 

the same string order occurs on machines I and 11. (ii) Suppose that a feasi-

I. 
'l-

machine I p///////V/7d 

I. 
J 

I. 
'Z-

machine 11 ~ W/jV7//?/1 

Fig. 2. Schedule IT' 

ble schedule does not have the same string order on machines 11 and Ill. Then 

somewhere in the schedule for machine III there must be a string I. that 
'Z-

directly follows a string I., where I. is ordered before I. on machine 11. 
J 'Z- J 

Obviously, the positions of these two strings can be reversed on machine III 

without increasing the maximum completion time of the jobs in these strings, 

and hence, the total elapsed time is not increased by the exchange. Since I. 
'Z-

is ordered before I. on machine 11, the exchanged schedule is feasible for the 
J 

precedence constraints. This terminates our proof. 

We denote by T(S) the total elapsed time for a sequence S. Furthermore, 

we represent the job sequenced in the i-th position in S by [i) and the string 

sequenced in the i-th position in S by I(i)' Thus, for the three-machine 

case, T(S) is denoted as follows (see Johnson [4]): 

(1) T(S) 
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4. Some Special Cases 

Prior to discussion 

machine n-job flow-shop 

machine I and let B~ be 
1-

on three-machine problems, we briefly review two­

problem. Let A '. he the processing time for job i on 
1-

the corresponding time on machine 11. As in the 

three-machine case, we assume that each job can be processed at most on a 

machine at a time and that each machine can handle only one job at a time. 

Then the total elapsed time T(S) from the start of the first job on machine I 

until the completion of the last job on machine 11 is represented by 

u n 
(2) T(S) max { L A[.] + ): B[i]}' 

l;;p;;p i=l 1- 1-=U 

For the two-machine flow-shop problem with precedence constraints, the author 

developed in [5, 6] an efficient algorithm to produce a sequence minimizing 

the total elapsed time. Now, we treat three-machine flow-shop problems with 

precedence constraints. 

Case 1: min A. > max B .• 
i 1- = i 1-

Then 

for all i and j, 

and hence, the maximum value in (1) is attained by setting u 

Therefore, 

T(S) 

n 
Since L B. is a constant, we may get a sequence minimizing 

i=l 1-

(3) T*(S) 

v for each v. 

Comparing (2) and (3), it is seen that case 1 has a two-machine n-job struc­

ture. Thus, to solve the three-machine flow-shop problem with precedence con­

straints, we can use the technique for getting an optimal sequence for the 

two-machine problem with the precedence constraints, assuming that the pro­

cessing times of job i on machines I and 11 are A. + B. and B. + C., respec-
1- 1- 1- 1-

tively. The total elapsed time T(S) for the three-machine problem is 
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n 
T(S) = T*(S) - LB., 

i=l t-

T. Kurisu 

where T*(S) defined by (3) denotes the total elapsed time of the sequence S 

for the equivalent two-machine problem. 

Example 1. Consider nine strings with the precedence graph G* as was 

indicated in Fig. L We assume that each string I. consists of a job i and 
t-

that the processing times of these jobs are given in Table 1. Since 

min A. 6 = max B., we are justified in applying the method described above. 
i t- • t-

t-

Table 1. Processing times for Example 1 

i 1 2 3 4 5 6 7 8 9 

A. 6 8 8 7 7 10 8 9 6 
t-

B. 3 4 2 6 6 3 4 2 5 
t-

C. 3 7 9 10 9 9 5 10 2 
t-

Table 2. Processing times for equivalent two-machine problem 

i 1 2 3 4 5 6 7 8 9 

A. + B. 9 12 10 13 13 13 12 11 11 
t- t-

B. + C. 6 11 11 16 15 12 9 12 7 
t- t-

The processing times for the equivalent two-machine problem are shown in Table 

2. Applying the algorithm in [6], we get three candidate sequences 

SI (3, 1, 4, 2, 5, 6, 8, 7, 9) , 

S2 (3, 6, 2, 1, 5, 8, 4, 7. 9) 

and 

S3 = (3, 2, 1, 5, 4, 6, 8, 7, 9). 

For the equivalent two-machine problem, the total elapsed times of these 

sequences are as follows: 

Thus, SI is an optimal sequence and the total elapsed time of this sequence is 

79 time units for the original three-machine problem. 

Case 2: min C. > max B .. 
i t-=i t-
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Then the maximum value in (1) is attained by setting V u for each u. Thus, 

u n 
T(S) max { L A [ .] + B [u] + .L C [i) } 

l~u~n i=l '/.. '/..=u 

u n 
max {~ __ Ll(A[i] + B[i) + .L (B[i] + C[i)}' 
l~u~n ... '/..=u 

n 
LB .• 

i=l '/.. 

Therefore, we can obtain an optimal sequence by the similar method as in case 

1. 

Case 3: 

Then 

max A. 
i 1. 

< min 

A. < B. 
'/.. = J 

i 
B .• 

'/.. 

for all i and j, 

and hence, the maximum value in (1) is attained by setting U = 1 for each v. 
Therefore, we have 

where 

and 

V nfl) 
max {L B(1) . +. C(l) J 

l<v<n J"=lJ J=v J = = (1) 
= A(1)1 + max 

n(l) 

T' (I .) 
'/.. 

L B[.] 
i=l '/.. 

+ max 
n(l)+1~v~n 

n. 
V '/.. 

max {L B. "+ L C .. } 
l~v~ni j=l '/..J j=v '/..J 

Obviously, TI(S) denotes the total elapsed time of the sequence (1(2)' 1(3)' 

•.. , I( » for the two-machine problem with the processing times B. and C., 
m J J 

for job j, on machines I and 11, respectively. The string sequenced in the 

first position must be an element in peG) and TI(S) must be minimized subject 

to precedence constraints. Noticing that TI(S) is minimized by using the 
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procedure proposed by the author in [6], we obtain the following algorithm to 

produce an optimal sequence for the three-machine problem with a precedence 

graph G (X, u): 

Algorithm 1-

Step 1. For each string Ii in p(G), eliminate from G the string Ii and the 

arrows starting from Ii' and let the resultant graph Gi . 

Step 2. Assuming that the processing times, for job j, on machines I and 11 

are B. and C., respectively, obtain an optimal sequence for the two-
J J 

machine problem with the precedence graph Gi. Let Si be an optimal 

sequence and let T
1

(Si) be the total elapsed time of the sequence for 

the two-machine problem. 

Step 3. Calculate 

v 
D. = A'

l 
+ max{ max (2 B .. 

-z.. -z.. 1.;,v:;,ni j=l -z..J 

Step 4. Find 

D. min D .• 
-z..O I.£P(G)-z.. 

-z.. 

n. 
-z.. 

+ 2 C •• ) 
j=v -z..J 

+ 2 c., 
jiI. J 

-z.. 

Then an optimal sequence for the original three-machine problem with 

the precedence graph G is given by (I. , S.). The total elapsed 
-z..o -z..o 

time of the sequence is D •• 
-z..o 

Example 2. As in Example 1, we assume that each string in G* shown in 

Fig. 1 consists of a job. The processing times of these jobs are given in 

Table 3. Since max A. = 6 min B., we are justified in applying the method 
i -z.. i-z.. 

mentioned above. An optimal sequence is obtained as follows: 

Table 3. Processing times for Example 2 

i 1 2 3 4 5 6 7 8 9 

A. -z.. 3 4 2 6 6 3 4 2 5 

B. 6 8 8 7 7 10 8 9 6 -z.. 

C. 3 7 9 10 9 9 5 10 2 
-z.. 

Step 1- We get three precedence graphs G1 , G2 and G
3 

as indicated in Figs. 

4 and 5, respectively. (In these figures, Bi is shown above the 

3, 

description of job i and C. is shown below the description of job i.) 
-z.. 
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9 9 2 

Fig. 3. Precedence graph G
1 

9 9 2 

Fig. 4. Precedence graph G
2 

Fig. S. Precedence graph G
3 

Step 2. From (;1' we get one candidate sequence (and hence, an optimal 
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sequence for G
l

) 

SI = (4, 3, 2, 5, 6, 8, 7, 9). 

For the two-machine problem, the total elapsed time of this sequence 

is 68 time units, i.e., Tl(Sl) 

sequences 

S2 = (3, 1, 4, 5, 6, 8, 7, 9) 

and 

S2 = (3, 1, 5, 4, 6, 8, 7, 9). 

68. From G2 , we get two candidate 

The total elapsed time of these sequences is 66 time units, i.e., 

Tl (S2) = Tl (S2) 66. Furthermore, we get. from G
3

, two candidate 

sequences 

S3 = (1, 4, 2, 5, 6, 8, 7, 9) 

and 

S; = (2,1,5,4,6,8,7,9). 

The total elapsed times of sequences S3 and s; are 65 and 66, respec­

tively. Thus, S3 is an optimal sequence for the problem with preced­

ence graph G
3

. 

Step 3. We have 

9 
Dl = 3 + max{6 + L C., 

i=l 1-

and 

Step 4. Since 

D3 

9 
4 + max{8 + I c., 

i=l 1-

9 
2 + max {8 + L C., 

i=l 1-

min D., 
!.E:P(G) 1-

1-

77, 

78 

75. 

(3, 1, 4, 2, 5, 6, 8, 7, 9) is optimal for the original three-machine 

problem. The total elapsed time of this sequence is 75 time units. 

Case 4: max C. < min B .. 
i 1- i 1-

Then the maximum value in (1) is attained by setting v 

fore, we have 

u n 
T(S) = max ( I A[.] + .I B[i) + c[n)} 

l~u~n i=l 1- 1-=U 

n for each u. There-
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u n' n 
max {L A[.] + .:=LuB,·.i]} + I Br']' 
l~u~n' i=l t. v i=n'+l t. 

+ C 
mn(m) 

n(m) 

+ .I B(m)'} 
J=U J 

I 
max{T2 (S) + LB., 

• I 1.-
T" (I ( I ) )} + C , r mn(m) 

n' 

T"(I) 

H (m) 

u 
max {L A .. 

l;;jA.~ni j=l 1.-J 

n. 
1.-

+ LB .. }. 
j=u 1.-J 

241 

Obviously, T2 (S) denotes the total elapsed time of the sequence (1(1)' 1(2)' 

•.. ,1( 1» for the two-machine problem with the processing times A. and B., 
m- J J 

for job j, on machines I and n, respectively. The string which is sequenced 

in the last position must be an element in Q(G). Hence, we develop the fol­

lowing algorithm to produce an optimal sequence for the three-machine problem 

with a precedence graph G = (X, U): 

Algorithm 2. 

Step 1. 

Step 2. 

For each I. in Q(G), eliminate, from G, the string I. and the arrows 
t. t. 

terminating at 1i' and let the resultant graph Gi • 

Assuming that the processing times, for job j, on machines I and 11 

are A. and B., respectively, obtain an optimal sequence for the two-
.7 J 

machine problem with the precedence graph Gi . Let Si be an optimal 

sequence and let T2(Si) be the total elapsed time of the sequence for 

the two-machine problem. 

Step 3. C~lcu1ate 

E. = max{T2(S.) + LB., 
1.- 1.- jE1. J 

Step 4. Find 

E. min E .• 
1.-0 I.EQ(G) 1.-

1.-

1.-

v 
L A.+ max (LA .. 

#1. J l<v<n. j=l 1.-J 
t· = = 1.-

n. 
1.-

+ L B .. )} 
j=v 1.-J 

+ C. tn. 
1.-
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242 T. Kurisu 

Then (S. , I. ) is an optimal sequence for the three-machine problem 
'Z-o 'Z-o 

with the precedence graph G. The total elapsed time of this sequence 

is E •• 
'Z-o 
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