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Abstract Planners of urban traffic or transportation systems treat with their own network models of urban road 

networks constructed based on their objectives. Usually, those models seem to be determined empirically, and it may 

not be clear if the planners' objectives are reflected on them or not. This paper presents (i) a formulation of a network 

modeling problem for urban road networks as a combinatorial optimization problem, (ii) its solution algorithm based 

on implicit enumeration, (iii) its extensions for some restricted conditions, (iv) some suboptimal techniques for large­

scale networks, and (v) some practical examples from vehicle traffic network planning of Tokyo and Nagoya city areas. 

By the presented algorithm, the planners can obtain network models of appropriate size which are "optimal" in the 

sense that they reflect best the planners' objectives. From the results of examples, it is verified that the presented al­

gorithm, its extensions and SUboptimal techniques provide an effective procedure for network modeling problems, 

which is applicable for practical use. 

1_ Introduction 

Planners or designers of urban traffic or transportation planning usually 

deal with thei r own network models of urban road networks. For any proj ect, 

some working model of appropriate size would be constructed based on the 

planner's objective_ However, as the original road network is usually quite 

large and complex, it is not likely that definite models reflecting both of 

the planner's objective and the characteristics of the given original network 

can be easily determined in a reasonable way. Also, there exist similar 
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cases as above, which may frequently occur in some other urban planning pro­

jects, e.g., energy or water supply systems. Thus, it is desirable for the 

planners of urban systems that some practical algorithms to find reasonable 

models of urban road networks are available. 

The purpose of this paper is to establish an algorithm for constructing 

models of urban road networks and verify its adequacy. 

The outline of development of the algorithm is as follows. A given 

original urban road network is considered as a finite directed graph. It is 

supposed that, from the obj ecti ve of mode ling, some I degree of importance I re­

lated to the objective is attached to each road, which is interpreted as a 

weight of each edge in the corresponding graph. It may be computed from social 

states of each road such as regional and traffic characteristics. An optimal 

model is selected as a strongly connected sub graph of the original graph in­

cluding some restricted number of edges such that the sum of the weights of 

edges contained in the sub graph is the largest. Strong connectedness is 

supposed to be the most fl.Uldamental condition satisfied by the graphs corres­

ponding to models of urbml road networks. Other conditions may be added later 

to the models satisfying the above basic restrictions. 

Thus, the problem cml be formulated as a combinatorial selection of an 

optimal subset of edges from the original graph under some conditions. An 

algori thm based on implicit enumeration is developed for solving those problems 

wi th some extensions. Several heuristic algori thms for finding suboptimal 

models of large-scale networks are also given. For all the algorithms are 

provided practical examples including modeling of vehicle traffic networks of 

Tokyo and Nagoya city areas. 

Some aggregation techniques for networks have been known so far [5]. 

However, they usually provide aggregated models, and do not generate physically 

meaningful ones. Our models must be parts of the original networks for 

practical use. So far as the author knows, the works on such modeling technique 

as above have been scarcely known. 

2. Formulation 

First, it is supposed that an urban road network is given and it is 

identified with a finite directed graph G=(V,A) where V is a finite set of 

nodes and A is a finite set of edges, i. e., A~{( v. ,v.) I v. ,v .E:V}. A node and an 
~ ] ~ ] 

edge of G represent an intersection and a (directed) link of the road network, 
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respectively. CA directed graph is necessary because of possibility of the 

existence of an one-way link and the situation that only one direction of a 

link is important for the planner's objective). 
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Also it is supposed that no isolated node exists in G for simplicity, and 

the elements of A are numbered as 1,2,"·,n. Furthermore, it is assumed that 

c i ' the weight of each iSA, has already been determined as a nonnegative real 

number. For instance, let si=(Sil""'Sik) be the nonnegative 'social state 

vector' of iSA representing social states of i, e.g., sil=traffic vOlume/day 

of i, si2=population of the area around i, si3=number of manufacturers located 

around i, etc.. Let a be a k-dimensional nonnegative weighting coefficient 

vector determined based on the planner's objective. Then, for any iEA, the 
·T 

weight of i can be defined as c.=as~ , where the superscript T denotes trans­
~ 

position. The weights of edges determined in this way may represent degrees of 

importance of links for the planner. 

The size of the model should be given by the planner. Hence, r, the least 

upper bound of the number of edges included in the model, is supposed to be 

given in advance. Then, our problem may be formulated as finding a subgraph of 

G which includes no more than r edges and the sum of whose edge weights is 

maximum under some conditions representing the model characteristics considered 

below. Without a suitable condition, the problem becomes trivial since the 

edges having r largest weights must be selected. 

As a fundamental condition, assume that the obtained subgraph must 

be strongly connected, which is defined as follows: 

Definition. Let G=(V,A) be a finite directed graph where V and A are the 

sets of nodes and edges, respectively. G is said to be strongly connected if 

and only if, for any v.,V.EV such that v."fv., (v.,v.)SA 
~J .1J ~J 

or there exist v
k 

, ... ,. 

I 
v

k 
EV (m::"l) satisfying (vi,v

k 
),(vk ,vk )'''.,(v

k 
,v

k 
),(v

k 
,V

j
) EA, 

. m I 1.2 m-I m m 
~s, Vj is attainable from Vi' 

that 

The above condition that models must satisfy is intuitive, however, it 

clearly represents one of general properties that models of urban road networks 

must possess. 

Now OUT basic modeling problem can be formulated as follows: 
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(P) 

n 
maximize l: c.y. 

i=l ~ ~ 

subject to 

Y. Anzai 

n 
I: y.~ 

i='l ~ 
yi=O or 1, i=l,"',n 

subgraph of G defined by edges in 

{j !iEA, y.=l} is strongly connected. 
~ 

Let wi""'y~) be an optimal solution of (P). Then, the subgraph con­

structed with uliEA, y~=l} corresponds to an optimal model pursued by the 
~ 

planner. 

3. Algorithm 

A combinatorial algorithm is necessary for solving (P). Our algorithm is 

based on implicit enumeration. Basic idea of implicit enumeration can be found 

in [1, 3, 4] but ours is developed specifically for solving (n. 
Schematically, strong c:onnectedness of subgraphs having ~xactly r edges 

is decided first with some specified order of the sum of the edge weights. If 

some subgraph is strongly connected or if the sum is not larger than that of 

the best feasible subgraph obtained earlier, turn to subgraphs with r-l edges 

and repeat. Some machinaries make the algorithm be an effective one. 

Renumber the edges of D 50 that cl~2;;:"" '~n holds. Denote by (i,j,k, 

t,"') the subgraph of G consisting of edges i,j,k,t,···EA. Then, the detailed 

stepwise procedure is shown below: 

o Step 1. (Initialization) Set p=r, z =_00, and (il,"',i )=(l,··.,r). 
p p 

Step 2. (Fathoming) If z='.~ cij':;;;Zo, (i) if (il,···,ip)=(l,···,p), let p=l 

and go to Step 6, and (ii) d-til,· .. ,ip);t!(l,···,P)' go to Step 5 since all 

(i' ••• i') such that i'hi for all k=l ••. P have been implicitly searched. l' , p kr-k " 
If z>zo, go to Step 3. 

Step 3. (Feasibility check) Decide whether (i l ,'" ,i
p

) is strongly connected 

by the algorithm for strong connectedness test described below. If it is 
o strongly connected, let z =z and go to Step 5 since all (i i"" ,i~) such that 

i'>'; for all k=l •.• ,p have been implicitly searched. Otherwise, go to Step 
k-k ' 

4. 

Step 4. (Generation) Construct the succeeding sub graph by the subgraph 

generation ordering rule: 
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Suppose that the preceeding subgraph is (i I' , .•. i ') . If L' <;n, 
p p 

then (il""'i'+l) is generated. Else ifi' l<n-l, then 
p p-

(il',"',i' l+l,i' 1+2) is generated. Else if i' 2<n-2, then p- p- p-
(i' .,. ,i' +1 i' +2 i' +3) is generated. Else if .•. , else 

l' p-2' P-2 'p-2 
if i' <n-l'l, then (il',···,i' +l, .•• ,i' +m+l) is generated. 

p-m p-m p-m 
Else if.. ,elseif i Z < n-p+2, then (ii ,iZ+l,··· ,iZ+p-l) is 

generated. Else if ii< n-p+l, then (ii+l,ii+2,~ .. ,ii+p) is 
generated. Else no succeeding subgraph exists.' 

Let the generated succeeding subgraph be (i
l
,··· ,ip) if it exists, and go 

to Step 2. If it does not exist, all the subgraphs having p edges have been 

searched, and go to Step 6. 
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Step S. (Backtracking) Find the maximal jE{I,···,p-l} such that there exists 

a subgraph (i i , ... ,i . I' *, *,' .• , *) which has not yet been searched, where * 
l' 2 ]+ 

implies any edge such that the subgraph can be generated by the subgraph 

generation ordering rule in Step 4. If such j exists, denote it as j*, let 

(il,···,i )=(il,···,i.* l'i.*+I,i.*+2,"·'i.*+(P-j*+I)) and go to Step 2. If 
p ]- ] J J 

it does not exist, all the subgraphs having p edges have been searched, and 

go to Step 6. 

Step 6 (Termination) If p=l, stop. The problem is infeasible if o z =_00. 

If zO>_co, a subgraph providing zO is optimal. If p>l, let p=p-l, (i
l
,···, 

i )=(l,"·,p) and go to Step 2. 
p 

<Algorithm for strong connectedness test> 

Let G' = (v' ,A') be the subgraph considered in Step 3, where v' and A' 

are the sets of nodes and edges of G', respectively. For any V.EV', let 
J 

SVj= {vkl VkEV' ,(Vj,Vk)EA'} 

Step a. If there exists 

and Tv/ {vkl vk;EV', (Vk,V
j

) EA ,}. 

V.EV' such that Sv =<j:J or T =<j:J, ] . v· 
Otherwise, let vo=v' and go to siep b. J 

G' is not strongly 

connected. 

Step b. If vO=<j:J, G is strongly connected. If VOf<j:J, select any ViEVo and 

let P={v.}, Q=<j:J and vO=VO_{v.}. 
~ ~ 

Step c. Let Q=PUQ. If Q=v', go to Step b. Otherwise, go to Step d. 

Step d. Select any v.EP, and let P=(P-(v.})U(Sv -Cs OQ)). If P=<j:J, G is not 
J J j Vj 

strongly connected. If pf<j:J, go to Step c. 

t For example, suppose that n=9, 
i p_l"n-l(=8) and i' 2(=4) <;n-2(=7). 
subgraph is (2S67)?-

p=4 and (i 1,···,i4)=(2489). Then i'=n(=9), 
Hence, by the rule, the succeeding p 
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It is easily seen that, when a subgraph G' having p-q edges appears on 

the way of the strong connectedness test, any subgraph obtained by adding any 

q edges of G to G' is not strongly connected if the number of nodes v. satis-
] 

fying SVj=~ (or similarly TVj=~) is not less than q+l. Furthermore, it can be 

readily seen that, for a graph G', only the case q+l~ p-q, i.e., q«p-l)/2 is 

necessary to be considered. 

The above algorithm for strong connectedness test is quite efficient 

as it is purely combinatorial. Since it plays a decisive role in the main 

procedure, its efficiency is critical for our algorithm. 

<Illustrative example> 

A small example is illustrated in Figs. 1 and 2 to show the mechanism of 

the above procedure. 

Consider a directed graph G having 9 weighted edges shown in Fig. I-a. 

The modeling problem (P) corresponding to it is formulated as follows, where 

the planner is supposed to obtain an optimal model with no more than 4 edges: 

maximize 5Yl+2Y2+~Y3+8Y4+3Y5+5Y6+4Y7+3Y8+6Y9 

subject to ~ Y.~ 4 
i=l ~ 

yi=O or 1, i=1,···,9 

subgraph of G defined by U liE:A, y.=l} is 
~ 

strongly connected. 

First, the edges of G are renumbpred with decreasing order of weights as 

shown in Fig.l-b. Let z(i ... ,i)= .~lci. where Ci. is the weight of the edge 
l' p J= ] ] 

Then, the algorithm proceeds as follows: i .. 
7 

Iteration 1. Let p=4 and zo=_oo. Then, z(1,2,3,4» zoo (1,2,3,x) can not be 

strongly connected for any x€{4,··· ,9}. (See Fig.2-a.) 

Iteration 2. z(1,2,4,5» zoo 

x€.{5,··· ,9}. (See Fig.2-b.) 

(1,2,4,x) can not be strongly connected for any 

Iteration 3. z(1,2,5,6» :~o. (1,2,5,6) is not strongly connected. (See 

Fig.2-c.) 

Iterations 4 - 9. (1,2,5,7), (1,2,5,8), (1,2,5,9), (1,2,6,x) (x€.{7,8,9}), 

(1,3,7,x) (x€.{8,9}), and (1,3,8,9) are not strongly connected. zO is unchanged. 

Iteration 10. z(1,4,5,6» zoo (1,4,5,6) is strongly connected. (see Fig. 

2-d.) Let zO=z(1,4,5,6)=20. 

Iteration 11. z(2,3,4,5)=20( zoo 

Iteration 12. Let p=3. z(1,2,3)=19< zoo Hence, the procedure stops. The ob­

tained optimal subgraph is (1,4,5,6), which is shown in Fig.2-e. 
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weight 
edge ~ 

~1(5) 

a. Graph G=(V,A) 

4(8) A={1.· . " 9} 

6(5) 

8(3) 

b. Graph with 
renumbered edges 

Fig. 1 Graphs for illustrative example --

a. original directed graph G with weighted 

edg~s, and, b. graph with renumbered edges. 
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Fig. 2 Sub graphs appearing in iterations for 

illustrative example 
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The above algorithm terminates in a finite number of iterations, and 

provides an optimal solution of (P) if it exists and shows infeasibility of (P) 

if it does not exist. 

Thus, the algorithm can be used for finding an exact optimal model of an 

original network in the sense of (P). It might need substantial computation 

time for large-scale or ill-conditioned networks. However. from the author's 

experience, it seems that usually there exist sufficiently good suboptimal 

solutions having exactly r edges if spatially correlated networks such as 

urban road networks are treated. Hence, in those cases. the procedure can be 

made terminate as soon as it falls into Step 6, which makes our procedure quite 

practical. 

4. Computational Examples 

First. the relation between r and computation time necessary for 

finding an optimal subgraph having r edges is shown in Fig. 3 for an original 
t network with 38 edges whose weights are randomly generated. It shows that an 

exact optimal solution of ep) can be detected in an admissible time for small­

scale networks. Note that the figure in Fig.3 is not symmetric. It is be­

cause a strongly connected subgraph may be obtained more easily if r/n>I/2 

where n is the number of edges included in the original network. 

Next. an example from the urban vehicle traffic network mode ling of the 

south-eastern part of Tokyo is given. The directed graph with 38 edges corres­

ponding to the original network is shown in Fig.4. Edge weights are defined 

from social state vectors as explained in Section 2. That is. the vehicle 

traffic state vector for the link i is de, fined as si= (s i1' s i2), where s i1 = 

passenger vehicle traffic volume/day of i and s'2=freight vehicle traffic 

volume/day of _i. Three weighting coefficient v~ctors, }=(I,O) and a 2=(O,l) 

t The programs were coded in FORTRAN, and run on FACOM 230-455 for all the 
examples presented in this paper. Computation time was formally recorded only 
for the example in Fig.3, for the other examples were served for practical 
purposes and their computation times were sufficiently small to consider 
seriously at that time. Roughly, they are the same as or less than the time 
for the example in Fig.3 for the networks of similar sizes, though they depend 
on the input data to some extent. 
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Fig. 3 Relation between number of edges in the model 

and computation time (FACOM 230-45S) necessary 

for obtaining it for a graph including 38 edges 

with randomly generated weights. 
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Fig. 4 Original graph with 38 edges corres­

ponding to vehicle traffic network of 

the south-eastern part of Tokyo. 
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3 k .T 
and a =(1.1), are used to define the weights, c.=a s~ • k=1.2,3, and, 

~ 

corresponding to them, three problems of the type (P) are defined. 

Optimal models with 28 links obtained by the presented algorithm are 

shown in Figs.5-a. 5-b, and 5-c. Note that three different patterns have been 

generated. This fact implies that it may be necessary to change network models 

properly when the objectives of urban vehicle traffic network planning are 

altered. 

5. Some Extensions with Examples 

Here. it is shown that some restrictions which the planner may want to 

make satisfy can be easily attached to the presented algorithm. 

5.1. Modeling of undirected networks 

In Fig.5-a. only one direction of some of the principal streets was 

adopted as a link of the model. For such cases that that situation is not 

natural. the algorithm can be extended straightforward to undirected networks. 

Construction of macro-models is a typical case. For undirected networks, 

connectedness is used in place of strong connectedness in the formulation and 

algorithm. (The definition of connectedness is similar to that of strong 

connectedness, and omitted here.) Since an undirected graph is connected if, 

from any fixed node. every node is attainable. the procedure becomes even 

simpler than that for directed graphs. 

An example from the urban vehicle traffic network of the -south-eastern 

part of Tokyo is shown in Fig.6. Total(=passenger+freight) vehicle traffic 

volume/day is taken as the edge weight. The original undirected graph contains 

39 edges, while the obtained subgraph has 25 edges. 

5.2. Modeling with unremovab1e edges 

The case that the planner wants to include some specified roads in the 

model may frequently occur. It can be solved by the presented algorithm. 

Let {y. , •••• y. } be the variables of (P) corresponding to the edges 
~l ~n-r' 

other than unremovable ones, where r' is the number of unremovable edges. 

Then. consider the problem: 
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n-r' 
I: c. y. 

j=l ~j ~j 
subject to 

n-r' 
I: y.~r-rt 

j=l ~j 

sub graph defined by unremovable edges 

and edges in {i .Il~ j< n-r', y. =1} is 
] ~. 

strongly connected. ] 
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(pt) can be solved by the presented algorithm if its strong connectedness 

test is modified so that unremovable edges should always be contained in sub­

graphs considered. 

An example from the total vehicle traffic network modeling of the south­

eastern part of Tokyo (the original network is the same as that in Fig.4) is 

shown in Fig.7-a, where 20 edges are taken in the model and two edges 

corresponding to Tamazutsumi av. are chosen as unremovable edges. If no 

unremovable edge existed, the model would have been as shown in Fig.7-b. 

5.3 Modeling with unremovable nodes 

Also the case that the planner wants to include some specified places or 

intersections in the model may frequently occur. This case can readily be 

imputed to a problem of modeling with unremovable edges by adding a self loop 

to each unremovable node, that is, by mOdifying A, the set of edges, as 

AU{(v.,v.)lv. is an unremovable node}, and regarding those self loops as 
~ ~ ~ 

unremovable edges. 

An example from the same situation as that of 5.2 is shown in Fig.7-c, 

where a node corresponding to Otorii intersection is considered as an un­

removable node. Note that the result is different from the graph in Fig.7-b 

in which no unremovable node exists. 

5.1, 5.2 and 5.3 described above can be used together. Also some other 

similar restrictions as 5.2 and 5.3 can be attached to the presented algorithm, 

though they are omitted here. 

6. Suboptimal Algorithms for Large-scale Networks 

Though exact optimal models can be obtained by the presented algorithm, 

its effectiveness depends on the structures of original networks. If the 

edges of an original network are strongly correlated as the usual urban road 

networks are, the algorithm may work effectively. However, if networks with 
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Fig 5. Optimal subgraphs all with 28 edges extracted from original graph with 38 edges 

(Fig. 4) for urban vehicle traffic network modeling of the south-eastern part of Tokyo. 

'" ..... 
'" 

~ 
~ 
;:s 

f1. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



or ig i nal graph 0---0 &. 0- - -.() 

optimal subgraph 0--0 

bb 

Intersections 

14. Seishoko-mae 

15. Otori Shrine 

16. Meguro Post Office 

17. Kakinoki-zaka 

18. Nakane 

19. Todoroki-fudo-mae 

20. Todoroki 2-chome 

21. Hiratsuka Bridge 

22. Senzoku-south 

23. Gas Bridge 

24. Chofu-east Police Station 

25. Maruko Bridge 

26. Shimo-maruko 

Fig. 6 Original graph with 39 edges and optimal sub graph with 25 

edges corresponding to undirected network of the south­

eastern part of Tokyo. (Numbering of intersections is 

continued from Fig. 4.) 
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Fig. 7 Optimal sub graphs all with 20 edges extracted from original graph with 38 edges 

(Fig. 4) for total vehicle traffic network modeling of the south-eastern part 

of Tokyo. 
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the large number of edges are treated. exact optimal solutions might not be 

obtained in a practically admissible time. Some approximation techniques 

are necessary for those cases. In this section. two such methods are 

provided with examples. 

6.1. Reduction and extension methods 

Given an original graph with n edges. suppose that the planner wants to 

construct a model with r edges. In the following. n and x of (P) and (P') 

are considered as parameters. and (n.x)-parameter families of (P) and (P') are 

treated. Let xl.··· .x
k 

be intergers satisfying r< r l < .•• < r
k 

< n. and suppose 

that (P) can be solved for all (n.x)E {(n.rk ), (rk.xk _l ), .. ·• (x2.xl ), (xl.r)} 

even if it can not provide a solution of (P) for (n.x)=(n,r) in a practically 

admissible time. xl.···'x
k 

can be found empirically based on the experiences 

as in Figs.3 - 7. Then. a suboptimal solution for (il.r) can be found by 

solving the sequence of problems (P) for (il.xk),(xk.xk_l),···.(xl.r). Such 

technique is called Reduction method. 

Analogously. xl.··· .r
k 

may also be S~lt to satisfy 0< xl < •.. < r
k 

< r. In 

this case. the solution is obtained by solving the sequence of (P') for 

(il.rl ).(n.r2).···.(il.xk ).(il.r). where the edges obtained by 

(n.r.) are supposed to be unremovable when solving (P') for 
] 

solving (P') for 

(n.x. 1) for 
J+ 

j=2.···.k (r=xk +l ). The problem for (n.xl ) is the same as (P) for (n.r l ). 

This method is called Extension method. 

Inferring from the data in Fig.3. the algorithm may work faster for the 

cases that x is large in (P) or (P'). Hence. Reduction method seems more 

effective than Extension method. However, both methods are suboptimal. and 

they may give different objective values. Thus. if both work well, the 

solution with the better objective value should be adopted. In Fig. 8 is 

shown an example from the total vehicle traffic network modeling for the 

south-eastern part of Tokyo. where Extension method is used. (An example for 

Reduction method is shown in the next section.) There, solutions for (P) with 

(n.r)=(78.34) and (78.42) are illustrated. 
taken to be x.=10+6(j-l) for j=1.···.5. and 

] 

In the procedures. xl.···.xk are 
r 6=34. For the problem with 

(n.r)=(78.34), five (P') 's are solved. while six for the problem with (n.r)= 

(78.42). The objective values for the obtained solutions are 659.396 and 

813.975. respectively. 
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Fig. 8 Suboptimal sub graphs obtained from 

original graph with 78 edges (Whose road structure is the same as that in Fig. 6 except 

that two directed edges correspond to one undirected edge) by Extension method for 

total vehicle traffic network modeling of the south-eastern part of Tokyo. 
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6.2. Decomposition method 

Suppose that a large-scale network is decomposed into some subnetworks, 

an optimal model for each subnetwork is detected, and they are combined to 

construct a global suboptimal model. Such method is called Decomposition 

method. 

221 

Suppose that an original graph G with n edges is decomposed into m 

subgraphs by some procedure. Denote by [k,j] the jth edge of the kth subgraph, 

i.e., A={[k,j]!j=l, ... ,hk , k=l,"',m}, where hk is the number of edges included 

in the kth subgraph. Let c~ be the weight of [k,j]. Then, (P) can be rewritten 
] 

as follows: 
m hk k k 

maximize E E cjYj k=l j=l 
subject to 

m hk 
E E k 

y,~ r 
k=l j=l ] 

Yk=o or 1 ]'=1 ••• h k=l ••• m j , " k' , , 

subgraph of G defined by {[k,j]! [k,j]EA, 

yk=l j=l"" h k=l,' •• ,m} is strongly 
j' , 'k' 

connected. 
k m 

Note that y,=l if [k,j] is adopted in the model, and E hk=n. 
] k=l. 

If an optimal solution for the over-all graph G also provides an optlma1 

solution for each subgraph k (k=l.···,m), the above problem is equivalent to 

the following decomposition problem: 

(DP) 

master proglem 

maximize E fk(rk ) 
k=l 

subject to 
m 

E rk<:i r 
k=l 
rk)O. integer, k=l,···.m 

sub graph of G defined by {[k.j]![k,j]EA, 

y~(rk)=l. j=l,"',hk , k=l.···.m} is strongly 

connected. 
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subpxoblemhk fox xk (k=l,"',m) 

maximize ~k k k c].Y]. 
k j=l 

Yj subject to 
hk k 
~ Y.< xk j=l ] 

Y~=O or 1, j=l,"',hk 
subgraph of G defined by {[k,j]1 [k,j]£A, 

Y~=l, j=l,"',hk } is strongly connected, 

where x is the least upper bound of the number of edges in the model, 
k k (Y
1 
(xk)""'Yhk(x

k
)) is an optimal solution of the subproblem k in which the 

least upper bound of the number of edges in the subgraph is xk ' and fk(x
k

) 

is its corresponding objective value. 

The master problem of (OP) can be solved in the following way: if the 

strong connectedness condition is ignored, an optimal, 2nd optimal, 3rd 

optimal,"', solutions can be found in order by using dynamic programming [2]. 

The ith optimal solution satisfying the strong connectedness condition for the 

smallest i is an optimal solution of the master problem. 

Each subproblem has the same form as (P) and can be solved by the 

presented algorithm. The number of subproblems to be solved might be large, 

however, the whole computation time can be made admissible if the decomposi­

tion is adequate. 

Generally, an optimal solution of the over-all graph may not provide 

optimal solutions of subgraphs. Thus, (OP) may not provide an exact optimal 

solution of the original problem. 

Two main methods exist for decomposition of graphs: (a) edge decomposi­

tion and Cb) node decomposition as shown in Fig.9-a. In both methods, it can 

be seen that strong connectedness of the over-all graph and that of subgraphs 

are usually far from each other. But, by introducing the procedure derived 

from the following property, such difficulty may be fairly eliminated: 

Property. Let G be a strongly connected graph. Then, for a subgraph G' 

obtained by edge or node decomposition of G, the graph defined by identifying 

as one node (i) {v.1 (v.,v.) is a cut edge, v.E:vr} if edge d~composition is 
] ~ ] ~ 

adopted, or (ii) {v.lv. is a cut node} if node decomposition is adopted, is 
] ] 

strongly connected, where V' is the set of nodes of G' . 

The proof of Property is straightforward. By using connectedness in place 

of strong connectedness, it also holds for undirected graphs. 
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Fig.9-b shows subgraphs obtained by edge and node decompositions shown 

in Fig.9-a. 
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If edge decomposition is adopted, some edges are made belong to several 

subgraphs as shown in Fig.9-b. Hence, in this case, L hk=n does not hold. 

However, by making each of those edges include in anyk~Ae subgraph to which it 

belongs and treating as a dummy edge in the other subgraphs to which it belongs, 

Decomposition method works by using (DP). Concretely, it is counted for only 

one j (l~ j~ m) when rl,···,rm and fl (r l ),··· ,fm(rm) are considered in the 

master problem. 

It is easy to see that Decomposition method is only suboptimal even if the 

above procedure is introduced. Furthermore, it may consume admissible but 

fairly large computation time. However, as it may generate a good solution, 

it can not be abandoned. 

An example under the same situation as in 6.1 is solved by using edge 

decomposition. The original network with n=78 is the same as shown in Fig.8. 

The decomposition procedure is illustrated in Fig.IO, and the results for 

r=34 and r=42 are shown in Fig.ll. The objective values obtained are 659,745 

and 813,975, respectively. Comparing with the results obtained by Extension 

method in 6.1, Decomposition method has generated a better model for the problem 

with r=34. While, both methods have provided the same model for the problem 

with r=42. 

7. Vehicle Traffic Network Planning of Nagoya City Area 

In this section, the results for network modeling of Nagoya city area by 

using Reduction method are shown for illustrating the applicability of the 

presented algorithm to much larger~cale networks. 

The purpose of modeling is to construct a basic network model of the road 

network of Nagoya city area for planning of a vehicle traffic control system 

of Nagoya city area. The road network is regarded as a directed graph with 

the edge weights representing total vehicle traffic volume/day of the directed 

links. 

First, the original graph with 69 nodes and 204 edges is considered, 

which represents the southern part of Nagoya city area. A model with 100 edges 

has been obtained as shown in Fig.l2, where the sequence of 5 problems 

(r.=118+20(j-l) for j=I,···,4 using the notation described in the previous 
] 

section) was solved. In four of those problems, the subgraph searched first: 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



a. procedure 

! cut edge? cut node /..' / 

11 
5 2171 31 9 41 

11 
5 {.:/{ 9 41 

6 8i 10 6,/ 8 10 . <?dge? ,/ node? I decomposition / decomj:X>si t ion 

b. subgraphs m subgraph1 
5 

[] subgraph 1 
1 • 2 ~ 127 

6 tdLmmy 
rode 6 9 

~ 3 4 8[3 
subgraph 2 8 10 subgraph 2 

10 
edge node? 
decomJX)Si t ion decomposition 

7ig. 9 Procedures and obtained sub graphs [or edge and 

node decompositions of graphs. 

'" '" "" 

:-< 
~ 
;:, 

~. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



decomposit ion 
procedure 

Fig. 10 Decomposition procedure and 

obtained sub graphs for graph 

with 78 edges (Fig. 8) 

corresponding to vehicle traffic 

network of the sOll'~,~-·east(>rn pArt 

of Tokyo. 

subgraph 2 

::>;, 

~ 
~ 

I 
~ 

} 
~ 
"'" ~ 

'" '" '"" 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



a. 34 edges 

~ 
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Fig. 11 Suboptimal sub graphs obtained 

from original graph with 78 edges 

(Fig. 10) by Decomposition method 

for total vehicle traffic network 

modeling of the south-eastern 

part of Tokyo. 
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was optimal. The remained problem searched 551 subgraphs. 

Next, a model having 350 edges for Nagoya city area inside Nagoya Loop 

Roads is searched. The original graph has 206 nodes and 670 edges. The re­

sult is shown in Fig.13, where the sequenc.e of 16 problems was solved (r.= 
J 

370+20(j-l) for j=l,··· ,15). In each of those problems, the subgraph searched 

first was optimal. It implies that the subgraphs of fairly large sizes 

defined by I important I edges of physically correlated networks may usually be 

themselves strongly connected. It may save computation time considerably. 

The suboptimal subgraphs obtained from the above two problems show that 

some of the principal roads of Nagoya play main roles in construction of the 

models and the planner can find what roads or avenues are basically important 

for his objective. Especially, the suboptimal model for the second problem 

shows that it contains roads more in the northern part of Nagoya than in its 

southern part. 

The original graph of the first problem was selected so as to include 

the southern part of that of the second problem. It can be seen in Figs. 

12 and 13 that the model for the former is slightly different from the southern 

part of that for the latter. Especially, some of the roads belonging to 

Nagoya Loop Roads contained in the former model do not appear in the latter 

model. It implies that more refined model s may be constructed by applying 

the presented methods to some large or small parts of a city and analyzing 

the obtained models. 

In that sense, models obtained by the presented algorithm may be only 

basic or first-order for the planner, and he would have to modify them so that 

they could be handled more conveniently. However, it can be seen from the 

above results that the presented algorithm is applicable as a fundamental 

algorithm to practical network mode ling problems. 

8. Conclusion 

The mode ling problem of urban road networks was formulated as a 

combinatorial optimization problem, and its solution algorithm based on 

implicit enumeration was presented. Some extensions for modeling with 

restrictions and suboptimal methods for large-scale networks were also given. 

Computational examples from urban vehicle traffic networks of Tokyo 

and Nagoya city areas were shown so that the effectiveness and applicability 

of the algorithm were verified. A planner of an urban road network can 
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obtain a network model reflecting his objective for practical use by the 

presented algorithm, and more refined models can be expected if he constructs 

some models for large or small parts of the original network,analyzes them and 

integrates the results so as to get one global model. 
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Nagoya Loop Rds. 

Fig. 13 Original graph with 670 edges and suboptimal sub graph with 350 edges 

obtained by Reduction method for total vehicle traffic network modeling 

of Nagoya city area inside Nagoya Loop Roads. (Each pair of two 

directed edges connecting two nodes is illustrated as one line segment 

joining two nodes in the figure for simplicity.) 
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