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Abstract This paper considers tandem queuing system in which the order of performing service at two serial 

service stations can be changed. Interarrival distribution and service distribution of each station are assumed to be ex­

ponential. 

For the above system, we derive the mean queue length and the mean availability per station for finite queue case. 

And some numerical results will be attached. 

1. Introduction 

In some assembly lines, there are many cases in which empty stations can 

be used regardless of ordered sequence of stations in order to increase ef-

ficiency of system. Thus in this paper, we shall consider commutative tandem 

queue in which the waiting room allowed ahead of the first station is finite. 

We assume that customers arrive according to a Poisson stream with parameter A 

and each service time of two stations is exponentially distributed with para-

meter jJ. In the case of which each service rate of two stations is different, 

the detailed balance equations for steady states are easily derived, but its 

analysis is complicated. 

of the same service rate. 

So, for simplicity, we only concern with the case 

For this system, we derive the mean queue length in the queue and the 

availabi:ity per station. And we can compare the characteristic value of 
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connnutative tandem queue with those of ordinary one. We can also derive the 

values of the infinite case by tending the capacity of waiting room to infini-

ty. These results are already obtained in our paper [7]. And in final 

part, some numerical results are attached. 

We concern with the case of finite possible queue ahead of the first 

station and no queue between two stations. Arriving customers enter the 

first station if both stations are free, and they join the queue if both are 

occupied. They can first enter the second station if this is free and the 

first station is busy. The capacity of waiting-room is N. A customer who, 

upon his arrival, finds the system full dE~parts never to return. If a cus'-

tomer has already completed service of two stations, then he emerges from 

this system. But if he has not completed by the other station and it is not 

free, he has to stay there, that is to say, this station is blocked, and when 

the other station has completed service, he is able to enter it. 

It is also assumed that customers can transfer between stations ins tan-

taneously. The queuing discipline is first-come-first-served. 

2. Mean Queue Length for Finite Waiting Room 

The particular state of the system is labeled by the states of the queue 

length ahead of the first station and the states of the two stations. The 

state of the queue length is represented by the number of customers in queue. 

Each station can be empty (0), serving a eustomer who has not received (un­

finished) service at the other station (u), serving a customer who finished 

service already at the other station (f), or blocked (b) when it has completed 

own service but the other is still occupied. It is convenient to express the 

probability for this system by the form P(.,.,.), where the first dot is the 

state of queue, the second is that of the first station and the third is that 

of the second station. For simplicity, the probability of no customers in 

the system is denoted by p(O). 

states are as follows. 

The detailed balance equations for steady 

AP(O) pP(O,f,O) + pP(O,O,f) 

(Hp)P(O,u,O) AP(O) + pP(O,u,f) 

(Hp)P(O,f,O) pp(O,O,u) + pP(O,f,f) + pP(O,f,b) 

(Hp)P(O,O,u) pP(O,f,u) 

(Hp)P(O,O,f) pp(O,u,O) + pP(O,f,f) + pP(O,b,f) 

(H2p)P(0,u,u) AP(O,O,u) + AP(O,U,O) + pP(l,f,u) + pP(l,u,f) 
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(A+2~)P(O,f,f) ~P(O,u,b) + ~P(O,b,u) 

(A+2~)P(O,u,f) AP(O,O,f) + ~P(l,f,f) + ~P(l,b,f) 

(A+2~)P(O,f,u) AP(O,f ,0) + ~P(l,f,f) + ~P(l,f,b) 

(A+~)P(O,b,u) ~p(O,u,u) 

(A+~)P(O,b,f) ~P(O,u,f) 

(A+~)P(O,u,b) ~p(O,u,u) 

(A+~)P(O,f,b) ~P(O,f,u) 

(A+2~)p(n,u,u) AP(n-1,u,u) + ~P(n+1,f,u) + ~P(n+1,u,f) 

(A+2~)P(n,f,f) AP(n-1,f ,f) + ~P(n,b,u) + ~P(n,u,b) 

(A+2~)P(n,u,f) AP(n-1,u,f) + ~P(n+1,f,f) + ~P(n+1,b,f) 

(A+2~)P(n,f,u) AP(n-1,f,u) + ~P(n+1,f,f) + ~P(n+1,f,b) 

(1) (A+~)P(n,b,u) AP(n-1,b,u) + ~P(n,u,u) 

(A+~)P(n,b,f) AP(n-1,b,f) + ~P(n,u,f) 

(A+~)P(n,u,b) AP(n-1,u,b) + ~P(n,u,u) 
(1~~p~N-1) 

(A+~)P(n,f,b) AP(n-1,f,b) + ~P(n,f ,u) 

2~P(N,u,u) AP(N-1,u,u) 

2~P(N,f ,f) AP (N-1, f , f) + ~P(N,b,u) + ~P(N,u,b) 

2].lP(N,u,f) AP(N-1,u,f) 

2].lP(N,f,u) AP(N-1,f,u) 

].lP(N,b,u) AP(N-1,b,u) + ].lP(N,u,u) 

].lP(N,b,f) AP(N-1,b,f) + ].lP(N,u,f) 

].lP(N,u,b) AP(N-1,u,b) + ].lP(N,u,u) 

].lP(N,f,b) AP(N-1,f,b) + ].lP(N,f,u) 

Setting 

P(n,l) = P(n,u,u) 

P(n,2) = P(n,f,u) + P(n,u,f) 

(2) P(n,3) = P(n,f,f) 

P(n,4) = P(n,u,b) + P(n,b,u) 

P(n,5) = P(n,f,b) + P(n,b,f) 

We get 

(2+p) P (n,l) pP(n-1,l) + P(n+1,2) 

(2+p)P(n,2) pP(n-1,2) + 2P(n+1,3) + P(n+1,5) 

(2+p)P(n,3) pP(n-1,3) + P(n,4) 
(3) 

(1+p)P(n,4) pP(n-1,4) + 2P(n,l) 

(1+p)P(n,5) pP(n-1,5) + P(n,2) (0~n~N-1) 
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2P(N,I) pP(N-I,I) 

2P(N,2) pP(N-I,2) 

2P(N,3) pP(N-I,3) + P(N,4) 

P(N,4) pP(N-I,4) + 2P(N,I) 

P (N, 5) pP(N-I,S) + P(N,2) 

where p= A/~, and 

(4) 

P(-l,l) (pP(o) + P(O,2))/(p+l) 

P(-1,2) pp(O) 

P(-1,3) = P(-1,4) = P(-I,S) = 0 

Now, we define the following five generating functions 

N 
G.(z) = L znp(n,i) 

1. n=O 
(i-l,2,·····,S) . 

From the equation (3), we have 
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I (2+p-pz)GI (z) - --z-- G2(z) 
p2p (O)+PP(O,2) 

p(l.-z)zNp(N,I) + p + 1 
P(O,2) 

(S) N (2+p-pz)G3(z) - G4(z) = p(l-z)z P(N,3) 

p(1-z)ZNp (N,2) + p2p(O) 

(p3+2p 2)p(O)_P(O,2) 

z(p + 1) 

N 2Gl (z) - (1+p-pz)G4(z) = -p(l-z)z P(N,4) 

G2(z) - (1+p-pz)GS(z) = -p(l-z)zNp(N,S) 

z 

From (S), we can solve G.(z) as a function of P(O), P(O,2), P(N,i) (i=l,··,S). 
1. 

To determine these probabilities, we may use the following: 

i) The normalization equation is 

S S 
(6) I G.(l) + L P(-l,j) + p(O) 

i"l 1. j=l 
1 . 

Solving (S) with z=l and substituting these results into (6), 

we get 
S ~ 

(7) 4p(p+1) ( L P(N,i)) - P(O,2) - (p'·+Sp+3)P(O) = (p+1) (4p-3) 
i=l 

ii) The generating functions Gi(z) (i=1,2,···,S) are regular on z-plane. 

Let F(z) be the denominator of G. (z) (i=1,,2), then (1+p-pz)F(z) is the denomi-
1. 
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nator of Gi(z) (i=3,4,5). Now, F(-l»O, F(O)<O, F(l)<O, F(2/p»0, F(5/p)<0. 

Therefore, there exists at least one real root of F(z)=O in each of intervals 

(-1,0), (1,2/p), (2/p,5/p). Let zo' zl and z2 be one of roots in each inter­

val such that zO<zl<z2' Thus, we can write 

(8) 

Let z3' z4 be the roots of the equation z2+pz+q = 0 . 

Then, 

(9) 

And z5 = l+p is also zero of the denominator of G.(z) (i=3,4,5). If we denote 
p 1 

the numerator of G
5

(z) as H
5

(z), we must have 

(10) o (i=O,l,··· ,5). 

From (7), (10) and eliminating P(0,2), we obtain 

(ll) 

where 

A. 
1 

C. 
1 

D. 
1 

1:. 
1 

F. 
1 

1. 
1 

A.P(N,1)+B.P(N,2)+C.P(N,3)+D.P(N,4)+E
1
P(N,5)+F.P(0)+I. = 0 

1 1 1 1 1 1 

(i=O,l,··· ,5) , 

N+1 2 2 4p(p+1)(z. -4p+(1+p-pz.) (4p+p -p z.)z.+4(pz.-1» 
1 1 1 1 1 

N+l . 2 2 N+l 
p(p+1)(4(z. -4p)+«1+p-pz.)(4p+p -p zi)z.+4(pz.-1»«1-z.)z. +4» 

1 1 1 1 1 1 

N+l 2 2 p(p+1)(4(z. -4p)+4«1+p-pz.)(4p+p -p z.)z.+4(pz.-1» 
1 1 1 1 1 

N +2pz.(3+p-pz.)(1-z.)zi) 
1 1 1 

N+1 2 2 N 2p(p+1)(2(z. -4J)+2«1+p-pz.)(4p+p -p z.)z.+4(pz.-1»+p(1-z.)Z.) 
1 1 111 11 

N+1 2 2 p(p+1)(4(z. -4p)+4«l+p-pz.) (4p+p -p z.)z.+4(pz.-1» 
1 1 1 1 1 

2 +(pz.(2+p-pz.)(2z.+pz.-pz.)(3+p-pz.)+4(pz.-1) 
1 1111 1 1 

2 N +2(pz.-2)(2z.+pz.-pz.»(1-2.)z.) 
1 1 1 1 1 1 

2 2 2 2 
(p+1) (12p+«1+p-p2.) (4p+p -p z.)z.+4(pz.-1»(p Z.-P -2p-3» 

1 1 1 1 1 

2 2 (p+1) (4p-3) (4p-(1+p-pz.) (4p+0 -p z.)z.-4(pz.-1» 
1 1 1 1 

(1=0,1,'" ,5) 

We can solve for P(O), P(N,i) (i=1.2,···.5), from the system of linear 

equations (11). And 1f H5(zi) = 0 (i=0,1.···.5), it is easily seen from (5) 

that H.(z.) = 0 (1=0,1"",4, j=l,2), and H.(z.) = 0 (i=0,1,"',5, j=3,4). 
] 1 J 1 

Therefore (10) is necessary and sufficient for the regularities of G.(z). 
1 
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Using these conditions, we can determine p(O), P(O,2) and P(N,i) (i=l, ... ,S), 

and we can obtain 

(12) 

where 

F(z) 

G. (z) 
~ 

Hi (z) 

F(z) 
(i=1,2), G. (z) 

~ 

H. (z) 
~ 

(1+p-pz)F(z) 

(p+l) (_p 4zS +(3p 4+7p 3) z 4_(3p 4+l4p 3 +l8p 2) z3 

4 3 2 2 2 
+(p +7p +19p +20p)z -(p +4p+8)z-4). 

(i=3,4,S), 

H.(z), (i=l,···,S) can be also expressed explicitly, but these expressions are 
~ 

lengthy. So we shall omit here these one. 

The mean length in the queue Le is 
, , , , , 

(13) Le Gl(l) + G2(1) + G3(1) + G4 (1) + GS(l) 

3 2 
( 7p+16N+24 )P(O 2) + (19p +(16N+47)p +(80N+18l)p+(48N+136»p(O) 
16 (4p-3) (p+l) , 16 (4p-3) (p+l) 

+ (128p2-(64N+227)p+(48N+136» 8p(1-p) 
l6(3-4p) + 2pP(N,1) + (3-4p) P(N,2) 

222 
+ 2lp-16p P(N 3) + Sp-16'~P(N 4) + 9p-8p P(N 5) 

6-8p , 6-8p , 3-4p , 

and the mean availability per station Ac is 

(14) 
352 

A = ~(2 I Gi(l) + I G.(l) + I P(-l,j» 
c i=l i=4 ~ j=l 

3 P(O,2) 
= "4 - 4(p+l) 

2 p +Sp+3 
4(p+l) 

The blocking probability P
BC 

is derived by the sum of G4(1) and GS(l), 

and we have 

(15) 1 P(O,2) 
PBC = "2 2(p+l) 

2 
P +3p+l 

2(p+l) 

In the ordinary tandem queuing systenl, modifying the results by P.M. 

Morse [6] for the case of infinite queue, the mean length in queue La is 

(16) 
1 3 2 2 2 

---=:"---=-2«8p +4p )p(a)+(-16p +l6p-(2p-3p ) (3N+S) )P(N,l,O) 
(2-3p) 

+ (-22p 2 +lOp- (2p-3p 2) (3N+8»P (N, 1,1) 

+ (-2S/+l2p-(2p-3p 2) (3N+8»P(N,b,1) , 
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where, 

(17) 

(0) 

(N,l,O) 

(N,l,l) 

(N,b,l) 

the both stations are empty , 

the state of queue is N, the first station is serving and the 

second is empty, 

the state of queue is N, the first and the second stations 

are serving, 

the state of queue is N, the first is blocked and the second 

is serving. 

The mean availability per station AO is 

A = __ 2 __ - ~P(O) 
o 3 3 

and the blocking probabilty P
BO 

is 

(18) 
2 (2-3p)+(6p -p-2)P(O) 

3(2-3p) 

3. Special Case 

In ~his section, we derive the value of queue length for the infinite 

case by tending N to 00 • 

By elementary calculation for (11), we have for N-+oo , P(N,l),····. 

P(N,5) ---+ o. And it is easily seen from the normalization condition's 
5 

results of finite and infinite case that I P(N,l) --->- 0 for N _ 00 • 

i=l 

Therefore, 

(19) 
2 l6+39p -38p 

4(3-4p) 

2 
l6+3p -6pp (0) 

4(3-4p) 

We can get this result directly from the equations of infinite queue case [7). 

Then, in the infinite case, allowable utilization factor p of each queuing 

system are as follows; 

Ordinary Case, 

O<p <2/3, o 

Commutative Case, 

therefore, it follows that compared with ordinary case, the maximum utili-
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zation of commutative's is notably increased. 

4. Some Numerical Results 

We shall display the mean length in queue and the availability per 

station in order to compare commutative with ordinary tandem queue. For N=O, 

N=l, N=2 and N-+oo, numerical values for the mean length in queue and the 

availability per station are given below. 

TABLE 1. 

~ 
1 2 00 

Le Lo Le Lo Le Lo 

0.1 0.003 0.010 0.004 0.013 0.004 0.013 

0.2 0.018 0.040 0.027 0.061 0.031 0.073 

0.3 0.048 0.084 0.082 0.151 0.116 0.228 

0.4 0.090 0.136 0.172 0.278 0.324 0.600 

0.5 0.139 0.192 0.290 0.426 0.821 1.600 

0.6 0.191 0.248 0.424 0.582 2.208 6.092 

0.7 0.242 0.301 0.563 0.731 9.878 ~ 

TABLE 2. 

~ 
0 1 2 00 

Ae Aa Ae Aa Ae Aa Ae Aa 

0.1 0.098 0.091 0.100 0.099 0.100 0.100 0.100 0.100 

0.2 0.185 0.164 0.196 0.192 0.199 0.198 0.200 0.200 

0.3 0.259 0.225 0.285 0.275 0.295 0.290 0.300 0.300 

0.4 0.320 0.275 0.364 0.346 0.384 0.374 0.400 0.400 
~ ~-----

0.5 0.371 0.316 0.430 0.404 0.461 0.443 0.500 0.500 

0.6 0.413 0.350 0.486 0.451 0.526 0.499 0.600 0.600 

0.7 0.448 0.380 0.531 0.489 0.578 0.541 0.700 ::::~ 
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From these tables, it is seen that the mean length of commutative system 

is smaller than the ordinary one for each p and the availability per station 

of commutative system is greater than or equal the ordinary's. Therefore, 

the efficiency of commutative system is better than the ordinary's. 
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