
Journal of the Operations Research 
Society of Japan 

Vo1.20, No.3, September, 1977 

A SEQUENTIAL ALLOCATION GAME FOR 

TARGETS WITH VARYING VALUES 

MINORU SAKAGUCHI 

Osako University 

(Received January 27, 1977; Revised June 11, 1977) 

Abstract The two-sided competitive situation where the players allocate ordnance, subject to resource const-

raints and limited mission time, to attack (or defense, for the opponent player) for the targets carrying some cargo of 

varying values is formulated as a two-sided time-sequential zero-sum game. A system of difference equations is derived 

which is in theory solvable recursively and determines the optimal strategies of the players. A special case of the game 

is completely solved. The continuous-time version of the problem is also discussed. 

1. Introduction and Summary 

This paper describes an application of two-person zero-sum sequential 

game in examining logistics allocation decisions in a combat setting as 

follows. Suppose that. a.n Attacker (Player I) and a Defender (Player II), 

carrying k and ~ weapons, respectively., are attemping to engage in a succesion 

of n battles or contests in obtaining n targets. The n targets arrive in 

sequential order, ~ first target 1 appears, followed by target 2, etc_ 

Associated with the j-th (j = 1, ••. , n) target is a non-negative random 

variable Xj which takes on 

to as a "type x _" target.. 
J 

with a known cdf F(x). At 

the value xj . This j-th target is then referred 

We assume that the X's are iid random variables 

each time a target appears, the players have to 

decide whether to expend a weapon or not in order to attack the target for 
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A Sequential Allocation Game 

player I, and to defend for 11. We assume that both players know the values 

of k, R., n and x, the realized type of the target. For each appearing targets 

with type x, the payoff to I, 

I 
Attack 

Not attack [ 
Defend 

aSx 

o 

II 

Not defend 

o J ax 

is paid by 11, where 0 < a,S < 1 are known constants. a is the probability 

that a I's attack is successful, if he attacks the target. S is the probabil­

ity of failure of II's defense if he defenis the target I attacks. Since the 

number of weapons in hand is restricted for each player and the mission time 

is also limited, if a target arrives with relatively small x and relatively 

large n (mission time) remaining, the attacker, (and hence the defender too), 

will postpone expending a weapon and wait, expecting some more favorable 

opportunity may arrive in the future. Thus each player has to find an allo­

cation policy which will indicate him what type targets he should attack (or 

defend) as a filllction of the mission time and number of weapons he has 

remaining on station. The problem belongs to a type of zero-sum-game version 

of one studied in some earlier works Albright [1], Donis and Pollock [4], 
Mastran and Thomas [6] and Sakaguchi [9, 10]. Moreover, our problem gener­

alizes in a certain way the card game Goofspiel discussed by Ross [8]. 
There are, in fact, many situations both in and out of warfare that have 

similar nature of "opportunity analysis" in common. 

An outline of the paper is as follows. In Section 2 we shall derive, by 

a dynamic programming formulation of the problem, a fundamental system of 

difference equations in time n to go and amount of ordnance k and R., for each 

player at hand. This system of difference equations, which is in theory 

solvable recursively, determines the optimal strategies for the players. In 

Section 3 the game is completely solved in the case of the deterministic 

target value. In Section 4 the continuous-time version of the problem is 

discussed. A system of differential equations is given, which characterizes 

the optimal strategies of the players. Some concluding remarks are given in 

the final section. 
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184 M. Sakaguchi 

2. Solution of the Sequential Game. 

Let r(n, k, R,) denote the game described in the previous section. (n, 

k, i) denotes the state of the system in which Attacker and Defender possess 

k and i weapons, respectively, and they have mission time n to go. Then the 

normalized form of the game r(n, k, i) has the matrix 

Attack 

I 
Not attack 

Defend 

\aBX&r(n-l, k-l, i-I) 

~ O&r(n-l, k, ~-l) 

II 

Not defend 

ax&r(n-l, k-l, ~) ] 

O&r(n-l, k, ~) 

if the first target appears with type x. The interpretation of aBx&r(n-l, 

k-l, ~-l) is that the system yields an immediate payoff aBx and then moves to 

the state (n-l, k-l, ~-l), given that the both players use their first pure 

strategy. 

Let V (k, R,) represent the value of the game r(n, k, ~). Then V (k, ~) 
n n 

satisfies 

V (k, ~) 
n j: Val 

V (k-l ~-l) 
n-l ' ux + V l(k-l, n- ~)J 

(1 ~ k, ~ ~ n-l n ~ 1) 

dF(x) 

with the initial condition Vo(O, 0) = 0. The notation val A for a matrix A 

is used for the value of t.he matrix game A. 

In order to obtain the solution of the game, it is convenient to define 

the mean shortage function 

(2) TF(z) :: j : (x-z)dF(x) = f: (l-F(x))dx . 

We assume that 0 < \.I :: E(X) = {OO xdF(x) < "', and hence TF(z) exists. This 

function has been known to play ~ important role in the area of opportunity 

analysis (see, for example, DeGroot [3; Chapter 13]), and is non-negative, 

convex and strictly decreasing on the set where it is positive. Furthermore 

TF(O) = \.I > 0, TF(z) ~ \.I-z, (0 ~ z < 00), and lim TF(z) = ° 
z--
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Define 

(3) 

Then this function is convex, increasing, rnax(z, Il) ~ SF(z) ~ z + Il, and 

lim (SF( z) - z) = O. 

z~ Some immediate examples of TF(Z) are : 

target values X = a(> 0), ~l. ; TF(z)" 

uniform distribution F(x) = x/a (0 ~ x ~ a) 

+ TF(Z) = (a-z) , for deterministic: 

(z_a)2/(2a), (0 ~ z ~ a), for 

() 
-1 -az -

; TF z = a e ,for exponential 

distribution F(x) = l_e-ax (x ~ 0). 

Now let {gn,i}l~i~n be a triangular array of possitive numbers defined by 

the recurrence relations 

gn,l SF(gn_l,l) (n > 2 g:~ ,1 Il) 

(4) 
i-l 

gn,i SF(gn_l,i) L (gn ,j - gn-l,j) , 
j=l n-l 

(2 ~ i ~ n-l, n ~ i+l, gn,n nil - L g .). 
j=l n,J 

We shall note, after the following Proposition is proved, that gii's are 

given in the definition (4) such that the evident conditions V (n, 0) = nail 
n 

and V (n, n) = nai31l are consistent with the relations (5b) 'V (5d). 
n 
An immediate example of g . 's is : For uniform distribution F(x) = x 

1 n,l 
(0 ~ x ~ 1), SF(z) = 2 (1 + z2), (0 ~ z ~ 1) and hence 

1 (1 + 2 (n 1/2) gn,l 2 gn-l 1) ~2 gl,l = , , 

1 (1 + 2 1 2 
gn,i 2 g 1 .) - 2 (1 - g 1 . 1) n- ,1 n- ,1-

(i ~ 2, n ~ HI., gn,n (1/2)n -

In obtaining V (k, R,) from (1) we need the following 
n 

n-l 
L g . ). 

j=l n,J 

Proposition 1. The boundary conditions for the system of recurrence 

relations (1) are given by 

V (0, R,) == 0 , 
n 
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186 M. Sakaguchi 

k 
V (k, 0) = a L gn,i , 0 ,;sk ,;sn n i=l 

£ 
V (n, £) = na).! - a(l-S) L gn,i , 0 < £ ,;sn n i=l 

k 
V (k, n) = as L gn,i , 0 < k ,;sn n i=l 

Proof. (5a) is evident. For 0 < k < nand £ = 0, we have 

(6b) Vn(k, 0) = S: max{ax + Vn_I (k-I, 0), Vn_I (k, O)}dF(x) 

= Vn_I(k, 0) + aTF[a-l{Vn_l(k, 0) - Vn_l(k-l, o)}] . 

This difference equation has the solution (5b). In fact, substituting 

(5b) into the right-hand side of (6b), we get, by (4), 
k 

a L g -1 . + aTF(g -1 k) i=l n,1 n, 

which is V (k, 0). 
n 

k-l 
a{ L g -1 . + SF(g -1 k)} i=l n,1 n, 

For 0 < k < nand £ = n, we have 

k 

a L 
i=l 

g . , 
n,l 

(6d) Vn(k, n) = f: max{aSx + Vn_l(k-l, n-l), Vn_l(k, n-l)}dF(x) 

= V l(k, n-l) + aSTF[(aS)-l{v l(k, n-l) - V l(k-l, n-l)}]. 
n- n- n-

Comparing (6d) with (6b), we find that (6d) has the solution (5d). 

Finally, for k = nand 0 < £ < n, we have 

Vn(n, £) = r: min{aSx + Vn_l(n-l, £-1), ax + Vn_l(n-l, £)}dF(x) 

= r 00 lax + V (n-l £) _ {a(l-S)x + Vn_l(n-I, Q.) j 0 n-l' 

- V l(n-l, £-l)}+]dF(x) 
n-

-V
n

_
l 

(n-I, .n}] 

With W (n, £) _ (I-s)-l{na).! - V (n, £)} , this becomes 
n n 
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Wn(n, £) = Wn_l(n-l, £) + aTF[a-
l 

Wn_l(n-l, £) - Wn_l(n-l, £-1) ] 

£ 
Comparing this again with (6b), we find that W (n, £) = a L go, and hence 

n 0-1 n,l 
we obtain the solution (5c). This completes all the proof: 

Thus we have reached to 

Proposition 2. The value of the game, V (k, £), satisfies the system of 
n 

difference equations (1) with the boundary conditions (5a) ~ (5d), where 

go' s are defined by (4) 0 The optimal strategy for each player is that of 
n,l 

the matrix game in the right-hand side of (1), if a target with type x 

arrives in state (n, k, £). 

The system of difference equations (1) with the boundary conditions 

(5a) ~ (5d), which is in theory solvable recursively, determines the optimal 

strategies for the players. We shall see, however, that finding the solution 

of the game explicitly even for the most elementary cdf F(x)'s, seems to be 

hopeless. From (1) and (5a) ~ (5d), we find, for n = 1, 

and, for n 2, 

and finally 

Since 

l Bx val p 

it follows that 

Vl(O, £) 

V
l 

(1, 0) 

V
2

(0, £) 

V
2

(1, 0) 

V
2

(2, 0) 

J: 

0, (£=0,1) 

0, (£ = 0, 1, 2) 

aSF(p), V2 (1, 2) = aBSF(p) 

2ap, V
2

(2, 1) 2ap - a(l-B)SF(P) 

ax + V 1 (0, 1) J 
dF(x) 

V
l 

(1, 1) 

a 1: val l :x x 1 dF(x) 
Bp _ 

Xl ) Bp , if ° < x < BlJ 

Bp = l (l+B)px/(p+x) , if Bp < x < p/B 

Bx , if x > p/B 

V
2

(1,1) = aBlJF(Bp) + a(l+B) r p/B ~ dF(x) + aB( 00 xdF(x) 
j Bp p+x J pi B 
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188 M. Salalguchi 

and, the optimal strategies for the players at state (2, 1, 1) are 

Condition For I For IT 

o < x < S].l Not attack Not defend 

Use the mixed strategy Use the mixed strategy 

< ].l~X' ].l:X> < (x-Sj.l) (ll-SX) 
(l-S)(j.l+x) , (l-S) (j.l+x) 

Attack Defend 

To go on further to n 

cdf's. 

3 is almost prohibitive, even for the most elementary 

3. Deterministic Target Value. 

Our problem gives an explicit and easy solution in the case of the 

deterministic target value, ~ X = 1, with probability 1. The problem 

in this case is clearly an extension of the inspection game in Owen [7], 
and reduces to a variant of the infiltration game discussed in Thomas 

and Nisgav [13]. The fundamental recursive relation is given, from (1), by 

V (k ,i) 
n 

val 

with the boundary conditions 

V (0, i) _ 0 , 
n 

V (k, n) ka.S 
n 

V (k, 0) 
n 

V (n, i) 
n 

(l ~ k, i ~ n-l; n ~ 1) 

a.k , 

We note that, for each player, if he has n(br more) available weapons to 

expend in a n-days mission, then clearly he will use them all. 

Proposition 3. The solut~ 

r (k, i), is 
n 

(8) V (k, i) = a.k{l-{l-S)i/n} 
n 

to the difference equation (7) for the game 

The optimal mixed strategies x*(k, i) and y*(k, i), for player I and IT, 
n n 
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respectively, are given by 

(9) 

(10) 

(11) 

x*(k R,) 
n ' 

y*(k R,) 
n ' 

Proof Let 

W (k, R,) 
n 

<kin, l-k/n> 

<Mn, l-R,/n> 

W (k, 
n 

R,) ::: {V (k, 
n R,) - ak}la(l-13). Then, from 

~-l+W (k-1 '-1) Wn_l(k-l, R,) 1 val n-l ' 

Wn_l(k, R,-l) W
n

_
l 

(k, R,) 

(7), we obtain 

The proof of (8) ~ (10) follows directly by substituting W (k, R,) = -kR,/n 
n 

into (11) and finding the value and the optimal strategies of the matrix 

game in the right-hand side. 

This result generalizes Theorem 2.1 in [13J, which is a special case 

where k = 1. Owen's inspection game in [7; Section V. 2] is also a special 

case where k = R, = 1. 

We conclude that in order to obtain the value of the game, each player 

must allocate his available weapons such that his probability of performing 

his action (~attack for I, and defense for IT ) is equal to the ratio of 

the number of his weapons in hand to the total number of the remaining 

periods. That is, for each player, a uniform distribution over the remainder 

of the time period will provide him the value of the game. Note that the 

optimal strategy for each player does not depend on a, 13, and the number of 

weapons available to his opponent. 

Finally in this section we shall note that an interesting work by 

Maschler [4] also studied this type of sequential games in non-zero-sum-game 

version. 

4. Random Arrival Times. 

In this section, we shall derive the consequences of deleting the 

requirement that the number of targets, and their arrival times also, are 

deterministically known and fixed. That is, we will consider the sequential 

game, investigated in previous sections, in the situation where the targets 

arrive sequentially one by one and randoml;r in a Poisson manner during some 

given time period. Whenever a target arri'res with value x each player is 

asked to decide whether he attacks (or defends) the target expending one 
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190 M. Sakaguchi 

unit of his weapon, or does not attack preserving his ordnance for his fu­

ture opportunities. We shall assume that the targets arrive in a Poisson 

manner with arrival rate A, and that any decision must be made immediately 

after the arrival time of a target -- hesitation is not permitted. Thus the 

problem belongs to a type of two-sided-game version of one studied in some 

earlier works Albright [1], Donis and Pollock [4] Mastran and Thomas [6], and 

Sakaguchi [9, la]. Also a related work is found in Sweat [12]. 
Let (t, k, ~) denote the state of the system in which Attacker and 

Defender possess k and ~weapons, respectively, and they have mission time t 

remaining. Let V
k 

~(t) denote the conditional value of the game, given any 

state (t, k, ~). ~en considering what can happen in some small time interval 

~t, we have the expression 

J
' 00 [aBX+Vk_l'~_l (t-M) 

A~t val 
° Vk~_l(t-~t) , 

dF(x) 

+ (l-A~t)Vk ~(t-~t)+o(~t), , 

if k,t ~ 1. Rearranging terms, deviding both sides by ~t, and taking the 

limit as ~t + 0, we obtain a system of differential equations 

aBx+Vk_l ~_l(t) , 
(12) 

with the initial conditions Vk t(O) = 0, (k,t 0,1,2, ••• ). 

Define the sequence of f~ctions g (t)'s by a system of differential 
r 

equations 

(13) 

g'(t) = A{TF(g (t» - TF(g l(t»}, r r r-

with the initial conditions g (0) = 0, (r = 1,2, .•. ). Clearly, (13) is a 
r 

continuous-time analogue of (4). This sequence of functions was first intro-

duced in this field of problems by Sakaguchi in [9] and exploited in some 

phases of applications in [la, 11J. In [9J, the functions g (t) are 
r 
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determined explicitly for the case when X has exponential distribution, and 

remarks are made for several other distributions. 

Proposition 4. The boundary conditions for the system of differential 

equations (12) are given by 

(14a) 

k 
et. L 
i=l 

g. (t). 
J. 

Proof. (14a) is evident from the definition of Vo ~(t). For k > 0 and , 
Q, 0, we have 

Hence letting 

~(t) k ~ 1 

we obtain 

k 

L 
i=l 

h~ (t) 
J. 

or equivalently (13) with g.(t)'s replaced by h.(t)'s. This completes the 
J. J. 

proof of (14b). 

Thus we can also state 

Proposition 5. The value of the game, Vk Q,(t), satisfies the system of 

differential equation (12) with the boundary c~nditions (14a) and (14b), 

where g. (t) 's are defined by (13). The optimal strategy for each player is 
J. 

that of the matrix game in the right-hand side of (12), if a target with type 

x arrives in state (t, k, ~). 

The system (12) '" (14) is in theory E,olovable recursively. But again 

we shall find that obtaining the solution explicitly seems to be hopeless 

even for the most elementary cdf F(x)'s. 
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5. Concluding Remark. 

As with any model, the models presented here are mere abstractions of 

reality. Thus, the major gains provided are through insights from identifying 

and examining various relationships among operational parameters. There are 

a host of extensions that could be made to the present study. In principle, 

the situation where both sides can expend more than one weapon in salvo can 

be treated in a similar fashion as in Sections 2 and 4. One must describle 

the model such that, if i and j torpedos are expended by Attacker and Defend­

er, respectively, for a target of value x, then the expected payoff to Attack­

er is (l_qi)Sjx, where p = l-q, 0 < P < 1, is the single shot probability of 

hit. One must treat the fundamental recursive relationships (1) and (12) 
which involve (k+l)X(~+l) matrix games. 

A much more difficult problem, but indeed one of interest, is the case 

where both sides can expend their ordnance in continuous amounts. In this 

case, if 0 ~ ~ ~ $ and 0 ~ ~ ~ ~ of ordnance are expended by Attacker and 

Defender, respectively, for a target of value x, then the expected payoff 

to attacker is (l_e-r~)e-s~x, where r and s are given positive constants. 

Some partial differential equation describing the system will determine the 

optimal strategies, and will contain "continuous games on the square" (see, 

for example, Dwen [7; Chapter IV]), in place of matrix games in (1) and (12). 
The problem begins to take the form of a two-sided time-sequential game of 

optimal allocation of search efforts. See Croucher [2], for the two-sided 

non-sequential deterministic-target-value version of this problem. 
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