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Abstract Discrete time Markov maintenance models are coupled with the theory of control of queues. Each 

system has an operating machine, spare machines and a repair facility. A decision maker has the option of opening or 

closing the repair shop when there are machines waiting for repair service, as well as the option of repairing or leaving 

an operating machine. A two-dimensional control limit policy is dermed, and sufficient conditions for the optimality 

of a two-dimensional control limit policy are obtained for each model. 

1. Introduction 

In this paper discrete time maintenance models are treated in the context 

of control of queues. Because of their wide applicability in the practical 

world, a number of authors have studied optimization problems for discrete 

time machine maintenance models. Derman [1] introduced the basic model of 

this type, and showed the optimality of a simple rule, called a control limit 

policy. Kolesar [5] and Kalymon [3] generalized the cost structure without 

changing the basic conclusion of the model. In 1973 Kao [4] introduced a 

semi-Markovian approach to Derman's model. According to its semi-Markovian 

nature, the repair time of a machine is no longer instantaneous but takes some 

random time, while the supply of new spare machines is unlimited. A joint 

replacement and stocking problem was considered by Derman and Lieberman [2], 

which was generalized by Ross[8]. 
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_Markov Maintenance Models 

Aside from Markov maintenance feature.s, the models treated here necessa­

rily become discrete time closed queueing systems since the supply of spares 

is limited and machines to be repaired form a queue in front of a repair 

facility. Torbett [9] investigated the optimal control of closed queueing 

systems, but his analysis is time continuous. Discrete time open queueing 

systems have been vaguely discussed (see Magazine [6], [7]). There appears 

to have been almost no research in optimization of discrete time closed 

queueing systems. 

Consider the following discrete time machine maintenance model, whose 

mechanism is illustrated in Fig. 1. There is an operating machine and 3 

(3;:;, 1) spare machines in the system. At the beginning of each period, an 

operating machine is classified as being in one of I+l (I;:;,l) states showing 

the degree of deterioration. 0 represents the best state, while I represents 

the failed state. A repair shop is in the system, and an operating machine 

can be sent to the repair shop for the repair work at any period. A machine 

sent to the repair shop must wait until all the machines which have already 

arrived at the repair shop are completely repaired. 

At the beginning of each pe~iod, the decision maker has the option of 

opening or closing the repair shop, as well as the option of repairing or 

leaving an operating machine. 

Therefore, at each period, four 

operating 
machine 

o 1 . I ,-----option: 
repair or leave 

option: 
open or close 

repair 
facility 

Figure 1. A machine maintenance system 
with control of queue 

actions are available. They are 

denoted as aLC , aLO' aRC and aRO 
respectively, where L, R, C and 0 

mean to leave an operating machine 

in operation, to repair an operat­

ing machine, to close the repair 

service gate, and to open the 

repair service gate respectively. 

If there is no operating machine, 

only the option of opening (aO) or 

closing (aC) the service gate is 

available. Closing the repair 

service gate implies doing nothing 

if it has been closed. Similarly 

for the case of opening the repair 

service gate. The repair work can 
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166 Y. Hatoyama 

be performed only when the service gate is open. If a repair job on a machine 

is interrupted by the decision to close the gate, the rest of the repair work 

is postponed until the gate reopens. Repaired machines are available as spare 

machines. 

If leaving an operating machine in operation is chosen, its state evolves 

from i to j in one period according to the transition probability Pij~O. If 

repairing an operating machine is selected, it is immediately sent to the 

repair system, and is instantly replaced by a spare unit, if any are availa­

ble. The new operating machine begins to operate just after replacement in 

its best condition. 

The costs associated with the system are: 

A(i) operating cost for a machine of state i (0 ~ i ~ I) per period. 

cri) material cost for repairing a machine of state i (0 ~ i ~ I). 

K(s,k): holding cost per period of S (0 ~ s ~ 5+1) machines in the repair 

system when the gate is closed (k = 0) or open (k = 1) at the beginning 

of the period just after the decision. 

E set up cost of opening a closed repair shop. 

F shut down cost of closing an open repair shop. 

G service cost of operating an open repair shop per period. 

P penalty cost assessed per period while no operating machine is availa­

ble. 

The objective function is the total expected a-discounted cost, and the 

structure of an optimal policy minimizing such a criterion is studied. 

Before proceeding further, we give a couple of examples to clarify the 

applicability of this model in the practical world. Consider the following 

airplane repair problem for a privately owned flying school. Suppose the 

instructor owns two airplanes and a repair shop for repairing them. He 

teaches flying using one airplane at a time. He inspects the condition of 

the airplane in service periodically, and he classifies it as being in one of 

a finite number of states. He continues using the same airplane, until he 

judges that it should be repaired. Then the other airplane, if available, 

replaces it and begins to operate in its best condition. The previously used 

plane is sent to the repair shop, which is either open or closed. Repair 

work can be performed only when the repair shop is open, and a repaired plane 

will be ready for future use in its best condition. Keeping the repair shop 

always open may not be economical since he must pay salary to repairmen, and 

other costs to keep it open, even when no repair work is needed. Keeping 
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Markov Maintenance Models 

the repair shop closed too long is also undesirable since it may prevent 

planes from being available, thereby resulting in a loss of revenue. The 

problem of finding the best schedule for hiring repairmen and for replacing 

an operating airplane can be formulated as a model to be studied here. 

Another example pertains to cleaning suits. Suppose a person has several 

suits. He wears one suit continuously until he finds that it requires clean­

ing, and then he changes the suit for a clean one in his wardrobe. Assume 

the degree of cleanliness of a suit is observable, and that the cost of wear­

ing a suit is associated with its cleanliness. When he decides to change the 

suit to the clean one, it does not necessarily follow that he immediately 

sends the used suit for dry-cleaning since such an action may be laborious 

and time consuming. However, too infrequent visits to the cleaners may lead 

to the situation where he has no clean suits available. Assuming that a suit 

is available in its cleanest condition after dry-cleaning, the problem of 

determining the best schedule for suit changes and laundry visits can be 

formulated as a model to be studied. 

2. Control Limit Policy with Respect to Operating Machine 

When the repair service gate is open, we specify the repair time of a 

machine as follows: Let qss' be the probability that s' machines are still 

in the repair system at the end of the period, given that s machines are in 

the repair system at the beginning of a period. Here the repair system consi­

sts of the repair shop and the queue. 

Let ~(i,s;n) be the minimum expected n period a-discounted cost given 

that the operating machine is in the i-th operating condition, the number of 

machines in the repair system is s, and the state of the repair service gate 

is k (k = 1 means the gate is open, and k = ° means it is closed) at the begin­

ning. Then by letting ~(i,s;O) = ° for any feasible i, s, and k, ~(i,s;n) 
(n ~1) satisfies a set of recursive equations: 

For ° ~ i ~ I, 

VO(i,s;n) 
a 

° ~ s 

= min 

~ S, 

{A(i) 

A(i) 

Cri) 

Cri) 

+ K(s,O) -I'R (i,s;n-V, 
a 

+ K(s,V l' E + G + Q (i,s;n-l), 
a 

+ K(s+l,O) + R (O,s+l;n-l), 
a 

+ K(s+l,l) + E + G + Q (O,s+l;n-l)}, 
a 
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(2.1) 

where 

(2.2) 

Note that 

Y. Hatoyama 

V;(i,s;n) = min {A(i) + K(s,O) + F + R (i,s;n-l), 
a 

A(i) + K(s,l} + G + Q (i,s;n-1), a 

Cri) + K(s+l,O) + F + R (O,s+1;n-1), 
a 

Cri) + K(s+l,l) + G + Q (O,s+1;n-1)}, 
a 

VO
(i,S+l;n) = min {p + K(S+l,OJ + R (O,S+1;n-1J, 

a a 

P + K(S+l,l) + E + G + Q (O,S+1;n-1)}, a 

V;(i,S+l;n) = min {p + K(S+l,O) + F + R (O,S+1;n-1), 
a 

P + K(S+l,l} + G + Q (O,S+1;n-1)}, 
a 

I _J] • 
RN(i,s;n) = a I· 0 p .. v- (J,s;n) 
~ J= 1.-J a 

Q (i,s;n) = a Il~ 0 p .. IS, ° q , y1(j,s';n). 
a J= 1.-J 5 = SS a 

[~(i,s;n)]l' [~(i,s;n)]2' [~(i,s;n)]3 and [~(i,s;n)]4 are the 

n period costs of taking aLC ' aLO' aRC and aRO respectively at the beginning 

followed by the best policy, where [Vl. denotes the i-th term of the right 
l. 

hand side of V. When 5 = S+l, aC and aO are the only available actions. In 

that case note that i in the expression vk(i,S+l;nJ is artificial and has no 
CL 

meaning since no machine is operating then. 

As the system is a Markov decision process with discount factor ° ~a < 1, 

the existence of a stationary policy minimizing the total a-discounted cost 

is guaranteed. The problem is now to find the structure of an optimal policy. 

It is conceivable that an optimal policy has the form that the repair decision 

is taken if and only if the condition of an operating machine becomes worse 

than some critical value, and that the decision to open the repair service 

gate is taken if and only if the number of machines in the repair system 

exceeds some critical value. 

Definition. A control limit policy with respect to operating machine 

is a nonrandomized policy where, as the option of repairing or leaving an 

operating machine is concerned, there is an i for each k, 5 and n, say i k ' ,s,n 
called the control limit, such that for all (i,k,s) with i < i

k 
,the 

,s,n 
decision at period n is to leave it in operation, and for all (i,k,s) with 

i > i the decision is to repair it. A control limit policy with respect 
= k,s,n' 

to repair shop is a nonrandomized policy where, as the option of opening or 

closing the repair service gate is concerned, there is an 5 for each k, i and 

n, say sk' ,called the control limit, such that for all (i,k,s) with ,'1-,n 
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s < sk' ,the decision at period n is to close it, and for all (i,k,s) with 
,1-,n 

s ~ sk' ,the decision is to open it. 
- ,1-,n 

A two-dimensional control limit 

policy is a control limit policy with respect to both operating machine and 

repair shop. 

Theorem 1. Assume the following conditions hold: 

1. Cri) is nondecreasing in i for 0 ~ i ~ I. 

2. A(i) - Cri) is nondecreasing in i for 17 < i ~ I. 

3. Pi(·)C Pi +1 (') for 0 ~ i ~ I-1 

where P. (k) = L· k p .. 
1- J~ 1-J 

and Pi (·) C Pi +17·) if and only :if Pi(t) ~ Pi+/t) for any t. 

Then there exists a stationary control limit policy with respect to operating 

machine which minimizes the total expected a-discounted cost of the mainte­

nance model with control of queue. 

Proof: We first consider the n-stage problem. For n ~1, 0 < i ~ I, 

o < s ~ S, and k = 0,1, let 

/;L (i,s) = min ,n 

IoR (i,s) = min ,n 

(2.3) 
{[~(i,s;n)]l' 
{[~ (i, s;n)] 3' 

[1~(i,s;n)]2} 

[1~(i,s;n)]4}. 
Then /;L (i,s) can be interpreted as the minimum n-stage a-discounted cost ,n 
given that a machine is in (i,s,k) at the beginning, and only the decision to 

keep a machine is allowed at the beginning" If only the decision to repair 

an operating machine is allowed at the beginning, we have ~R (i,s). ,n 

(2.4) 

Now, for 0 ~i ~I, 0 ~s ~S, and n~,O, 

tf,n+l(i,S) - f~,n+l(i,s) 
= A(i) + min {K(s,O) + R (i,s;n), K(s,]) + E + G + Q (i,s;n)} 

a a 

- C(i) - min {K(s+l,O) + R (O,s+l;n), 
a 

K(s+l,l) + E + G + Q (O,s+l;n)}. 
a 

Using all the conditions of this theorem, we can easily show that ~(i,s;n) 
and hence both Ra(i,s;n) and Qa(i,s;n) are nondecreasing in i (0 ~ i ~ I). 

With this, and by 2, we have that f L
O (i,s; - fRO (i,s) is nondecreasing 
,n ,nJ. J. 

in i (0 ~ i ~ I) for each sand n. Similarly for JL n(i,s) - JR n(i,s). 
n' , 

Hence, there exists a set of critical numbe,rs i
k 

s (k = 0,1, 0 ~ s ~ S) for , 
each n ~ 1 such that, as far as the option of repairing or leaving an operating 

machine is concerned, at the beginning of e,ach n-stage problem, if the state 

of the system is (i,k,s), to repair a machine is optimal if and only if its 

operating condition i is no less than ink ,which is a control limit policy 
,s 
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170 Y. Hatoyama 

with respect to operating machine. By the usual technique of expanding the 

n-stage problem to the infinite horizon problem, the optimality of a station­

ary control limit policy with respect to operating machine can be shown. 0 

At the end of the section, we make a few remarks on the relations between 

optimal decisions when the repair gate is closed and the corresponding optimal 

decisions when the gate is open. For this discussion, both E and Fare non­

negative. 

Lemma 1. When the repair service gate is closed at the beginning of a 

period, if aLO (aRO) is optimal for some (i,s), then aLO (aRO ' respectively) 

is also optimal for the same (i,s) when the gate is open. 

Proof: 
ment for aRO 
Q (i,s) = Zim 

Cl n--
k = ° implies 

We prove the statement for aLO. In a similar fashion, the state­

can be proved. If we let R (i,s) Zim R (i,s;n) and 
a n-- a 

Qa(i,s;n), aLO being better than aLC for a fixed (i,s), and 

A(i) + K(~,l) + E + G + Q (i,s) ~A(i) + K(s,O) + R (i,s). 
Cl - Cl 

Hence, 

A(i) + K(s,l) + G + Q (i,s) ~A(i) + K(s,O) + F + R (i,s). 
a - Cl 

Thus, for (i,s) and k=l, aLO is better than aLC· Similarly, aLO is better 

than aRC (aRO) for k = ° implies aLO is better than aRC (aRO ' respectively) 

for k = 1 . Therefore for (i, s), aLO is optimal when the gate is open. 0 

Lemma 2. When the repair service gate is open at the beginning of a 

period, if aRC (aLC) is optimal for some (i,s), then aRC (aLC ' respectively) 

is also optimal for the same (i,s) when the gate is closed. 

Proof: Similar to Lemma 1, and hence can be omitted. 0 

3. Case where Repair Time is Negligible 

In this section sufficient conditions to ensure the existence of a con­

trol limit policy with respect to repair shop minimizing the total a-discount­

ed cost are of interest. The following assumption is made throughout this 

section. For ° ~ s ~ 3+1, 

if s' ° 
(3.1) 

if s I ~ 0. 

The above assumption implies that the repair time of each machine is negli-
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gible compared with the length of a period. This will be reasonable if 

purchasing or ordering machines takes place instead of repairing when "the 

gate is open." Then the following lemma is shown. 

Lemma 3. Assume the following conditions hold: 

1. Cri) is nondecreasing in i for ° ~ i ~ I. 

2. K( 8, k) is nondecreasing in 8 (0 ~ 8 ~ 8+1) for k = 0,1. 

3. P.?- crI). 
Then 0(i,8;n) is nondecreasing in s (0 ~ ,S ~ S+l) for each ° < i ~ I, k=O,.Z, a 
and n~O. 

Proof: Proof is by mathematical induction. The claim trivially holds 

for n=O. Suppose it holds for n=m-1~0. Then for 0 ~8 ~S, 

VO(i,s;m) = min{A(i) + K(s,O) + R (i,8;m-1), 
a a 

A(i) + K(8,l) + E + G + Q (i,8;m-1), 
a 

Cri) + K(8+1,O)f- R (0,8+1;171-1), 
a 

Cri) + K(8+1,l)f- E + G + Q (O,8+1;m-1)}. 
a 

Now R 's in the above expression are nondecreasing in 8 by the induction 
a 

hypothesis, and Q 's are constant in 8 since in fact, 
a 

(3.2) Q (i,s;m-1) = a I~ 0 p .. ~(j,O;m-1). 
a J= l..J a 

Also K(8,k) is nondecreasing in 8 (0 ~ 8 ~ S), yielding that vD(i,8;m) is 
a 

nondecreasing in 8 (0 ~ 8 ~S). Also, 

V~(i,S+l;m) - ~(i,S;m) 

~ P + min{K(S+l,O) + Ra (0,S+1;m-1), 

E + G + K(S+l,l) + Qa(O,S+1;m-1)} 

- (C(i) + min{K(S+l,O) + .Ra (0,S+1;m-1), 

E + G + K(Sf-1,l) + Qa(0,S+1;m-1)}) 

= P - Cri) ~ 0, by 1 and 3. 

Thus, vD(i,8;m) is nondecreasing in 8 (0 ~ 8 ~ S+l) for each fixed ° ~ i ~I. 
a 

Similarly, we can show that ~(i,s;m) is nondecreasing in 8 (0 ~ 8 ~ S+l), 
a 

completing the mathematical induction and the proof. 0 

Using the above lemma we can prove the following theorem, which gives 

sufficient conditions for the optimality of a control limit policy with 

respect to repair shop. 

Theorem 2. If all the conditions in Lemma 3 hold, and in addition if, 
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172 Y. Hatoyama 

4. r~b~1{K(s+r+1,O) - K(s+r,O)} ~ r~~1{K(s+r+1,l) - K(s+r,l)}, 0 ~ s ~ 8-1, 

holds, then there exists a stationary control limit policy with respect to 

repair shop which minimizes the total expected a-discounted cost of the 

simplified maintenance model with control of queue. 

(3.3) 

Proof: For n ~ 1, 0 ~ i ~ I, 0 ~ s ~ S, and k = 0,1, let 

~,n(i,s) = min {[~(i,s;n)ll' [~(i,s;n)13} 
lo,n(i,S) = min {[~(i,s;n)J2' [~(i,s;n)]4}' 

~C (i,s) is the minimum n-stage a-discounted cost given that the state of ,n 
the system is (i,k,s) and only the decision to close the repair shop is 

allowed at the beginning. If only the decision to open the repair shop is 

allowed at the beginning, we have ~o (i,s). ,n 
Now as in the proof of Theorem 1, it is sufficient to verify that 

~C (i,s) - ~o (i,s) is nondecreasing in s (0 ~ s ~ 8) for each fixed i, k ,n ,n 
and n. But for n~O, 0 ~ i ~ I, 

(3.4) ~,n+1(i,s) - ~,n+1(i,S) 
= min{A(i) + K(s,O) + R (i,s;n), Cri) + K(s+l,O) + R (O,s+l;n)} a a 

- E - G - min{A(i) + K(s,1J + Qa(i,s;n), 

Cri) + K(s+l,l) + Q (O,s+l;n)}. a 

Here, the rate of increase of fg,n+1(i,s) w.r.t. s is bounded above by 

max1{K(s+r+1,l) - K(s+r,l)} as Q 's are constant in s, and that of r-u, a 
~,n+1(i,s) w.r.t. s is bounded below by r~b~1{K(s+r+1,O) - K(s+r,O)} as 

Ra's are nondecreasing in s by Lemma 3. Hence, if 4 holds, the difference 

~,n+1(i,S) - fg,n+1(i,S) becomes nondecreasing in s (0 ~ s ~ S) for n~l 
and 0 ~ i ~ I. In a similar manner, ~ n(i,s) - ~ n(i,s) is shown to be , , 
nondecreasing in s (0 ~ s .~ S), which is what we want. 0 

Condition 4 gives the relation between the holding cost when the gate is 

closed and that when the gate is open. In particular, if K(s,k) can be 

represented as linear functions in s, Le., if K(s,k) = hk s + lk (k=O,1J, 

then this condition holds when hO ~h1' which seems to be a reasonable assump­

tion. 

Combining the previous two theorems gives sufficient conditions under 

which a two-dimensional control limit policy is optimal. 

Theorem 3. Assume the following conditions hold: 

1. Cri) is nondecreasing in i for 0 ~ i ~I. 
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2. A(i) - Cri) is nondecreasing in i for () ~ i ~ I. 

3. K(s,k) is nondecreasing in s (0 ~s ~B+1) for k=O,l. 

4. P ~ crI). 
5. Pi (') C Pi +/·) for 0 ~ i ~ I-1. 

6. r~b~l{K(s+r+l,O) - K(s+r,O)} ~r~~1{K(s+r+1,1) - K(s+r,l)}, 0 ~ s ~ B-1. 

Then there exists a stationary two-dimensional control limit policy minimizing 

the total expected a-discounted cost of the simplified maintenance model with 

control of queue. 

One realization of an optimal stationary two-dimensional control limit 

policy is illustrated in Fig. 2. As previously pointed out in Lemmas 1 and 

2, the region where aLO (aRO) is optimal, ea11ed the optimal region of aLO 

(aRO ' respectively), when the gate is open covers the optimal region of aLO 

(aRO' respectively) when the gate is closed. Further, the optimal region 

of aLC (aRC) when the gate is closed covers that of aLC (aRC' respectively) 

when the gate is open. Thus, if we keep tl1e condition i of an operating 

machine fixed, an optimal policy has the following form: keep the gate closed 

(aLC or aRC is taken) if the number of machines waiting for repair service 

is mi or less, and when the number of machines waiting for repair service 

increases to Mi (Mi ~mi)' open the gate (aLO or aRO is taken), and keep it 

open until the number of machines to be repaired again drops to mi . This 

is called a hysteresis loop policy, which often appears in the theory of 

control of the service process. 

173 

Notice also that the boundary of optimal regions of aRO and aRC is 

vertical. This can be easily seen by comparing the appropriate terms in (2.1). 

Consider the boundary of optimal regions of aRO and aLO' If the holding cost 

K(s,l) is concave in s, then for each fixed i, 

k=O (closed) k=l (open) 

s 012 . S S+l 
i 

0 ~ 1 

\.S o 1 2 • S S+l 
1 

0 ~ 1 
2 aLC 3 

2 aLO 
3 

I 
aRO 

Figure 2. A typical optimal two-dimensional control limit policy 
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C(i) + K(s+l,l) + Q (O,s+l) ~A(i) + K(s,l) + Q (i,s) 
~ ~ 

implies 

C(i) + K(s+2,1) + Q~(0,s+2) ~A(i) + K(s+l,l) + Q~(i,s+l), 

since Qa's are constant in s. That means, if aRO is better than aLO for 

(i,k,s), so is for (i,k,s+l), which yields that the boundary curve is nonde­

creasing as is shown in Fig. 2. If K(s,l) is convex in s, the curve becomes 

nonincreasing. 

4. General Case 

The simplified assumption on the repair time is relaxed in this section 

at the cost of optimality of a two-dimensional control limit policy in the 

strict sense. Here we assume that the reparability of the repair facility 

does not depend on the number of machines waiting for repair service. Let 

q(r) be the probability that r machines are repaired in a period supposing 

there are infinite number of machines to be repaired. Then, 

(4.1) 
_ {q (s-s ' ) if 1 ~ s' ~ s 

qss' - Loo 
q (r) if s'=o. r=s 

Consider a stationary control limit policy with respect to operating 

machine. The existence of such a policy minimizing the total expected a-

discounted cost is guaranteed if the conditions in Theorem 1 are all satis­

fied. In the case of a stationary control limit policy with respect to repair 

shop, the analysis becomes much complicated. The analysis must be performed 

without assuming a nice structure on the cost criterion. A bounding technique 

which follows next then seems appropriate for the analysis of this type of 

model. 

(4.2) 

For the future use, let 

R = m~ {K(s,k) - K(s-l,k)} 
S,K. 

K = mi~ {K(s,k) - K(s-l,k)}. 
- s, K. 

Lemma 4. Assume the following conditions 

l. A(i) is nondecreasing in i for 0 ~i ~I. 

2. Cri) is nondecreasing in i for 0 ~i ~I. 

3. K(s,k) is nondecreasing in s (0 ~s ~ 8+1) 

4. P ~ min{A(O),C(O)}. 

5. P.(·) C P. 1(·) for 0 < i ~ I-1. 1.- 1.-+ 

hold: 

for k = 0,1. 
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Then, for 1 ~s ~S+l, ° ~i ~I, k=O,l, and n~O, 

(4.3) ~(i,s;n) - ~(i,S-l;n) ~ Mn , 

where 

(4.4) 
n 

M 1
1

-a (P - min{A(O),C(O)} + K). 
n -a 

Proof: Mathematical induction is applied. The claim trivially holds for 

n = 0. Suppose the argument holds for n = m-1 ~ 0, and consider the case for 

n = m. For k = ° and 1 ~ s ~ S, we compare the corresponding terms of the right 

hand side of (2.1). 

Similarly, 

[V~(i,s;m)]l - [~(i,s-l;m)]l 

= K(s,O) - K(s-l,O) + a fop . .(VO (j,s;m-1) - VO (j,s-l;m-1J) 
J= 1,J a a 

~ K(s,O) - K(s-l,O) + a L~ ° p . . M 1 ~ K + aM l' J= 1,J m- - m-

= A(i) + K(s,l) + E + G + Q (i,s;m-1) 
a 

- (A(i) + K(s-l,l) + E + G + Q (i,s-1;m-1)) 
a 
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= K(s,1J - K(s-l,l) + a L~ ° p .. {q(O)(~(j,s;m-1J - ~(j,s-l;m-1J) 
J= 1,J a a 

+ q(1) (~(j,s-1;m-1) - ~ (j,s-2;m-l)) + ... 
a a 

+ q(s-1J(~(j,l;m-1J - ~(j,O;m-1J)} a a 

< K + a L~=O Pij(q(O) + q(l) + ... + q(s-l)) Mm_1 

,I - - -
t..·Op··M l=K+aM l' J= 1,J m- m-

In a similar manner, the comparison of the corresponding third terms and 

that of the fourth terms yield the same upper bound K + aM l' Hence, for m-
l~s~S,O~i~I, 

V~(i,s;m) - V~(i,s-l;m) ~K + aMm_1. 

For s = S+l, and ° ~ i ~I, 
[V~(i,S+l;m)]l - [V~(i,S;m)]l 

= P - A(i) + K(S+l,O) - K(S,O) 
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+ et {l.~=O POj ~(j,S+l;m-1J - l.~=o Pij ~(j,S;m-1)} 

~p - A(i) + K(S+l,O) - K(S,O) 

+ et l.~=0 POj(~(j,S+1;m-1) - V~(j,S;m-1)) by 5 

~ P - min{A(O),C(O)} + K + aMm_1. 

Similarly, using PO(·)C: P.(·) and that ~(j,s;m-1) is nondecreasing in j 
1- et 

(0 ~ j ~I), [Vo(i,S+1;m)]2 - [Vo(i,S;m)]2 can be shown to have the same 
- - et et 

upper bound. Also, 

[V~(i,S+l;m)]l 0- [V~(i,S;m)]3 = P - Cri) ~ P - min{A(O),C(O)}. 

We can show the same upper bound also on [~(i,S+1;m)]2 - [V~(i,S;m)]4' 
yielding that for ° ~ i ~ I, 

~ (i,S+l;m) vO (i,S;m) ~P- min{A (0), C(O)} + K + aM r et Ct m-

As P ~min{A(O),C(O)} from 4, for ° < i ~I, and 1 ~s ~ S+l, 

VO (i,s;m) - vO (-i s-l o m) < P - min{A(O),C(O)} + K + aMm_1 =M. 
et et' , m 

A similar argument indicates that for ° < i ~ I, and 1 < s ~ S+l, 

~(i,s;m) - ~(i,s-l:m) <M , 
et et - = m 

completing the mathematical induction, and hence the proof. 0 

The above lemma gives the upper bound on vk(i,s;n) - vk(i,s-l;n). The 
et et 

lower bound on the same expression is given in the following lemma, whose 

proof is omitted since the result can be obtained by mathematical induction 

where its inductive step can be performed by comparing the corresponding terms 

for each case as in the previous lemma. 

(4.5) 

where 

(4.6) 

Lemma 5. If conditions 2 and 3 of Lemma 4 hold, then for 1 ~ s ~ S+l, 

k = 0, 1, and n;;.l, 

vkri,s;n) - vk(i,s-l;n) 
et et 

n 

> M 
= -n 

_ 0 {l-(etq(O)) 
Mn - m1-n 1-etq(0) ~ , P - C(I)}. 

Let M = Um M and M = Um M. Then it is easy to see that 
"" n-+«> n -"" n-+«>-n 

(4.7) M-M<M -M <M-M. 
n -n = n+ 1 -n+ 1 = "" -"" 

In this section sufficient conditions for the optimality of a control 
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limit policy with respect to repair shop in the strict sense are not derived. 

Instead, sufficient conditions are obtained under which a control limit type 

of property holds between two actions aLC and aLO' and between aRC and aRO' 

The next lemma gives that property. 

Lemma 6. Assume all the conditions of Lemma 4 hold, and furthermore 

assume the following condition holds: 

6. K(s+l,O) - K(s,O) ~ K(s+l,l) - K(s,l) + a(Moo - Moo) for 0 ~ s ~S. 

Then if aLO is better than aLC for (i,k,s) as an infinite horizon problem, 

so is for (i,k,s+l). Similarly, if aRO is better than aRC for (i,k,s), so 

is for (i,k,s+l) (0 ~i ~I, 0 ~s ~S-l, k=O,l). 

Proof: Consider the case where k = 0.. The proof of the case where k = 1 

is similar, and can be omitted. 

Suppose aLO is better than aLC for (i,k=O,s). That is, the total cost 

of choosing aLO at the beginning followed by the best policy is smaller than 

or equal to that of choosing aLC at the beginning followed by the best policy 

when the state of the system at the beginning is (i,k=O,s). Equivalently, 

A(i) + K(s,l) + E + G + Qa(i,s) ~A(i) + K(s,O) + Ra(i,s). 

Now by Lemmas 4 and 5, and by the definitions of Ra and Qa , 

R (i,s+l) - R (i,s) > ~ 
ex. a. =-00 

Q (i,s+l) - Q (i,8) < aM • a a = 00 

Hence, 

A(i) + K(8+1,0) + R (i,s+1) - (;1(i) + K(s+l,l) + E + G + Q (i,s+l)) 
a a 

= A(i) + K(s,O) + R (i,s) - (A(i) + K(s,l) + E + G + Q (i,s)) a a 

+ (K(8+1,0) - K(s,O)) - (K(s+l,l) - K(s,l)) 

+ (R (i,s+1) - R (i,s)) - (Q (i,s+l) - Q (i,s)) a a a a 

Therefore we can conclude that aLO is better than aLC for (i,k=O,s+l). In a 

similar fashion, for 0 ~ i ~ I, and 0 ~ 8 ~S-l, 

Cri) + K(s+l,1) + E + G + Q (0,03+1) ~ Cri) + K(s+l,O) + R (O,s+l) a - a 
implies 

cri) + K(s+2,1) + E + G + Q (0,8+2) ~ Cri) + K(s+2,0) + R (0,8+2), 
a - a 

yielding that aRO is better than aRC for (i,k=O,s+l) assuming aRO is better 

than aRC for (i,k=O,s). 0 

177 
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Suppose that all the conditions in both Theorem 1 and Lemma 6 are satis­

fied. By Theorem 1, there is a stationary control limit policy with respect 

to operating machine which minimizes the total expected a-discounted cost. 

The i-s diagram of the optimal policy, as is seen in Fig. 3, is divided into 

upper and lower divisions for each k. The action of leaving an operating 

machine in operation is taken in each state in the upper region, and the 

action of repairing an operating machine is taken in each state in the lower 

region. The former has two alternatives aLO and aLC ' while the latter has 

two alternatives aRO and aRC' We now focus on the possibility of subdividing 

each region having two alternatives. It is immediate from the first part of 

Lemma 6 that there exist critical numbers s~ k for each fixed k (k = 0,1) and 
'1-, 

i (0 ~ i ~ I) such that for all (i,k,s) with s < s~,k' aLC is better than 

aLO' and for all (i,k,s) with s ~ s~ k' aLO is no worse than aLC ' This , 
implies that the upper division can be divided into left and right subdivi-

sions. aLC is optimal 

optimal in each state 

show that there 

in each state in the left subdivision, while aLO is 

in the right subdivision. In a similar manner, we can 

for all (i,k,s) 
. h R 

w1t s~sik' , 

exist critical 
R 

with s < 8. k' 
'1-, 

aRO is no worse 

R numbers s. k for each fixed k and i such that 
'1-, 

aRC is better than aRO' and for all (i,k,s) 

than aRC' Thus the lower division can be 

divided into two subdivisions, where aRC is optimal in each state in the left 

subdivision, and aRO is optimal in each state in the right subdivision. We 

call this type of policy a stationary two-dimensional weak control limit 

policy. One realization of a two-dimensional weak control limit policy, 

optimizing our problem, is shown in Fig. 4. The control limits found in this 

kind of policy are those on the action of repairing or leaving an operating 

or 

aRC 

S+l 

D 

IL.-____ ---' 

Figure 3. A typical optimal 
control limit policy 
with respect to 
operating machine 

machine, those on the action of aLC or 

aLO' and those on the action of aRC or 

aRO ' Control limits on the action of 

opening or closing the repair shop might 

not exist., In this sense, this type of 

policy is weaker than a two-dimensional 

control limit policy. 

As in the previous case where the 

repair time is negligible, notice that 

the boundary of optimal regions of aRO 
and aRC is vertical. 

As a conclusion of this section, we 
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k=Q (closed) k = 1 (open) 

s 
0 1 2 i . 5 5+1 5+1 

Q ~ 1 I aol 
2 
3 

aRC aRO 
I I L..-.L.-___ ~ 

Figure 4. A typical optimal two-dimensional weak control limit policy 

restate the above discussion as a theorem. 

Theorem 4. Assume the following conditions hold: 

1. Cri) is nondecreasing in i for 0 ~ i ~s, I. 

2. A(i) Cri) is nondecreasing in i for 0 ~ i ~I. 

3. K(s,k) is nondecreasing in s (0 ~ s ~ 3+1) for each k= 0,1. 

4. P ~min{A(O),C(O)}. 

5. Pi (·) C Pi +/·) for 0 ~ i ~ I-1. 

6. K(s+l,O) - K(s,O) ~ K(s+l,l) - K(s,l) + a(M
oo 

- Moo) for 0 ~ s ~3. 

Then there exists a stationary two-dimensional weak control limit policy which 

minimizes the total expected a-discounted cost of the model. 

Conditions 1, 2, 3 and 5 are the same as those in Theorem 3. 1 indicates 

that the material cost increases as the condition of the machine to be 

repaired gets worse. 2 says that the operating cost must increase more than 

the increase of the material cost for repairing a machine as its condition 

gets worse. 3 means that the holding cost increases as the number of machines 

in the repair system increases. 5 is called the IFR (increasing failure rate) 

property of a Markov chain since it says that the higher the state the greater 

the chance of further deterioration. 4 gives a lower bound on the penalty 

cost, which is usually very large. 6 is the only restrictive condition. It 

gives how much the increment of the holding cost when the gate is closed is 

bigger than the corresponding cost when the gate is open. It seems appropri­

ate though that the former is more costly than the latter. 

179 
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5. Computing Remarks and Future Topics 

As each model treated here is a Markov decision model, the usual tech­

niques such as policy improvement procedure and LP approach are applicable 

to compute an optimal policy. However if we know that an optimal policy is 

of a two-dimensional control limit form, better algorithms can be expected 

since this information should enable us to explore this structure, thereby 

decreasing significantly the number of policies that must be considered. One 

such a realization can be easily constructed where "good" policies are search­

ed iteratively among stationary two-dimensional control limit policies 

whenever po.ssible before switching to a usual policy improvement procedure. 

Since the discrete time queueing control problem has not been fully 

studied, there are several extensions that can be made on our maintenance 

with control of queue models. Controlling the queue length by changing the 

repair service rate, controlling a multiple number of repair service stations 

by opening or closing them will be some topics for future research. 
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