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Abstract An approximation formula for the mean waiting time of an M/G/c queue is proposed. It estimates the 

mean waiting time from a moment of order Q~ 2, rather than the second moment! of the service distribution. To­

gether with the Lee & Longton's formula [I] and the Page's formula [2], it was numerically tested on a variety 

of cases, and the test shows that the new formula is generally better than the previous two formulas, especially 

for queues with mixtures of Erlang distributions as the service distribution. A similar approximation formula for the 

variance of the waiting time is also proposed. 

1. Introduction 

Many approximation formulas for the mean waiting time of an M/C/c 

queueing system have been proposed by Lee & Longton [1], Page [2] and other 

authors. Most of them estimate the mean waiting time EC(W) from the 2nd 

moment b
Z 

of the service distribution using the values of the mean waiting 

times EM(W) and ED(W) of the corresponding M/M/c and M/D/c queueing 

systems with the same mean service time and the same traffic intensity. For 

example, the Lee & Longton's formula is 

(1.1) 

and the Page's formula is 
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(1. 2) 

where 

? c (W) 

b. is the ith 
'& 

The author tested 
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I 

moment of the service distribution. 

the above two approximations on a variety of cases 

designated in Table I in Section 3. The result of the test, which is summa­

rized in Table 2 in Section 3, shows that the~e approximations are fairly 
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good for queueing systems with convolutions of Erlang distributions as the 

service distribution. But for some queueing systems with mixtures of Erlang 

distributions, they are not good. It seems that the use of the 2nd moment 

causes the unfitness. As will be discussec in the next section, the 2nd 

moment is not suitable for estimating the mean waiting time of a multi-channel 

queueing system, especially of a system with IQW traffic intensity. A moment: 

of lower order than 2 will be rather adequate to estimate it. 

In this paper we explore a new approximation formula which estimates the 

mean waiting time EC (W) from a moment b
a 

of order a < 2 of the service 

distribution. From several natural conditions stated in the next section, we 

can derive the following approxima tion formula. 

b 
I 

(1. 3) EC (W) 
a a-I (W) 

b a ED , 
1 

where a is the unique positive number suc:h that 

(1.4) 

1 
a-I 

rea+1» ED (W) , 

where r(z) is the gamma function. This formula was also tested in the 

cases designated in Table 1. The relative error has been less than 10% 

in every case in the test, and in most cases this approximation has been 

better than the previous two approximations, especially in cases of mixture 

type service distributions. 

Similarly we can derive an approximation formula for the variance 

Vc (W) of the waiting time. Let V
M 

(f.f) and 

the waiting times of the corresponding M/11/e 

VD (W) be the variances of 

and M/D/e queueing systems 

with the same mean service time and the same traffic intensity, and B be 

the unique positive number such that 
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2 

(1. 5) v (W) - (E (/» 2 
M M 

(f(B+l»B-l {VD(W) - (E
D

(W»2} 

Then VC(W) is approximated by 

2 

(1. 6) ~j-
b B 

1 

) B-1 {VDU>') - (E
D

(W»2} + (;G(W»2 

The relative error of the approximation has been less than 21% in every case 

designated in Table 1. 

Tables of a, B, E (W), 
M 

and 

are presented in Appendix, together with some notes on calculations of 

and 

2. A New Approximation Formula for the Mean Waiting Time 

The purpose of this section is to show the derivation process of the new 

approximation formula (1.3) from several conditions. Let us consider a multi-

channel queueing system M/G/e In the system, customers arrive at a serviC0 

facility with (? channels in parallel via a Poisson process with rate '\. 

If all channels are busy, the customers form a single queue and are served in 

order of arrival. The service times are independent random variables subject-

ing to a distribution function G(.r) Let b be the moment of order y 
y 

of the distribution G, and p = ,\bl/e the traffic intensity. We denote by 

EC(W) the mean waiting time in the steady-state. 

First we show a reason for considering an approximation formula which 

depends on b 
a 

for some a ~ 2 rather than b 
2 

Let L be the total 

number of customers being served or waiting in the queue. Since 

00 

(2.1) i L nP{L 
n=l 

,. + n} , 

if p is sufficiently small, EGO>') 

As p tends to zero, P {L = e + I} 

is approximated by .!. P {L = e + 11 . 
,\ 

is asymptotically equal to the 

conditional probability of the same event conditioned that the services of 

e customers being served have begun with their arrivals. Hence, when ,\ 

tends to zero, 
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(2.2) 

where 

(2.3) 

Hence, 

o If 

c = 1) , 
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P {L = c+l} = J: xK(x)G(;r)dx + o(A) 

G(x) = 1 - C(x) and K(x) is a function given by 

K(x) C G(x
2

)dx
2 r C(x 3)dx3 r C(x )dx c c 

x 2 
x

c
_

l 

E (VI) 
C 
K(x) 

is proportional to the integral in (2.2) for sufficiently small 

in the integrand is a constant function (this is the case if 

then the integral is proportional to b
2 

, and it becomes reasonable 

to estimate ECOI) from b However, if c > 1 K(x) is a non-
2 

increasing function vanishing at infinity. So, the masses of C at large 

x's less contribute to the integral, and it seems rather adequate to estimate 

EC(1) from a moment of lower order than 2. 

Next, associated with the above queueing system, let us consider another 

queueing system with c channels, a Poisson arrival process with rate 

A' = Alp, and a service distribution function 

(2.4) C I (x) = q + [}C(x) , x~O, 

where p and q are positive numbers such that p + q = 1 

the mean waiting time of the new system and by b I 

Y 

We denote by 

the moment of 

order y of C' Then b'y = pby ' and the traffic intensity of the new 

system is the same as that of the original system. This system is considered 

that customers requiring service times equal to zero are added to the original 

system in a random fashion. So both queueing systems have the same waiting 

time distribution, especially the same mean waiting time, Le., 

(2.5) 

It is desirable that approximation formulas have the corresponding 

property to (2.5). The Lee & Longton's for-mula (1.1) satisfies this property, 

but the Page's formula (1.2) does not. 

There is another property which shoulc be satisfied by approximation 

formulas. If the time scale of a queueing system is changed, then the mean 

waiting time of the system changes proportionally to it. To say more pre­

cisely, let EC*(rv) be the !'lean waiting time of a queueing system formed 

from the qlleucing system under condisderation by changing the time scale so 

that the arrival rate ~* = ~/O and the service distribution function 
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c* (x) = C(x /8). Then E
C

* (W) = 8E C (W). This property should be retained· 

by approximation formulas. Both the Lee & Longton's formula and the Page's 

formula satisfy this property. 

Now we shall consider a new approximation formula for 

depends on the service distribution only through b
l 

and 

EC(W) which 

b for some 
a 

a < 2 and which satisfies the two properties stated above. Let 

A(b
l

, b) be the approximation formula. 
A a 

Then from the first property 

EC(W) corresponding to (2.5) 

(2.6) 

and from the second property EC*(W) = 8EC(W) , 

(2.7) 

It can be proved that if (2.6) and (2.7) hold for any possible values of b
l 

' 

b p and 8, then the function A must be of the form 
a 

(2.8) 

b 1 
A(b

l
, ba) = a. ( a )a-l 

Z\" 
where a is a proportional coefficient. To prove this, we note that from 

(2 • 6) and ( 2. 7) 

(2.9) A(l, 1) = A(p, p) = + A(8p, 8
a
p) 

for any p and 8 such that 0 < p < 1 and 8 > 0 0 Substituting 

(2.10) 8 = ( 

b 1 
a a-I 
~) and p 

into (2.9), we get (2.8) with a = A(l, 1) • 

b a 
1 

--z;;; 
1 

a-I 
) 

The function in (2.8) contains two unknown constants a and a • 

In order to determine the values of them, we will im~ose the condition that 

the approximate value coincides with the exact one if the service distribution 

is an exponential distribution, Le., C(x) = 1 - exp (-x/b
l

) for x ~ 0 , 

or if it is a deterministic distribution, Le., C(x) = 0 for x < b
l 

and 

= 1 for x > hI • 

Consider the case where the service distribution is the deterministic 

distribution. In this case, we will write ED(W) and ED(W) instead of 
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Then from the above condition we have ED (W) 

Since b a 

(2.11) 

b
l
a , from (2.8) we have 

Hence the proportional coefficient a is given by 

(2.12) a 

(Note that the right hand side of (2.12) does not depend on b
l 

from the 

second property t,'C*(W) = 8EC(iy) stated above.) Substituting (2.12) into 

(2.8), we have the right hand side of (1.3) in Section 1. 

Next consider the case where the service distribution is the exponential 

distribution. In this case, we will write EM(W) and A EM(W) instead of 

EC(W) and EC(II) From the above condition we have EM(W) = EM(W) 

Since b 
rx 

(2.13) 

1 
a-I 

abl(r(a+l» 

Combining (2.13) with (2.12) we obtain the equation (1.4). Since log r(z) 

is continuous and convex for z > 1 and log r(2) = 0 the func tion 
1 

f(rx) = (r(Cl+l) ),1-1 is continuous and monotone increasing for Cl 2:, 0 if 

f(l) is suitabLy defined. Since f(O) = 1, f(2) = 2 and 

(2.14) 

the equation (1.4) determines a unique positive Cl ~ 2 • 

Thus the approximation formula (1. 3) has been den_ved from the following 

four conditions: 

(i) it depends on the service distribution only through bl 
for some rx < 2 

anc! b 
Cl 

(ii) the approximate value is unchanged even if customers requiring service 

times equal to zero are added in a random fashion, 

(iii) the approximate value changes proportionally as the time scale changes, 

and 

(iv) i.e., the approximate value 

coincides with the exact one if the service distribution is an 

exponential distribution or a deterministic distribution. 

Note th.H the Lee & Longton's formula (1.1) satisfies (i) with C'l = 2, (il), 

155 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



156 Y. Takahashi 

(iii) and a half of (iv), but it does not satisfy ED(W) = ED(W) 

The Page's formula (1.2) satisfies (i) with a = 2 (iii) and (iv), but it 

does not satisfy (ii). 

The approximation formula (1.5) for the variance of the waiting time is 
2 

derived by applying a similar argument to the quantity V C(W) - (ECU!)) 

The reason for considering the quantity rather than VC(W) is that the 

approximation formula derived from the quantity agrees with the Pollaczek's 

formula 

(2.15) 

for a single channel queueing system, but the corresponding one derived from 

VC(W) does not. 

3. Numerical Test for the Approximation Formulas 

For the test of fitness of the approximation formulas, the author 

calculated the means and variances of waiting times for the cases described 

in Table 1. The calculation was achieved on NEAC 2000-700 at Tohoku 

University, using the algorithm proposed in [3]. 

Table 1. Calculated cases 

* Service distributions 

a. Erlang distributions with phases from Z to 7 

( 6 distributions ) 

b. Convolutions of two Erlang distributions with phases k and h 

such that 

k + h < 4 

Z bZ/b 1 = 1.3 (0.1) 1.9 

ZO distributions ) 

c. Mixtures of two Erlang distributions with phases k and h 

such that 

Zm, m = -3, -Z, ••• , 2, 3 
The ratio of the means of 
the Erlang distributions 

2 b2/b l = 1.6 (0.1) 2.0 (O.Z) 3.0 (1.0) 5.0 
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Cl k h = 1 26 distributions 

c
2 k 1, h = 2 67 distributions 

c 3 k h = 2 34 distributions 

,;'c Number of channels c 1, 2, 3 and 4 

* Traffic intensity p 0.1 (0.1) 0.9 

The approximation formulas (1.1), (1.2), (1.3) and (1.5) were tested for 

queues designated in Table 1. The maximum relati ve errors of the approxima te 

values are tabulated in Table 2. The result of the test shows the following 

points: 

Comparison between approximations ~(W) 

i) Generally, is more accurate than ~(W) and ~(W) is more 

accurate than 

ii) For queues with service distributions in Group a (Erlang distributions) 

or in Group b (convolutions of Erlang distributions), ~(W) and EC(W) 

are satisfactorily accurate. 

iii) For queues with service distributions in Group c (mixtures of Erlang 

distributions), sometimes ~(W) and ~(W) are not good, but EC(W) is 

not so bad. 

iv) For queues with service distributions in Group c such that 

b < 
·3 = 

2.0 b2
2/b l 

i.e., roughly speaking, not long tailed distributions in 

Group c ~(W) and ~(W) are not bad, but EC(W) is better. 

Relative errors of Ec(W) and V c(W) 

i) The relative error of EC(W) is within 10% in every case in the test. 

Also, the relative error of V c(W) is within 21% in every case, and this 

indicates that t'1e relative error of ~M which is an approximation 

of the standard deviation of the waiting time, is within 10% in every case. 

ii) The result stated above ensures that EC(W) and VC(W) are fairly 

accurate for queues we ordinarily deal with. However this does not mean that 

they are always accurate. For a queue with a service distribution with 

b = 
2 EC(W) is infinite, while EC(W) may be finite. 
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Table 2. 

maximum 

Y. Takahashi 

Maximum relative errors of approximate values 

100 x I (approximate value) - (exact val~~ 
(exact value) 

The maximization is taken over service distributions in the designated 

group and over the number of channels c from 1 to 4. 

a , band c. (i = 1, 2 , 3 ) 
~ 

in the first column represent groups of service 

distributions explained in Table I, and c * (i = 1,2,3) represent the 
i 

group of service distributions in 

Group 

a 

b 

c * 1 

c * 2 

c * 3 

p = .3 
= .6 
= .9 

p = .3 
=.6 
= .9 

p = .3 
= .6 
= .9 

p = .3 
= .6 
= .9 

P = .3 
= .6 
= .9 

P = .3 
= .6 
= .9 

P = .3 
= .6 
= .9 

p = .3 
= .6 
= .9 

~~(W) 

17.0 
7.51 
1.46 

12.3 
5.45 
1.06 

62.4 
30.6 
5.33 

83.5 
39.0 
6.52 

50.3 
25.3 
4.47 

19.8 
8.15 
1.50 

23.6 
9.56 
1. 74 

7.08 
3.71 

.77 

c. 
~ 

such that b3 ~ 2.0b
2

2/b
1 

~(W) EC(W) V G(W) 

.57 .40 1.77 

.80 .94 .70 

.32 034 .13 

2.66 .58 2.45 
.73 .83 .55 
.23 .29 .11 

39.8 5.08 11.1 
24.2 7.47 14.5 
4.51 1.80 .91 

58.0 7.65 19.7 
32.3 9.61 20.6 
5.70 2.29 2.38 

36.4 5.89 14.3 
21.2 6.26 12.3 

3.93 1.47 1.11 

6.27 2.10 7.77 
3.97 1.67 2.74 

.86 .57 .27 

7.85 2.35 5.33 
4.26 2.01 2.25 

.96 .69 .56 

8.24 1. 84 6.85 
4.83 1.06 3.21 

.94 .32 .81 
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Appendix. Some Notes on Calculations of EC(W) and Vc(W) 

The values of S, E,\/W) VM(W) 
2 

ED(W) and et, , - (EM(W) ) , 
VD(W) - (E

D
(W»2 are tabulated in Tables 3, 4 and 5 below. 

If sample data of the service distribution are available, then one can 

calculate EC(Jv) by using Tables 3 and 5 and estimates 

1 
n 1 n 

b
l L and b L et 

X. x. 
n 

i=l 
1- et n i=l 1-

If the service distribution is an Erl.ang distribution with phase k, 
then 

b 
et 

b et 
1 

1 
(k-l)! 

f (k + et) 1 (1 + a)(l + %) 
k

et 

et 
(1 + k-l) f (a + 1) • 

So, using the relation (1.4), one can calculate EC(W) from the formula 

1 

k~ (1 + a)(l + i-) ... (1 + k~l» a-I EM(W) 

using Tables 3 and 4. This formula does not contain the ganuna function 

explicitly. 

If the service distribution is a convolution of several Erlang distri­

butions or a mixture of such convolutions, then the distribution function of 

it can be written as 

where 

phase 

such 

C(x) ~ Pi Ek . (x/8 i ) 
1- 1-

Ek(x) is the distrivution function of the Erlang distribution with 

k and mean equal to 1, and p. are (possibly negative) numbers 
1-

that L p. = 1 Since 

b = 
1 

b 
a 

L 
i 

1-

p. 
1-

8. 
1-

8. 
1-

k. 
1.-

and 

)a --:(::-k~l=---:-l7')-:-! f(ki + a) 
i 

we have 

159 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



160 Y. Takahashi 

Table 3. The values of a and B 

a and B are positive numbers satisfying 

1 

EM(W) = (f (a+l) )a-1 ED(W) 

and 

2 

VM(W) - CE
M

CW»2 = CfCB+1»B-1 [VDCW) - (EDCW»2] 

respectively, where EMerv) , EDCW), VMCW) and VDU';) are means and 

variances of the M/M/c and M/D/c queues with the same number of 

channels, the same traffic intensity, and the same mean service time. 

c the number of channels 

P the traffic intensity 

The values of a 

c P = .1 .2 

1 2.0000 2.0000 
2 1. 2068 1.4002 
3 .8423 1.0702 
4 .6389 .8565 

.6 .7 

1 2.0000 2.0000 
2 1. 8256 1. 8837 
3 1. 7109 1.8074 
4 1. 6199 1.7469 

The values of 8 

c P = .1 .2 

1 3.0000 3.0000 
2 1. 7139 1. 9384 
3 1.1731 1. 4253 
4 .8836 1.1179 

.6 .7 

1 3.0000 3.0000 
2 2.4784 2.5603 
3 2.2029 2.3348 
4 2.0141 2.1829 

.3 .4 .5 

2.0000 2.0000 2.0000 
1. 5479 1.6628 1. 7534 
1.2742 1.4480 1. 5924 
1.0789 1. 2854 1.4666 

.8 .9 

2.0000 2.0000 
1. 9307 1. 9689 
1.8858 1. 9490 
1. 8503 1. 9336 

.3 .4 .5 

3.0000 3.0000 3.0000 
2.1171 2.2617 2.3802 
1. 6596 1. 8676 2.0481 
1.3640 1. 6019 1.8202 

.8 .9 

3.0000 3.0000 
2.6293 2.6876 
2.4469 2.5420 
2.3278 2.4512 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



An Approximation Fonnuia [or an M/G/c Queue 

~~(W) is the mean waiting time and VM(W) is the variance of the 

waiting time of the M/M/c queue. 

~ the service rate, i.e., the reciprocal of the mean service time 

c : the number of channels 

P the traffic intensity 

The values of ~EM(W) 

c P = .1 .2 .3 .4 .5 

1 .111111 .250000 .428571 .666667 1.00000 
2 .0101010 '0416667 · 0989011 .190476 .333333 
3 .00 137174 .0102740 • 0333471 '0784314 .157895 
4 .000 220677 .00 299401 .0132321 .0377916 .0869565 

.6 .7 .8 .9 

1 1.50000 2.33333 4.00000 9.00000 
2 .562500 .960784 1. 77778 4.26316 
3 .295620 .547049 1.07865 2.72354 
4 .179402 .357212 .745541 1.96938 

The values of ]J2[V
M

(W) - (E
M

(W))2] 

c p = .1 .2 .3 .4 .5 

1 .222222 .500000 .857143 1. 33333 2.00000 
2 • 0110193 .0486111 . 12172lf .244898 .444444 
3 '00101234 '00835053 .02953S0 '0748430 .160665 
4 '000122501 . 00185333 · 0 0910129 '0286366 '0718336 

.6 .7 .8 .9 

1 3.00000 4.66667 8.00000 18.0000 
2 .773438 1.35640 2.56790 6.28255 
3 .317918 .617139 1. 26853 3.32161 
4 .159882 .340152 .752190 2.08998 
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ED(f/) is the mean waiting time and VDUv') is the variance of the 

waiting time of the M/Die queue. 

W the service rate, i.e., the reciprocal of the service time 

c the number of channels 

p the traffic intensity 

The values of WED(W) 

e p = .1 .2 .3 .4 .5 

1 '0555556 .125000 .214286 .333333 .500000 
2 .00 620828 .0242277 .0552594 103311 .176741 
3 .000947358 .00658323 .0 200944 .0 450111 .0 872017 
4 .000 164064 .00 205766 .00 845564 .0 226987 .0 496517 

.6 .7 .8 .9 

1 .750000 1.16667 2.00000 4.50000 
2 .293036 .493610 .903284 2.14692 
3 .158409 .286247 .553900 1.37791 
4 '0983759 .189708 .386095 .999966 

The values of 
') 

p-[VD(W) - (ED(W) )2] 

c p = .1 .2 .3 .4 .5 

1 .0370370 .0 833333 .142857 _ 222222 .333333 
2 .00 315930 .0 125048 .0 288624 .0545179 .0941175 
3 .000390189 .00 278456 .00 870264 .0199065 .0392936 
4 '0000567977 .000 738733 . 00313982 _00869126 '0195464 

.6 .7 .8 .9 

1 .500000 .777778 1.33333 3.00000 
2 .157322 .266970 .491863 1.17640 
3 . 0725915 .133191 .261352 .658550 
4 .0397126 .0 783496 .162817 .429835 
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8. 1 

( ! Pi ( 
'Z- )a (l-ta) (1+ I) (1+ 

a ») 0-1 T.- ... 
k.-l 

c:'C(W) 
'Z- 'Z-

EM(W) (I Pi 8i)a 

which can be calculated using Tables 3 and 4. 

These notes are also available for calculation of VC(W) with trjvial 

modifications. 
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